Source code

Revision control

Copy as Markdown

Other Tools

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Overview
// --------
// This file measures the speed of various implementations of C++ and Rust
// collections (hash tables, etc.) used within the codebase. There are a small
// number of benchmarks for each collection type; each benchmark tests certain
// operations (insertion, lookup, iteration, etc.) More benchmarks could easily
// be envisioned, but this small number is enough to characterize the major
// differences between implementations, while keeping the file size and
// complexity low.
//
// Details
// -------
// The file uses `MOZ_GTEST_BENCH_F` so that results are integrated into
// PerfHerder. It is also designed so that individual test benchmarks can be
// run under a profiler.
//
// The C++ code uses `MOZ_RELEASE_ASSERT` extensively to check values and
// ensure operations aren't optimized away by the compiler. The Rust code uses
// `assert!()`. These should be roughly equivalent, but aren't guaranteed to be
// the same. As a result, the intra-C++ comparisons should be reliable, and the
// intra-Rust comparisons should be reliable, but the C++ vs. Rust comparisons
// may be less reliable.
//
// Note that the Rust implementations run very slowly without --enable-release.
//
// Profiling
// ---------
// If you want to measure a particular implementation under a profiler such as
// Callgrind, do something like this:
//
// MOZ_RUN_GTEST=1 GTEST_FILTER='*BenchCollections*$IMPL*'
// valgrind --tool=callgrind --callgrind-out-file=clgout
// $OBJDIR/dist/bin/firefox -unittest
// callgrind_annotate --auto=yes clgout > clgann
//
// where $IMPL is part of an implementation name in a test (e.g. "PLDHash",
// "MozHash") and $OBJDIR is an objdir containing a --enable-release build.
//
// Note that multiple processes are spawned, so `clgout` gets overwritten
// multiple times, but the last process to write its profiling data to file is
// the one of interest. (Alternatively, use --callgrind-out-file=clgout.%p to
// get separate output files for each process, with a PID suffix.)
#include "gtest/gtest.h"
#include "gtest/MozGTestBench.h" // For MOZ_GTEST_BENCH
#include "mozilla/AllocPolicy.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/HashTable.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/TimeStamp.h"
#include "PLDHashTable.h"
#include <unordered_set>
using namespace mozilla;
// This function gives a pseudo-random sequence with the following properties:
// - Deterministic and platform-independent.
// - No duplicates in the first VALS_LEN results, which is useful for ensuring
// the tables get to a particular size, and also for guaranteeing lookups
// that fail.
static uintptr_t MyRand() {
static uintptr_t s = 0;
s = s * 1103515245 + 12345;
return s;
}
// Keep this in sync with Params in bench.rs.
struct Params {
const char* mConfigName;
size_t mNumInserts; // Insert this many unique keys
size_t mNumSuccessfulLookups; // Does mNumInserts lookups each time
size_t mNumFailingLookups; // Does mNumInserts lookups each time
size_t mNumIterations; // Iterates the full table each time
bool mRemoveInserts; // Remove all entries at end?
};
// We don't use std::unordered_{set,map}, but it's an interesting thing to
// benchmark against.
//
// Keep this in sync with all the other Bench_*() functions.
static void Bench_Cpp_unordered_set(const Params* aParams, void** aVals,
size_t aLen) {
std::unordered_set<void*> hs;
for (size_t j = 0; j < aParams->mNumInserts; j++) {
hs.insert(aVals[j]);
}
for (size_t i = 0; i < aParams->mNumSuccessfulLookups; i++) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
MOZ_RELEASE_ASSERT(hs.find(aVals[j]) != hs.end());
}
}
for (size_t i = 0; i < aParams->mNumFailingLookups; i++) {
for (size_t j = aParams->mNumInserts; j < aParams->mNumInserts * 2; j++) {
MOZ_RELEASE_ASSERT(hs.find(aVals[j]) == hs.end());
}
}
for (size_t i = 0; i < aParams->mNumIterations; i++) {
size_t n = 0;
for (const auto& elem : hs) {
(void)elem;
n++;
}
MOZ_RELEASE_ASSERT(aParams->mNumInserts == n);
MOZ_RELEASE_ASSERT(hs.size() == n);
}
if (aParams->mRemoveInserts) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
MOZ_RELEASE_ASSERT(hs.erase(aVals[j]) == 1);
}
MOZ_RELEASE_ASSERT(hs.size() == 0);
} else {
MOZ_RELEASE_ASSERT(hs.size() == aParams->mNumInserts);
}
}
// Keep this in sync with all the other Bench_*() functions.
static void Bench_Cpp_PLDHashTable(const Params* aParams, void** aVals,
size_t aLen) {
PLDHashTable hs(PLDHashTable::StubOps(), sizeof(PLDHashEntryStub));
for (size_t j = 0; j < aParams->mNumInserts; j++) {
auto entry = static_cast<PLDHashEntryStub*>(hs.Add(aVals[j]));
MOZ_RELEASE_ASSERT(!entry->key);
entry->key = aVals[j];
}
for (size_t i = 0; i < aParams->mNumSuccessfulLookups; i++) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
MOZ_RELEASE_ASSERT(hs.Search(aVals[j]));
}
}
for (size_t i = 0; i < aParams->mNumFailingLookups; i++) {
for (size_t j = aParams->mNumInserts; j < aParams->mNumInserts * 2; j++) {
MOZ_RELEASE_ASSERT(!hs.Search(aVals[j]));
}
}
for (size_t i = 0; i < aParams->mNumIterations; i++) {
size_t n = 0;
for (auto iter = hs.Iter(); !iter.Done(); iter.Next()) {
n++;
}
MOZ_RELEASE_ASSERT(aParams->mNumInserts == n);
MOZ_RELEASE_ASSERT(hs.EntryCount() == n);
}
if (aParams->mRemoveInserts) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
hs.Remove(aVals[j]);
}
MOZ_RELEASE_ASSERT(hs.EntryCount() == 0);
} else {
MOZ_RELEASE_ASSERT(hs.EntryCount() == aParams->mNumInserts);
}
}
// Keep this in sync with all the other Bench_*() functions.
static void Bench_Cpp_MozHashSet(const Params* aParams, void** aVals,
size_t aLen) {
mozilla::HashSet<void*, mozilla::DefaultHasher<void*>, MallocAllocPolicy> hs;
for (size_t j = 0; j < aParams->mNumInserts; j++) {
MOZ_RELEASE_ASSERT(hs.put(aVals[j]));
}
for (size_t i = 0; i < aParams->mNumSuccessfulLookups; i++) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
MOZ_RELEASE_ASSERT(hs.has(aVals[j]));
}
}
for (size_t i = 0; i < aParams->mNumFailingLookups; i++) {
for (size_t j = aParams->mNumInserts; j < aParams->mNumInserts * 2; j++) {
MOZ_RELEASE_ASSERT(!hs.has(aVals[j]));
}
}
for (size_t i = 0; i < aParams->mNumIterations; i++) {
size_t n = 0;
for (auto iter = hs.iter(); !iter.done(); iter.next()) {
n++;
}
MOZ_RELEASE_ASSERT(aParams->mNumInserts == n);
MOZ_RELEASE_ASSERT(hs.count() == n);
}
if (aParams->mRemoveInserts) {
for (size_t j = 0; j < aParams->mNumInserts; j++) {
hs.remove(aVals[j]);
}
MOZ_RELEASE_ASSERT(hs.count() == 0);
} else {
MOZ_RELEASE_ASSERT(hs.count() == aParams->mNumInserts);
}
}
extern "C" {
void Bench_Rust_HashSet(const Params* params, void** aVals, size_t aLen);
void Bench_Rust_FnvHashSet(const Params* params, void** aVals, size_t aLen);
void Bench_Rust_FxHashSet(const Params* params, void** aVals, size_t aLen);
}
static const size_t VALS_LEN = 131072;
// Each benchmark measures a different aspect of performance.
// Note that no "Inserts" value can exceed VALS_LEN.
// Also, if any failing lookups are done, Inserts must be <= VALS_LEN/2.
const Params gParamsList[] = {
// clang-format off
// Successful Failing Remove
// Inserts lookups lookups Iterations inserts
{ "succ_lookups", 1024, 5000, 0, 0, false },
{ "fail_lookups", 1024, 0, 5000, 0, false },
{ "insert_remove", VALS_LEN, 0, 0, 0, true },
{ "iterate", 1024, 0, 0, 5000, false },
// clang-format on
};
class BenchCollections : public ::testing::Test {
protected:
void SetUp() override {
StaticMutexAutoLock lock(sValsMutex);
if (!sVals) {
sVals = (void**)malloc(VALS_LEN * sizeof(void*));
for (size_t i = 0; i < VALS_LEN; i++) {
// This leaves the high 32 bits zero on 64-bit platforms, but that
// should still be enough randomness to get typical behaviour.
sVals[i] = reinterpret_cast<void*>(uintptr_t(MyRand()));
}
}
printf("\n");
for (size_t i = 0; i < std::size(gParamsList); i++) {
const Params* params = &gParamsList[i];
printf("%14s", params->mConfigName);
}
printf("%14s\n", "total");
}
public:
void BenchImpl(void (*aBench)(const Params*, void**, size_t)) {
StaticMutexAutoLock lock(sValsMutex);
double total = 0;
for (size_t i = 0; i < std::size(gParamsList); i++) {
const Params* params = &gParamsList[i];
TimeStamp t1 = TimeStamp::Now();
aBench(params, sVals, VALS_LEN);
TimeStamp t2 = TimeStamp::Now();
double t = (t2 - t1).ToMilliseconds();
printf("%11.1f ms", t);
total += t;
}
printf("%11.1f ms\n", total);
}
private:
// Random values used in the benchmarks.
static void** sVals MOZ_GUARDED_BY(sValsMutex);
// A mutex that protects all benchmark operations, ensuring that two
// benchmarks never run concurrently.
static StaticMutex sValsMutex;
};
void** BenchCollections::sVals;
StaticMutex BenchCollections::sValsMutex;
MOZ_GTEST_BENCH_F(BenchCollections, unordered_set,
[this] { BenchImpl(Bench_Cpp_unordered_set); });
MOZ_GTEST_BENCH_F(BenchCollections, PLDHash,
[this] { BenchImpl(Bench_Cpp_PLDHashTable); });
MOZ_GTEST_BENCH_F(BenchCollections, MozHash,
[this] { BenchImpl(Bench_Cpp_MozHashSet); });
MOZ_GTEST_BENCH_F(BenchCollections, RustHash,
[this] { BenchImpl(Bench_Rust_HashSet); });
MOZ_GTEST_BENCH_F(BenchCollections, RustFnvHash,
[this] { BenchImpl(Bench_Rust_FnvHashSet); });
MOZ_GTEST_BENCH_F(BenchCollections, RustFxHash,
[this] { BenchImpl(Bench_Rust_FxHashSet); });