Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#ifndef nsTArray_h__
#define nsTArray_h__
#include <string.h>
#include <algorithm>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <new>
#include <ostream>
#include <type_traits>
#include <utility>
#include "mozilla/Alignment.h"
#include "mozilla/ArrayIterator.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FunctionTypeTraits.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/NotNull.h"
#include "mozilla/Span.h"
#include "mozilla/fallible.h"
#include "mozilla/mozalloc.h"
#include "nsAlgorithm.h"
#include "nsDebug.h"
#include "nsISupports.h"
#include "nsRegionFwd.h"
#include "nsTArrayForwardDeclare.h"
namespace JS {
template <class T>
class Heap;
} /* namespace JS */
class nsCycleCollectionTraversalCallback;
class nsRegion;
namespace mozilla::a11y {
class BatchData;
}
namespace mozilla {
namespace layers {
class Animation;
class FrameStats;
struct PropertyAnimationGroup;
struct TileClient;
} // namespace layers
} // namespace mozilla
namespace mozilla {
struct SerializedStructuredCloneBuffer;
class SourceBufferTask;
} // namespace mozilla
namespace mozilla::dom::binding_detail {
template <typename, typename>
class RecordEntry;
}
namespace mozilla::dom::ipc {
class StructuredCloneData;
} // namespace mozilla::dom::ipc
namespace mozilla::dom {
class ClonedMessageData;
class MessageData;
class MessagePortIdentifier;
struct MozPluginParameter;
template <typename T>
struct Nullable;
class OwningFileOrDirectory;
class OwningStringOrBooleanOrObject;
class OwningUTF8StringOrDouble;
class Pref;
class RefMessageData;
class ResponsiveImageCandidate;
class ServiceWorkerRegistrationData;
namespace indexedDB {
class SerializedStructuredCloneReadInfo;
class ObjectStoreCursorResponse;
class IndexCursorResponse;
} // namespace indexedDB
} // namespace mozilla::dom
namespace mozilla::ipc {
class ContentSecurityPolicy;
template <class T>
class Endpoint;
} // namespace mozilla::ipc
class JSStructuredCloneData;
template <class T>
class RefPtr;
//
// nsTArray<E> is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// By default, nsTArray assumes that instances of E can be relocated safely
// using memory utils (memcpy/memmove).
//
// The public classes defined in this header are
//
// nsTArray<E>,
// CopyableTArray<E>,
// FallibleTArray<E>,
// AutoTArray<E, N>,
// CopyableAutoTArray<E, N>
//
// nsTArray, CopyableTArray, AutoTArray and CopyableAutoTArray are infallible by
// default. To opt-in to fallible behaviour, use the `mozilla::fallible`
// parameter and check the return value.
//
// CopyableTArray and CopyableAutoTArray< are copy-constructible and
// copy-assignable. Use these only when syntactically necessary to avoid implcit
// unintentional copies. nsTArray/AutoTArray can be conveniently copied using
// the Clone() member function. Consider using std::move where possible.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter E specifies the type of the elements and has the
// following requirements:
//
// E MUST be safely memmove()'able.
// E MUST define a copy-constructor.
// E MAY define operator< for sorting.
// E MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_RelocationStrategy below.)
//
// There is a public type value_type defined as E within each array class, and
// we reference the type under this name below.
//
// For member functions taking a Comparator instance, Comparator must be either
// a functor with a tri-state comparison function with a signature compatible to
//
// /** @return negative iff a < b, 0 iff a == b, positive iff a > b */
// int (const value_type& a, const value_type& b);
//
// or a class defining member functions with signatures compatible to:
//
// class Comparator {
// public:
// /** @return True if the elements are equals; false otherwise. */
// bool Equals(const value_type& a, const value_type& b) const;
//
// /** @return True if (a < b); false otherwise. */
// bool LessThan(const value_type& a, const value_type& b) const;
// };
//
// The Equals member function is used for searching, and the LessThan member
// function is used for searching and sorting. Note that some member functions,
// e.g. Compare, are templates where a different type Item can be used for the
// element to compare to. In that case, the signatures must be compatible to
// allow those comparisons, but the details are not documented here.
//
//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function. In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type. Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult {
// Note: allows implicit conversions from and to bool
MOZ_IMPLICIT constexpr nsTArrayFallibleResult(bool aResult)
: mResult(aResult) {}
MOZ_IMPLICIT constexpr operator bool() { return mResult; }
private:
bool mResult;
};
struct nsTArrayInfallibleResult {};
//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//
struct nsTArrayFallibleAllocatorBase {
typedef bool ResultType;
typedef nsTArrayFallibleResult ResultTypeProxy;
static constexpr ResultType Result(ResultTypeProxy aResult) {
return aResult;
}
static constexpr bool Successful(ResultTypeProxy aResult) { return aResult; }
static constexpr ResultTypeProxy SuccessResult() { return true; }
static constexpr ResultTypeProxy FailureResult() { return false; }
static constexpr ResultType ConvertBoolToResultType(bool aValue) {
return aValue;
}
};
struct nsTArrayInfallibleAllocatorBase {
typedef void ResultType;
typedef nsTArrayInfallibleResult ResultTypeProxy;
static constexpr ResultType Result(ResultTypeProxy aResult) {}
static constexpr bool Successful(ResultTypeProxy) { return true; }
static constexpr ResultTypeProxy SuccessResult() { return ResultTypeProxy(); }
[[noreturn]] static ResultTypeProxy FailureResult() {
MOZ_CRASH("Infallible nsTArray should never fail");
}
template <typename T>
static constexpr ResultType ConvertBoolToResultType(T aValue) {
if (!aValue) {
MOZ_CRASH("infallible nsTArray should never convert false to ResultType");
}
}
template <typename T>
static constexpr ResultType ConvertBoolToResultType(
const mozilla::NotNull<T>& aValue) {}
};
struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase {
static void* Malloc(size_t aSize) { return malloc(aSize); }
static void* Realloc(void* aPtr, size_t aSize) {
return realloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t) {}
};
struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase {
static void* Malloc(size_t aSize) MOZ_NONNULL_RETURN {
return moz_xmalloc(aSize);
}
static void* Realloc(void* aPtr, size_t aSize) MOZ_NONNULL_RETURN {
return moz_xrealloc(aPtr, aSize);
}
static void Free(void* aPtr) { free(aPtr); }
static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); }
};
// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this). This is done to minimize the size of the nsTArray
// object when it is empty.
struct nsTArrayHeader {
uint32_t mLength;
uint32_t mCapacity : 31;
uint32_t mIsAutoArray : 1;
};
extern "C" {
extern const nsTArrayHeader sEmptyTArrayHeader;
}
namespace detail {
// nsTArray_CopyDisabler disables copy operations.
class nsTArray_CopyDisabler {
public:
nsTArray_CopyDisabler() = default;
nsTArray_CopyDisabler(const nsTArray_CopyDisabler&) = delete;
nsTArray_CopyDisabler& operator=(const nsTArray_CopyDisabler&) = delete;
};
} // namespace detail
// This class provides a SafeElementAt method to nsTArray<E*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper : public ::detail::nsTArray_CopyDisabler {
typedef E* elem_type;
typedef size_t index_type;
// No implementation is provided for these two methods, and that is on
// purpose, since we don't support these functions on non-pointer type
// instantiations.
elem_type& SafeElementAt(index_type aIndex);
const elem_type& SafeElementAt(index_type aIndex) const;
};
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
: public ::detail::nsTArray_CopyDisabler {
typedef E* elem_type;
// typedef const E* const_elem_type; XXX: see below
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex) {
return static_cast<Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
// Also, the use of const_elem_type for nsTArray<xpcGCCallback> in
// xpcprivate.h causes build failures on Windows because xpcGCCallback is a
// function pointer and MSVC doesn't like qualifying it with |const|.
elem_type SafeElementAt(index_type aIndex) const {
return static_cast<const Derived*>(this)->SafeElementAt(aIndex, nullptr);
}
};
// E is a smart pointer type; the
// smart pointer can act as its element_type*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
: public ::detail::nsTArray_CopyDisabler {
typedef typename E::element_type* elem_type;
typedef const typename E::element_type* const_elem_type;
typedef size_t index_type;
elem_type SafeElementAt(index_type aIndex) {
auto* derived = static_cast<Derived*>(this);
if (aIndex < derived->Length()) {
return derived->Elements()[aIndex];
}
return nullptr;
}
// XXX: Probably should return const_elem_type, but callsites must be fixed.
elem_type SafeElementAt(index_type aIndex) const {
auto* derived = static_cast<const Derived*>(this);
if (aIndex < derived->Length()) {
return derived->Elements()[aIndex];
}
return nullptr;
}
};
template <class T>
class nsCOMPtr;
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<nsCOMPtr<E>, Derived> {};
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<RefPtr<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<RefPtr<E>, Derived> {};
namespace mozilla {
template <class T>
class OwningNonNull;
} // namespace mozilla
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<mozilla::OwningNonNull<E>, Derived>
: public nsTArray_SafeElementAtSmartPtrHelper<mozilla::OwningNonNull<E>,
Derived> {};
// This class serves as a base class for nsTArray. It shouldn't be used
// directly. It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template <class Alloc, class RelocationStrategy>
class nsTArray_base {
// Allow swapping elements with |nsTArray_base|s created using a
// different allocator. This is kosher because all allocators use
// the same free().
template <class XAlloc, class XRelocationStrategy>
friend class nsTArray_base;
// Needed for AppendElements from an array with a different allocator, which
// calls ShiftData.
template <class E, class XAlloc>
friend class nsTArray_Impl;
protected:
typedef nsTArrayHeader Header;
public:
typedef size_t size_type;
typedef size_t index_type;
// @return The number of elements in the array.
size_type Length() const { return mHdr->mLength; }
// @return True if the array is empty or false otherwise.
bool IsEmpty() const { return Length() == 0; }
// @return The number of elements that can fit in the array without forcing
// the array to be re-allocated. The length of an array is always less
// than or equal to its capacity.
size_type Capacity() const { return mHdr->mCapacity; }
#ifdef DEBUG
void* DebugGetHeader() const { return mHdr; }
#endif
protected:
nsTArray_base();
~nsTArray_base();
nsTArray_base(const nsTArray_base&);
nsTArray_base& operator=(const nsTArray_base&);
// Resize the storage if necessary to achieve the requested capacity.
// @param aCapacity The requested number of array elements.
// @param aElemSize The size of an array element.
// @return False if insufficient memory is available; true otherwise.
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy EnsureCapacity(size_type aCapacity,
size_type aElemSize) {
// Do this check here so that our callers can inline it.
if (aCapacity <= mHdr->mCapacity) {
return ActualAlloc::SuccessResult();
}
return EnsureCapacityImpl<ActualAlloc>(aCapacity, aElemSize);
}
// The rest of EnsureCapacity. Should only be called if aCapacity >
// mHdr->mCapacity.
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy EnsureCapacityImpl(size_type aCapacity,
size_type aElemSize);
// Extend the storage to accommodate aCount extra elements.
// @param aLength The current size of the array.
// @param aCount The number of elements to add.
// @param aElemSize The size of an array element.
// @return False if insufficient memory is available or the new length
// would overflow; true otherwise.
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy ExtendCapacity(size_type aLength,
size_type aCount,
size_type aElemSize);
// Tries to resize the storage to the minimum required amount. If this fails,
// the array is left as-is.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
void ShrinkCapacity(size_type aElemSize, size_t aElemAlign);
// Resizes the storage to 0. This may only be called when Length() is already
// 0.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
void ShrinkCapacityToZero(size_type aElemSize, size_t aElemAlign);
// This method may be called to resize a "gap" in the array by shifting
// elements around. It updates mLength appropriately. If the resulting
// array has zero elements, then the array's memory is free'd.
// @param aStart The starting index of the gap.
// @param aOldLen The current length of the gap.
// @param aNewLen The desired length of the gap.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
template <typename ActualAlloc>
void ShiftData(index_type aStart, size_type aOldLen, size_type aNewLen,
size_type aElemSize, size_t aElemAlign);
// This method may be called to swap elements from the end of the array to
// fill a "gap" in the array. If the resulting array has zero elements, then
// the array's memory is free'd.
// @param aStart The starting index of the gap.
// @param aCount The length of the gap.
// @param aElemSize The size of an array element.
// @param aElemAlign The alignment in bytes of an array element.
template <typename ActualAlloc>
void SwapFromEnd(index_type aStart, size_type aCount, size_type aElemSize,
size_t aElemAlign);
// This method increments the length member of the array's header.
// Note that mHdr may actually be sEmptyTArrayHeader in the case where a
// zero-length array is inserted into our array. But then aNum should
// always be 0.
void IncrementLength(size_t aNum) {
if (HasEmptyHeader()) {
if (MOZ_UNLIKELY(aNum != 0)) {
// Writing a non-zero length to the empty header would be extremely bad.
MOZ_CRASH();
}
} else {
mHdr->mLength += aNum;
}
}
// This method inserts blank slots into the array.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of slots to insert
// @param aElementSize the size of an array element.
// @param aElemAlign the alignment in bytes of an array element.
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy InsertSlotsAt(index_type aIndex,
size_type aCount,
size_type aElementSize,
size_t aElemAlign);
template <typename ActualAlloc, class Allocator>
typename ActualAlloc::ResultTypeProxy SwapArrayElements(
nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
size_t aElemAlign);
template <class Allocator>
void MoveConstructNonAutoArray(
nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
size_t aElemAlign);
template <class Allocator>
void MoveInit(nsTArray_base<Allocator, RelocationStrategy>& aOther,
size_type aElemSize, size_t aElemAlign);
// This is an RAII class used in SwapArrayElements.
class IsAutoArrayRestorer {
public:
IsAutoArrayRestorer(nsTArray_base<Alloc, RelocationStrategy>& aArray,
size_t aElemAlign);
~IsAutoArrayRestorer();
private:
nsTArray_base<Alloc, RelocationStrategy>& mArray;
size_t mElemAlign;
bool mIsAuto;
};
// Helper function for SwapArrayElements. Ensures that if the array
// is an AutoTArray that it doesn't use the built-in buffer.
template <typename ActualAlloc>
bool EnsureNotUsingAutoArrayBuffer(size_type aElemSize);
// Returns true if this nsTArray is an AutoTArray with a built-in buffer.
bool IsAutoArray() const { return mHdr->mIsAutoArray; }
// Returns a Header for the built-in buffer of this AutoTArray.
Header* GetAutoArrayBuffer(size_t aElemAlign) {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
const Header* GetAutoArrayBuffer(size_t aElemAlign) const {
MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
return GetAutoArrayBufferUnsafe(aElemAlign);
}
// Returns a Header for the built-in buffer of this AutoTArray, but doesn't
// assert that we are an AutoTArray.
Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) {
return const_cast<Header*>(
static_cast<const nsTArray_base<Alloc, RelocationStrategy>*>(this)
->GetAutoArrayBufferUnsafe(aElemAlign));
}
const Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) const;
// Returns true if this is an AutoTArray and it currently uses the
// built-in buffer to store its elements.
bool UsesAutoArrayBuffer() const;
// The array's elements (prefixed with a Header). This pointer is never
// null. If the array is empty, then this will point to sEmptyTArrayHeader.
Header* mHdr;
Header* Hdr() const MOZ_NONNULL_RETURN { return mHdr; }
Header** PtrToHdr() MOZ_NONNULL_RETURN { return &mHdr; }
static Header* EmptyHdr() MOZ_NONNULL_RETURN {
return const_cast<Header*>(&sEmptyTArrayHeader);
}
[[nodiscard]] bool HasEmptyHeader() const { return mHdr == EmptyHdr(); }
};
namespace detail {
// Used for argument checking in nsTArrayElementTraits::Emplace.
template <typename... T>
struct ChooseFirst;
template <>
struct ChooseFirst<> {
// Choose a default type that is guaranteed to not match E* for any
// nsTArray<E>.
typedef void Type;
};
template <typename A, typename... Args>
struct ChooseFirst<A, Args...> {
typedef A Type;
};
} // namespace detail
//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template <class E>
class nsTArrayElementTraits {
public:
// Invoke the default constructor in place.
static inline void Construct(E* aE) {
// Do NOT call "E()"! That triggers C++ "default initialization"
// which zeroes out POD ("plain old data") types such as regular
// ints. We don't want that because it can be a performance issue
// and people don't expect it; nsTArray should work like a regular
// C/C++ array in this respect.
new (static_cast<void*>(aE)) E;
}
// Invoke the copy-constructor in place.
template <class A>
static inline void Construct(E* aE, A&& aArg) {
using E_NoCV = std::remove_cv_t<E>;
using A_NoCV = std::remove_cv_t<A>;
static_assert(!std::is_same_v<E_NoCV*, A_NoCV>,
"For safety, we disallow constructing nsTArray<E> elements "
new (static_cast<void*>(aE)) E(std::forward<A>(aArg));
}
// Construct in place.
template <class... Args>
static inline void Emplace(E* aE, Args&&... aArgs) {
using E_NoCV = std::remove_cv_t<E>;
using A_NoCV =
std::remove_cv_t<typename ::detail::ChooseFirst<Args...>::Type>;
static_assert(!std::is_same_v<E_NoCV*, A_NoCV>,
"For safety, we disallow constructing nsTArray<E> elements "
new (static_cast<void*>(aE)) E(std::forward<Args>(aArgs)...);
}
// Invoke the destructor in place.
static inline void Destruct(E* aE) { aE->~E(); }
};
// The default comparator used by nsTArray
template <class A, class B>
class nsDefaultComparator {
public:
bool Equals(const A& aA, const B& aB) const { return aA == aB; }
bool LessThan(const A& aA, const B& aB) const { return aA < aB; }
};
template <bool IsTriviallyCopyConstructible, bool IsSameType>
struct AssignRangeAlgorithm {
template <class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues) {
ElemType* iter = aElements + aStart;
ElemType* end = iter + aCount;
for (; iter != end; ++iter, ++aValues) {
nsTArrayElementTraits<ElemType>::Construct(iter, *aValues);
}
}
};
template <>
struct AssignRangeAlgorithm<true, true> {
template <class Item, class ElemType, class IndexType, class SizeType>
static void implementation(ElemType* aElements, IndexType aStart,
SizeType aCount, const Item* aValues) {
if (aValues) {
memcpy(aElements + aStart, aValues, aCount * sizeof(ElemType));
}
}
};
//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic. The nsTArray_RelocationStrategy template class
// can be specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//
//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_RelocateUsingMemutils {
const static bool allowRealloc = true;
static void RelocateNonOverlappingRegionWithHeader(void* aDest,
const void* aSrc,
size_t aCount,
size_t aElemSize) {
memcpy(aDest, aSrc, sizeof(nsTArrayHeader) + aCount * aElemSize);
}
static void RelocateOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize) {
memmove(aDest, aSrc, aCount * aElemSize);
}
static void RelocateNonOverlappingRegion(void* aDest, void* aSrc,
size_t aCount, size_t aElemSize) {
memcpy(aDest, aSrc, aCount * aElemSize);
}
};
//
// A template class that defines how to relocate elements using the type's move
// constructor and destructor appropriately.
//
template <class ElemType>
struct nsTArray_RelocateUsingMoveConstructor {
typedef nsTArrayElementTraits<ElemType> traits;
const static bool allowRealloc = false;
static void RelocateNonOverlappingRegionWithHeader(void* aDest, void* aSrc,
size_t aCount,
size_t aElemSize) {
nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(aDest);
nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(aSrc);
*destHeader = *srcHeader;
RelocateNonOverlappingRegion(
static_cast<uint8_t*>(aDest) + sizeof(nsTArrayHeader),
static_cast<uint8_t*>(aSrc) + sizeof(nsTArrayHeader), aCount,
aElemSize);
}
// RelocateNonOverlappingRegion and RelocateOverlappingRegion are defined by
// analogy with memmove and memcpy that are used for relocation of
// trivially-relocatable types through nsTArray_RelocateUsingMemutils. What
// they actually do is slightly different: RelocateOverlappingRegion checks to
// see which direction the movement needs to take place, whether from
// back-to-front of the range to be moved or from front-to-back.
// RelocateNonOverlappingRegion assumes that relocating front-to-back is
// always valid. They use RelocateRegionForward and RelocateRegionBackward,
// which are analogous to std::move and std::move_backward respectively,
// except they don't move-assign the destination from the source but
// move-construct the destination from the source and destroy the source.
static void RelocateOverlappingRegion(void* aDest, void* aSrc, size_t aCount,
size_t aElemSize) {
ElemType* destBegin = static_cast<ElemType*>(aDest);
ElemType* srcBegin = static_cast<ElemType*>(aSrc);
// If destination and source are the same, this is a no-op.
// In practice, we don't do this.
if (destBegin == srcBegin) {
return;
}
ElemType* srcEnd = srcBegin + aCount;
ElemType* destEnd = destBegin + aCount;
// Figure out whether to relocate back-to-front or front-to-back.
if (srcEnd > destBegin && srcEnd < destEnd) {
RelocateRegionBackward(srcBegin, srcEnd, destEnd);
} else {
RelocateRegionForward(srcBegin, srcEnd, destBegin);
}
}
static void RelocateNonOverlappingRegion(void* aDest, void* aSrc,
size_t aCount, size_t aElemSize) {
ElemType* destBegin = static_cast<ElemType*>(aDest);
ElemType* srcBegin = static_cast<ElemType*>(aSrc);
ElemType* srcEnd = srcBegin + aCount;
#ifdef DEBUG
ElemType* destEnd = destBegin + aCount;
MOZ_ASSERT(srcEnd <= destBegin || srcBegin >= destEnd);
#endif
RelocateRegionForward(srcBegin, srcEnd, destBegin);
}
private:
static void RelocateRegionForward(ElemType* srcBegin, ElemType* srcEnd,
ElemType* destBegin) {
ElemType* srcElem = srcBegin;
ElemType* destElem = destBegin;
while (srcElem != srcEnd) {
RelocateElement(srcElem, destElem);
++destElem;
++srcElem;
}
}
static void RelocateRegionBackward(ElemType* srcBegin, ElemType* srcEnd,
ElemType* destEnd) {
ElemType* srcElem = srcEnd;
ElemType* destElem = destEnd;
while (srcElem != srcBegin) {
--destElem;
--srcElem;
RelocateElement(srcElem, destElem);
}
}
static void RelocateElement(ElemType* srcElem, ElemType* destElem) {
traits::Construct(destElem, std::move(*srcElem));
traits::Destruct(srcElem);
}
};
//
// The default behaviour is to use memcpy/memmove for everything.
//
template <class E>
struct MOZ_NEEDS_MEMMOVABLE_TYPE nsTArray_RelocationStrategy {
using Type = nsTArray_RelocateUsingMemutils;
};
//
// Some classes require constructors/destructors to be called, so they are
// specialized here.
//
#define MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(E) \
template <> \
struct nsTArray_RelocationStrategy<E> { \
using Type = nsTArray_RelocateUsingMoveConstructor<E>; \
};
#define MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(T) \
template <typename S> \
struct nsTArray_RelocationStrategy<T<S>> { \
using Type = nsTArray_RelocateUsingMoveConstructor<T<S>>; \
};
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(JS::Heap)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(std::function)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR_FOR_TEMPLATE(mozilla::ipc::Endpoint)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(nsRegion)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(nsIntRegion)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::layers::TileClient)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
mozilla::SerializedStructuredCloneBuffer)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
mozilla::dom::ipc::StructuredCloneData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::ClonedMessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
mozilla::dom::indexedDB::ObjectStoreCursorResponse)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
mozilla::dom::indexedDB::IndexCursorResponse)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(
mozilla::dom::indexedDB::SerializedStructuredCloneReadInfo);
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(JSStructuredCloneData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::MessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::dom::RefMessageData)
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::SourceBufferTask)
//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template <class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};
//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template <class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
: public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived> {
operator const nsTArray<E>&() {
static_assert(sizeof(E) == sizeof(JS::Heap<E>),
"JS::Heap<E> must be binary compatible with E.");
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<nsTArray<E>*>(self);
}
operator const FallibleTArray<E>&() {
Derived* self = static_cast<Derived*>(this);
return *reinterpret_cast<FallibleTArray<E>*>(self);
}
};
namespace detail {
// These helpers allow us to differentiate between tri-state comparator
// functions and classes with LessThan() and Equal() methods. If an object, when
// called as a function with two instances of our element type, returns an int,
// we treat it as a tri-state comparator.
//
// T is the type of the comparator object we want to check. U is the array
// element type that we'll be comparing.
//
// V is never passed, and is only used to allow us to specialize on the return
// value of the comparator function.
template <typename T, typename U, typename V = int>
struct IsCompareMethod : std::false_type {};
template <typename T, typename U>
struct IsCompareMethod<
T, U, decltype(std::declval<T>()(std::declval<U>(), std::declval<U>()))>
: std::true_type {};
// These two wrappers allow us to use either a tri-state comparator, or an
// object with Equals() and LessThan() methods interchangeably. They provide a
// tri-state Compare() method, and Equals() method, and a LessThan() method.
//
// Depending on the type of the underlying comparator, they either pass these
// through directly, or synthesize them from the methods available on the
// comparator.
//
// Callers should always use the most-specific of these methods that match their
// purpose.
// Comparator wrapper for a tri-state comparator function
template <typename T, typename U, bool IsCompare = IsCompareMethod<T, U>::value>
struct CompareWrapper {
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4180) /* Silence "qualifier applied to function \
type has no meaning" warning */
#endif
MOZ_IMPLICIT CompareWrapper(const T& aComparator)
: mComparator(aComparator) {}
template <typename A, typename B>
int Compare(A& aLeft, B& aRight) const {
return mComparator(aLeft, aRight);
}
template <typename A, typename B>
bool Equals(A& aLeft, B& aRight) const {
return Compare(aLeft, aRight) == 0;
}
template <typename A, typename B>
bool LessThan(A& aLeft, B& aRight) const {
return Compare(aLeft, aRight) < 0;
}
const T& mComparator;
#ifdef _MSC_VER
# pragma warning(pop)
#endif
};
// Comparator wrapper for a class with Equals() and LessThan() methods.
template <typename T, typename U>
struct CompareWrapper<T, U, false> {
MOZ_IMPLICIT CompareWrapper(const T& aComparator)
: mComparator(aComparator) {}
template <typename A, typename B>
int Compare(A& aLeft, B& aRight) const {
if (LessThan(aLeft, aRight)) {
return -1;
}
if (Equals(aLeft, aRight)) {
return 0;
}
return 1;
}
template <typename A, typename B>
bool Equals(A& aLeft, B& aRight) const {
return mComparator.Equals(aLeft, aRight);
}
template <typename A, typename B>
bool LessThan(A& aLeft, B& aRight) const {
return mComparator.LessThan(aLeft, aRight);
}
const T& mComparator;
};
} // namespace detail
//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// AutoTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template <class E, class Alloc>
class nsTArray_Impl
: public nsTArray_base<Alloc,
typename nsTArray_RelocationStrategy<E>::Type>,
public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc>> {
private:
friend class nsTArray<E>;
typedef nsTArrayFallibleAllocator FallibleAlloc;
typedef nsTArrayInfallibleAllocator InfallibleAlloc;
public:
typedef typename nsTArray_RelocationStrategy<E>::Type relocation_type;
typedef nsTArray_base<Alloc, relocation_type> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::index_type index_type;
typedef E value_type;
typedef nsTArray_Impl<E, Alloc> self_type;
typedef nsTArrayElementTraits<E> elem_traits;
typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;
typedef mozilla::ArrayIterator<value_type&, self_type> iterator;
typedef mozilla::ArrayIterator<const value_type&, self_type> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
using base_type::EmptyHdr;
using safeelementat_helper_type::SafeElementAt;
// A special value that is used to indicate an invalid or unknown index
// into the array.
static const index_type NoIndex = index_type(-1);
using base_type::Length;
//
// Finalization method
//
~nsTArray_Impl() {
if (!base_type::IsEmpty()) {
ClearAndRetainStorage();
}
// mHdr cleanup will be handled by base destructor
}
//
// Initialization methods
//
nsTArray_Impl() = default;
// Initialize this array and pre-allocate some number of elements.
explicit nsTArray_Impl(size_type aCapacity) { SetCapacity(aCapacity); }
// Initialize this array with an r-value.
// Allow different types of allocators, since the allocator doesn't matter.
template <typename Allocator>
explicit nsTArray_Impl(nsTArray_Impl<E, Allocator>&& aOther) noexcept {
// We cannot be a (Copyable)AutoTArray because that overrides this ctor.
MOZ_ASSERT(!this->IsAutoArray());
// This does not use SwapArrayElements because that's unnecessarily complex.
this->MoveConstructNonAutoArray(aOther, sizeof(value_type),
MOZ_ALIGNOF(value_type));
}
// The array's copy-constructor performs a 'deep' copy of the given array.
// @param aOther The array object to copy.
//
// It's very important that we declare this method as taking |const
// self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
// an arbitrary OtherAlloc.
//
// If we don't declare a constructor taking |const self_type&|, C++ generates
// a copy-constructor for this class which merely copies the object's
// members, which is obviously wrong.
//
// You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
// nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&. So the
// effect on the API is the same as if we'd declared this method as taking
// |const nsTArray_Impl<E, OtherAlloc>&|.
nsTArray_Impl(const nsTArray_Impl&) = default;
// Allow converting to a const array with a different kind of allocator,
// Since the allocator doesn't matter for const arrays
template <typename Allocator>
[[nodiscard]] operator const nsTArray_Impl<E, Allocator>&() const& {
return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
}
// And we have to do this for our subclasses too
[[nodiscard]] operator const nsTArray<E>&() const& {
return *reinterpret_cast<const nsTArray<E>*>(this);
}
[[nodiscard]] operator const FallibleTArray<E>&() const& {
return *reinterpret_cast<const FallibleTArray<E>*>(this);
}
// The array's assignment operator performs a 'deep' copy of the given
// array. It is optimized to reuse existing storage if possible.
// @param aOther The array object to copy.
nsTArray_Impl& operator=(const nsTArray_Impl&) = default;
// The array's move assignment operator steals the underlying data from
// the other array.
// @param other The array object to move from.
self_type& operator=(self_type&& aOther) {
if (this != &aOther) {
Clear();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
return *this;
}
// Return true if this array has the same length and the same
// elements as |aOther|.
template <typename Allocator>
[[nodiscard]] bool operator==(
const nsTArray_Impl<E, Allocator>& aOther) const {
size_type len = Length();
if (len != aOther.Length()) {
return false;
}
// XXX std::equal would be as fast or faster here
for (index_type i = 0; i < len; ++i) {
if (!(operator[](i) == aOther[i])) {
return false;
}
}
return true;
}
// Return true if this array does not have the same length and the same
// elements as |aOther|.
[[nodiscard]] bool operator!=(const self_type& aOther) const {
return !operator==(aOther);
}
// If Alloc == FallibleAlloc, ReplaceElementsAt might fail, without a way to
// signal this to the caller, so we disallow copying via operator=. Callers
// should use ReplaceElementsAt with a fallible argument instead, and check
// the result.
template <typename Allocator,
typename = std::enable_if_t<std::is_same_v<Alloc, InfallibleAlloc>,
Allocator>>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
AssignInternal<InfallibleAlloc>(aOther.Elements(), aOther.Length());
return *this;
}
template <typename Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
Clear();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
return *this;
}
// @return The amount of memory used by this nsTArray_Impl, excluding
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
[[nodiscard]] size_t ShallowSizeOfExcludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
if (this->UsesAutoArrayBuffer() || this->HasEmptyHeader()) {
return 0;
}
return aMallocSizeOf(this->Hdr());
}
// @return The amount of memory used by this nsTArray_Impl, including
// sizeof(*this). If you want to measure anything hanging off the array, you
// must iterate over the elements and measure them individually; hence the
// "Shallow" prefix.
[[nodiscard]] size_t ShallowSizeOfIncludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
}
//
// Accessor methods
//
// This method provides direct access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
[[nodiscard]] value_type* Elements() MOZ_NONNULL_RETURN {
return reinterpret_cast<value_type*>(Hdr() + 1);
}
// This method provides direct, readonly access to the array elements.
// @return A pointer to the first element of the array. If the array is
// empty, then this pointer must not be dereferenced.
[[nodiscard]] const value_type* Elements() const MOZ_NONNULL_RETURN {
return reinterpret_cast<const value_type*>(Hdr() + 1);
}
// This method provides direct access to an element of the array. The given
// index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A reference to the i'th element of the array.
[[nodiscard]] value_type& ElementAt(index_type aIndex) {
if (MOZ_UNLIKELY(aIndex >= Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct, readonly access to an element of the array
// The given index must be within the array bounds.
// @param aIndex The index of an element in the array.
// @return A const reference to the i'th element of the array.
[[nodiscard]] const value_type& ElementAt(index_type aIndex) const {
if (MOZ_UNLIKELY(aIndex >= Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
}
return Elements()[aIndex];
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
[[nodiscard]] value_type& SafeElementAt(index_type aIndex, value_type& aDef) {
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// This method provides direct access to an element of the array in a bounds
// safe manner. If the requested index is out of bounds the provided default
// value is returned.
// @param aIndex The index of an element in the array.
// @param aDef The value to return if the index is out of bounds.
[[nodiscard]] const value_type& SafeElementAt(index_type aIndex,
const value_type& aDef) const {
return aIndex < Length() ? Elements()[aIndex] : aDef;
}
// Shorthand for ElementAt(aIndex)
[[nodiscard]] value_type& operator[](index_type aIndex) {
return ElementAt(aIndex);
}
// Shorthand for ElementAt(aIndex)
[[nodiscard]] const value_type& operator[](index_type aIndex) const {
return ElementAt(aIndex);
}
// Shorthand for ElementAt(length - 1)
[[nodiscard]] value_type& LastElement() { return ElementAt(Length() - 1); }
// Shorthand for ElementAt(length - 1)
[[nodiscard]] const value_type& LastElement() const {
return ElementAt(Length() - 1);
}
// Shorthand for SafeElementAt(length - 1, def)
[[nodiscard]] value_type& SafeLastElement(value_type& aDef) {
return SafeElementAt(Length() - 1, aDef);
}
// Shorthand for SafeElementAt(length - 1, def)
[[nodiscard]] const value_type& SafeLastElement(
const value_type& aDef) const {
return SafeElementAt(Length() - 1, aDef);
}
// Methods for range-based for loops.
[[nodiscard]] iterator begin() { return iterator(*this, 0); }
[[nodiscard]] const_iterator begin() const {
return const_iterator(*this, 0);
}
[[nodiscard]] const_iterator cbegin() const { return begin(); }
[[nodiscard]] iterator end() { return iterator(*this, Length()); }
[[nodiscard]] const_iterator end() const {
return const_iterator(*this, Length());
}
[[nodiscard]] const_iterator cend() const { return end(); }
// Methods for reverse iterating.
[[nodiscard]] reverse_iterator rbegin() { return reverse_iterator(end()); }
[[nodiscard]] const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
[[nodiscard]] const_reverse_iterator crbegin() const { return rbegin(); }
[[nodiscard]] reverse_iterator rend() { return reverse_iterator(begin()); }
[[nodiscard]] const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
[[nodiscard]] const_reverse_iterator crend() const { return rend(); }
// Span integration
[[nodiscard]] operator mozilla::Span<value_type>() {
return mozilla::Span<value_type>(Elements(), Length());
}
[[nodiscard]] operator mozilla::Span<const value_type>() const {
return mozilla::Span<const value_type>(Elements(), Length());
}
//
// Search methods
//
// This method searches for the first element in this array that is equal
// to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found.
template <class Item, class Comparator>
[[nodiscard]] bool Contains(const Item& aItem,
const Comparator& aComp) const {
return ApplyIf(
aItem, 0, aComp, []() { return true; }, []() { return false; });
}
// Like Contains(), but assumes a sorted array.
template <class Item, class Comparator>
[[nodiscard]] bool ContainsSorted(const Item& aItem,
const Comparator& aComp) const {
return BinaryIndexOf(aItem, aComp) != NoIndex;
}
// This method searches for the first element in this array that is equal
// to the given element. This method assumes that 'operator==' is defined
// for value_type.
// @param aItem The item to search for.
// @return true if the element was found.
template <class Item>
[[nodiscard]] bool Contains(const Item& aItem) const {
return Contains(aItem, nsDefaultComparator<value_type, Item>());
}
// Like Contains(), but assumes a sorted array.
template <class Item>
[[nodiscard]] bool ContainsSorted(const Item& aItem) const {
return BinaryIndexOf(aItem) != NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template <class Item, class Comparator>
[[nodiscard]] index_type IndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const {
::detail::CompareWrapper<Comparator, Item> comp(aComp);
const value_type* iter = Elements() + aStart;
const value_type* iend = Elements() + Length();
for (; iter != iend; ++iter) {
if (comp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the first element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for value_type.
// @param aItem The item to search for.
// @param aStart The index to start from.
// @return The index of the found element or NoIndex if not found.
template <class Item>
[[nodiscard]] index_type IndexOf(const Item& aItem,
index_type aStart = 0) const {
return IndexOf(aItem, aStart, nsDefaultComparator<value_type, Item>());
}
// This method searches for the offset of the last element in this
// array that is equal to the given element.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @param aComp The Comparator used to determine element equality.
// @return The index of the found element or NoIndex if not found.
template <class Item, class Comparator>
[[nodiscard]] index_type LastIndexOf(const Item& aItem, index_type aStart,
const Comparator& aComp) const {
::detail::CompareWrapper<Comparator, Item> comp(aComp);
size_type endOffset = aStart >= Length() ? Length() : aStart + 1;
const value_type* iend = Elements() - 1;
const value_type* iter = iend + endOffset;
for (; iter != iend; --iter) {
if (comp.Equals(*iter, aItem)) {
return index_type(iter - Elements());
}
}
return NoIndex;
}
// This method searches for the offset of the last element in this
// array that is equal to the given element. This method assumes
// that 'operator==' is defined for value_type.
// @param aItem The item to search for.
// @param aStart The index to start from. If greater than or equal to the
// length of the array, then the entire array is searched.
// @return The index of the found element or NoIndex if not found.
template <class Item>
[[nodiscard]] index_type LastIndexOf(const Item& aItem,
index_type aStart = NoIndex) const {
return LastIndexOf(aItem, aStart, nsDefaultComparator<value_type, Item>());
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// If there is more than one equivalent element, there is no guarantee
// on which one will be returned.
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of the found element or NoIndex if not found.
template <class Item, class Comparator>
[[nodiscard]] index_type BinaryIndexOf(const Item& aItem,
const Comparator& aComp) const {
using mozilla::BinarySearchIf;
::detail::CompareWrapper<Comparator, Item> comp(aComp);
size_t index;
bool found = BinarySearchIf(
Elements(), 0, Length(),
// Note: We pass the Compare() args here in reverse order and negate the
// results for compatibility reasons. Some existing callers use Equals()
// functions with first arguments which match aElement but not aItem, or
// second arguments that match aItem but not aElement. To accommodate
// those callers, we preserve the argument order of the older version of
// this API. These callers, however, should be fixed, and this special
// case removed.
[&](const value_type& aElement) {
return -comp.Compare(aElement, aItem);
},
&index);
return found ? index : NoIndex;
}
// This method searches for the offset for the element in this array
// that is equal to the given element. The array is assumed to be sorted.
// This method assumes that 'operator==' and 'operator<' are defined.
// @param aItem The item to search for.
// @return The index of the found element or NoIndex if not found.
template <class Item>
[[nodiscard]] index_type BinaryIndexOf(const Item& aItem) const {
return BinaryIndexOf(aItem, nsDefaultComparator<value_type, Item>());
}
//
// Mutation methods
//
private:
template <typename ActualAlloc, class Item>
typename ActualAlloc::ResultType AssignInternal(const Item* aArray,
size_type aArrayLen);
public:
template <class Allocator, typename ActualAlloc = Alloc>
[[nodiscard]] typename ActualAlloc::ResultType Assign(
const nsTArray_Impl<E, Allocator>& aOther) {
return AssignInternal<ActualAlloc>(aOther.Elements(), aOther.Length());
}
template <class Allocator>
[[nodiscard]] bool Assign(const nsTArray_Impl<E, Allocator>& aOther,
const mozilla::fallible_t&) {
return Assign<Allocator, FallibleAlloc>(aOther);
}
template <class Allocator>
void Assign(nsTArray_Impl<E, Allocator>&& aOther) {
Clear();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
// This method call the destructor on each element of the array, empties it,
// but does not shrink the array's capacity.
// See also SetLengthAndRetainStorage.
// Make sure to call Compact() if needed to avoid keeping a huge array
// around.
void ClearAndRetainStorage() {
if (this->HasEmptyHeader()) {
return;
}
DestructRange(0, Length());
base_type::mHdr->mLength = 0;
}
// This method modifies the length of the array, but unlike SetLength
// it doesn't deallocate/reallocate the current internal storage.
// The new length MUST be shorter than or equal to the current capacity.
// If the new length is larger than the existing length of the array,
// then new elements will be constructed using value_type's default
// constructor. If shorter, elements will be destructed and removed.
// See also ClearAndRetainStorage.
// @param aNewLen The desired length of this array.
void SetLengthAndRetainStorage(size_type aNewLen) {
MOZ_ASSERT(aNewLen <= base_type::Capacity());
size_type oldLen = Length();
if (aNewLen > oldLen) {
/// FallibleTArray.
InsertElementsAtInternal<InfallibleAlloc>(oldLen, aNewLen - oldLen);
return;
}
if (aNewLen < oldLen) {
DestructRange(aNewLen, oldLen - aNewLen);
base_type::mHdr->mLength = aNewLen;
}
}
// This method replaces a range of elements in this array.
// @param aStart The starting index of the elements to replace.
// @param aCount The number of elements to replace. This may be zero to
// insert elements without removing any existing elements.
// @param aArray The values to copy into this array. Must be non-null,
// and these elements must not already exist in the array
// being modified.
// @param aArrayLen The number of values to copy into this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
private:
template <typename ActualAlloc, class Item>
value_type* ReplaceElementsAtInternal(index_type aStart, size_type aCount,
const Item* aArray,
size_type aArrayLen);
public:
template <class Item>
[[nodiscard]] value_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
const Item* aArray,
size_type aArrayLen,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aArray,
aArrayLen);
}
// A variation on the ReplaceElementsAt method defined above.
template <class Item>
[[nodiscard]] value_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
const nsTArray<Item>& aArray,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aArray);
}
template <class Item>
[[nodiscard]] value_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
mozilla::Span<Item> aSpan,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aSpan);
}
// A variation on the ReplaceElementsAt method defined above.
template <class Item>
[[nodiscard]] value_type* ReplaceElementsAt(index_type aStart,
size_type aCount,
const Item& aItem,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aStart, aCount, aItem);
}
// A variation on the ReplaceElementsAt method defined above.
template <class Item>
mozilla::NotNull<value_type*> ReplaceElementAt(index_type aIndex,
Item&& aItem) {
value_type* const elem = &ElementAt(aIndex);
elem_traits::Destruct(elem);
elem_traits::Construct(elem, std::forward<Item>(aItem));
return mozilla::WrapNotNullUnchecked(elem);
}
// InsertElementsAt is ReplaceElementsAt with 0 elements to replace.
// XXX Provide a proper documentation of InsertElementsAt.
template <class Item>
[[nodiscard]] value_type* InsertElementsAt(index_type aIndex,
const Item* aArray,
size_type aArrayLen,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aIndex, 0, aArray,
aArrayLen);
}
template <class Item, class Allocator>
[[nodiscard]] value_type* InsertElementsAt(
index_type aIndex, const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(
aIndex, 0, aArray.Elements(), aArray.Length());
}
template <class Item>
[[nodiscard]] value_type* InsertElementsAt(index_type aIndex,
mozilla::Span<Item> aSpan,
const mozilla::fallible_t&) {
return ReplaceElementsAtInternal<FallibleAlloc>(aIndex, 0, aSpan.Elements(),
aSpan.Length());
}
private:
template <typename ActualAlloc>
value_type* InsertElementAtInternal(index_type aIndex);
// Insert a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly inserted element, or null on OOM.
public:
[[nodiscard]] value_type* InsertElementAt(index_type aIndex,
const mozilla::fallible_t&) {
return InsertElementAtInternal<FallibleAlloc>(aIndex);
}
private:
template <typename ActualAlloc, class Item>
value_type* InsertElementAtInternal(index_type aIndex, Item&& aItem);
// Insert a new element, move constructing if possible.
public:
template <class Item>
[[nodiscard]] value_type* InsertElementAt(index_type aIndex, Item&& aItem,
const mozilla::fallible_t&) {
return InsertElementAtInternal<FallibleAlloc>(aIndex,
std::forward<Item>(aItem));
}
// Reconstruct the element at the given index, and return a pointer to the
// reconstructed element. This will destroy the existing element and
// default-construct a new one, giving you a state much like what single-arg
// InsertElementAt(), or no-arg AppendElement() does, but without changing the
// length of the array.
//
// array[idx] = value_type()
//
// would accomplish the same thing as long as value_type has the appropriate
// moving operator=, but some types don't for various reasons.
mozilla::NotNull<value_type*> ReconstructElementAt(index_type aIndex) {
value_type* elem = &ElementAt(aIndex);
elem_traits::Destruct(elem);
elem_traits::Construct(elem);
return mozilla::WrapNotNullUnchecked(elem);
}
// This method searches for the smallest index of an element that is strictly
// greater than |aItem|. If |aItem| is inserted at this index, the array will
// remain sorted and |aItem| would come after all elements that are equal to
// it. If |aItem| is greater than or equal to all elements in the array, the
// array length is returned.
//
// Note that consumers who want to know whether there are existing items equal
// to |aItem| in the array can just check that the return value here is > 0
// and indexing into the previous slot gives something equal to |aItem|.
//
//
// @param aItem The item to search for.
// @param aComp The Comparator used.
// @return The index of greatest element <= to |aItem|
// @precondition The array is sorted
template <class Item, class Comparator>
[[nodiscard]] index_type IndexOfFirstElementGt(
const Item& aItem, const Comparator& aComp) const {
using mozilla::BinarySearchIf;
::detail::CompareWrapper<Comparator, Item> comp(aComp);
size_t index;
BinarySearchIf(
Elements(), 0, Length(),
[&](const value_type& aElement) {
return comp.Compare(aElement, aItem) <= 0 ? 1 : -1;
},
&index);
return index;
}
// A variation on the IndexOfFirstElementGt method defined above.
template <class Item>
[[nodiscard]] index_type IndexOfFirstElementGt(const Item& aItem) const {
return IndexOfFirstElementGt(aItem,
nsDefaultComparator<value_type, Item>());
}
private:
template <typename ActualAlloc, class Item, class Comparator>
value_type* InsertElementSortedInternal(Item&& aItem,
const Comparator& aComp) {
index_type index = IndexOfFirstElementGt<Item, Comparator>(aItem, aComp);
return InsertElementAtInternal<ActualAlloc>(index,
std::forward<Item>(aItem));
}
// Inserts |aItem| at such an index to guarantee that if the array
// was previously sorted, it will remain sorted after this
// insertion.
public:
template <class Item, class Comparator>
[[nodiscard]] value_type* InsertElementSorted(Item&& aItem,
const Comparator& aComp,
const mozilla::fallible_t&) {
return InsertElementSortedInternal<FallibleAlloc>(std::forward<Item>(aItem),
aComp);
}
// A variation on the InsertElementSorted method defined above.
public:
template <class Item>
[[nodiscard]] value_type* InsertElementSorted(Item&& aItem,
const mozilla::fallible_t&) {
return InsertElementSortedInternal<FallibleAlloc>(
std::forward<Item>(aItem), nsDefaultComparator<value_type, Item>{});
}
private:
template <typename ActualAlloc, class Item>
value_type* AppendElementsInternal(const Item* aArray, size_type aArrayLen);
// This method appends elements to the end of this array.
// @param aArray The elements to append to this array.
// @param aArrayLen The number of elements to append to this array.
// @return A pointer to the new elements in the array, or null if
// the operation failed due to insufficient memory.
public:
template <class Item>
[[nodiscard]] value_type* AppendElements(const Item* aArray,
size_type aArrayLen,
const mozilla::fallible_t&) {
return AppendElementsInternal<FallibleAlloc>(aArray, aArrayLen);
}
template <class Item>
[[nodiscard]] value_type* AppendElements(mozilla::Span<Item> aSpan,
const mozilla::fallible_t&) {
return AppendElementsInternal<FallibleAlloc>(aSpan.Elements(),
aSpan.Length());
}
// A variation on the AppendElements method defined above.
template <class Item, class Allocator>
[[nodiscard]] value_type* AppendElements(
const nsTArray_Impl<Item, Allocator>& aArray,
const mozilla::fallible_t&) {
return AppendElementsInternal<FallibleAlloc>(aArray.Elements(),
aArray.Length());
}
private:
template <typename ActualAlloc, class Item, class Allocator>
value_type* AppendElementsInternal(nsTArray_Impl<Item, Allocator>&& aArray);
// Move all elements from another array to the end of this array.
// @return A pointer to the newly appended elements, or null on OOM.
public:
template <class Item, class Allocator>
[[nodiscard]] value_type* AppendElements(
nsTArray_Impl<Item, Allocator>&& aArray, const mozilla::fallible_t&) {
return AppendElementsInternal<FallibleAlloc>(std::move(aArray));
}
// Append a new element, constructed in place from the provided arguments.
protected:
template <typename ActualAlloc, class... Args>
value_type* EmplaceBackInternal(Args&&... aItem);
public:
template <class... Args>
[[nodiscard]] value_type* EmplaceBack(const mozilla::fallible_t&,
Args&&... aArgs) {
return EmplaceBackInternal<FallibleAlloc, Args...>(
std::forward<Args>(aArgs)...);
}
private:
template <typename ActualAlloc, class Item>
value_type* AppendElementInternal(Item&& aItem);
// Append a new element, move constructing if possible.
public:
template <class Item>
[[nodiscard]] value_type* AppendElement(Item&& aItem,
const mozilla::fallible_t&) {
return AppendElementInternal<FallibleAlloc>(std::forward<Item>(aItem));
}
private:
template <typename ActualAlloc>
value_type* AppendElementsInternal(size_type aCount) {
if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
Length(), aCount, sizeof(value_type)))) {
return nullptr;
}
value_type* elems = Elements() + Length();
size_type i;
for (i = 0; i < aCount; ++i) {
elem_traits::Construct(elems + i);
}
this->IncrementLength(aCount);
return elems;
}
// Append new elements without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended elements, or null on OOM.
public:
[[nodiscard]] value_type* AppendElements(size_type aCount,
const mozilla::fallible_t&) {
return AppendElementsInternal<FallibleAlloc>(aCount);
}
private:
// Append a new element without copy-constructing. This is useful to avoid
// temporaries.
// @return A pointer to the newly appended element, or null on OOM.
public:
[[nodiscard]] value_type* AppendElement(const mozilla::fallible_t&) {
return AppendElements(1, mozilla::fallible);
}
// This method removes a single element from this array, like
// std::vector::erase.
// @param pos to the element to remove
const_iterator RemoveElementAt(const_iterator pos) {
MOZ_ASSERT(pos.GetArray() == this);
RemoveElementAt(pos.GetIndex());
return pos;
}
// This method removes a range of elements from this array, like
// std::vector::erase.
// @param first iterator to the first of elements to remove
// @param last iterator to the last of elements to remove
const_iterator RemoveElementsRange(const_iterator first,
const_iterator last) {
MOZ_ASSERT(first.GetArray() == this);
MOZ_ASSERT(last.GetArray() == this);
MOZ_ASSERT(last.GetIndex() >= first.GetIndex());
RemoveElementsAt(first.GetIndex(), last.GetIndex() - first.GetIndex());
return first;
}
// This method removes a range of elements from this array.
// @param aStart The starting index of the elements to remove.
// @param aCount The number of elements to remove.
void RemoveElementsAt(index_type aStart, size_type aCount);
private:
// Remove a range of elements from this array, but do not check that
// the range is in bounds.
// @param aStart The starting index of the elements to remove.
// @param aCount The number of elements to remove.
void RemoveElementsAtUnsafe(index_type aStart, size_type aCount);
public:
// Similar to the above, but it removes just one element. This does bounds
// checking only in debug builds.
void RemoveElementAtUnsafe(index_type aIndex) {
MOZ_ASSERT(aIndex < Length(), "Trying to remove an invalid element");
RemoveElementsAtUnsafe(aIndex, 1);
}
// A variation on the RemoveElementsAt method defined above.
void RemoveElementAt(index_type aIndex) { RemoveElementsAt(aIndex, 1); }
// A variation on RemoveElementAt that removes the last element.
void RemoveLastElement() { RemoveLastElements(1); }
// A variation on RemoveElementsAt that removes the last 'aCount' elements.
void RemoveLastElements(const size_type aCount) {
// This assertion is redundant, but produces a better error message than the
// release assertion within TruncateLength.
MOZ_ASSERT(aCount <= Length());
TruncateLength(Length() - aCount);
}
// Removes the last element of the array and returns a copy of it.
[[nodiscard]] value_type PopLastElement() {
// This function intentionally does not call ElementsAt and calls
// TruncateLengthUnsafe directly to avoid multiple release checks for
// non-emptiness.
// This debug assertion is redundant, but produces a better error message
// than the release assertion below.
MOZ_ASSERT(!base_type::IsEmpty());
const size_type oldLen = Length();
if (MOZ_UNLIKELY(0 == oldLen)) {
mozilla::detail::InvalidArrayIndex_CRASH(1, 0);
}
value_type elem = std::move(Elements()[oldLen - 1]);
TruncateLengthUnsafe(oldLen - 1);
return elem;
}
// This method performs index-based removals from an array without preserving
// the order of the array. This is useful if you are using the array as a
// set-like data structure.
//
// These removals are efficient, as they move as few elements as possible. At
// most N elements, where N is the number of removed elements, will have to
// be relocated.
//
// ## Examples
//
// When removing an element from the end of the array, it can be removed in
// place, by destroying it and decrementing the length.
//
// [ 1, 2, 3 ] => [ 1, 2 ]
// ^
//
// When removing any other single element, it is removed by swapping it with
// the last element, and then decrementing the length as before.
//
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 6, 3, 4, 5 ]
// ^
//
// This method also supports efficiently removing a range of elements. If they
// are at the end, then they can all be removed like in the one element case.
//
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 2 ]
// ^--------^
//
// If more elements are removed than exist after the removed section, the
// remaining elements will be shifted down like in a normal removal.
//
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 2, 7, 8 ]
// ^--------^
//
// And if fewer elements are removed than exist after the removed section,
// elements will be moved from the end of the array to fill the vacated space.
//
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 7, 8, 4, 5, 6 ]
// ^--^
//
// @param aStart The starting index of the elements to remove. @param aCount
// The number of elements to remove.
void UnorderedRemoveElementsAt(index_type aStart, size_type aCount);
// A variation on the UnorderedRemoveElementsAt method defined above to remove
// a single element. This operation is sometimes called `SwapRemove`.
//
// This method is O(1), but does not preserve the order of the elements.
void UnorderedRemoveElementAt(index_type aIndex) {
UnorderedRemoveElementsAt(aIndex, 1);
}
void Clear() {
ClearAndRetainStorage();
base_type::ShrinkCapacityToZero(sizeof(value_type),
MOZ_ALIGNOF(value_type));
}
// This method removes elements based on the return value of the
// callback function aPredicate. If the function returns true for
// an element, the element is removed. aPredicate will be called
// for each element in order. It is not safe to access the array
// inside aPredicate.
//
// Returns the number of elements removed.
template <typename Predicate>
size_type RemoveElementsBy(Predicate aPredicate);
// This helper function combines IndexOf with RemoveElementAt to "search
// and destroy" the first element that is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template <class Item, class Comparator>
bool RemoveElement(const Item& aItem, const Comparator& aComp) {
index_type i = IndexOf(aItem, 0, aComp);
if (i == NoIndex) {
return false;
}
RemoveElementsAtUnsafe(i, 1);
return true;
}
// A variation on the RemoveElement method defined above that assumes
// that 'operator==' is defined for value_type.
template <class Item>
bool RemoveElement(const Item& aItem) {
return RemoveElement(aItem, nsDefaultComparator<value_type, Item>());
}
// This helper function combines IndexOfFirstElementGt with
// RemoveElementAt to "search and destroy" the last element that
// is equal to the given element.
// @param aItem The item to search for.
// @param aComp The Comparator used to determine element equality.
// @return true if the element was found
template <class Item, class Comparator>
bool RemoveElementSorted(const Item& aItem, const Comparator& aComp) {
index_type index = IndexOfFirstElementGt(aItem, aComp);
if (index > 0 && aComp.Equals(ElementAt(index - 1), aItem)) {
RemoveElementsAtUnsafe(index - 1, 1);
return true;
}
return false;
}
// A variation on the RemoveElementSorted method defined above.
template <class Item>
bool RemoveElementSorted(const Item& aItem) {
return RemoveElementSorted(aItem, nsDefaultComparator<value_type, Item>());
}
// This method causes the elements contained in this array and the given
// array to be swapped.
template <class Allocator>
void SwapElements(nsTArray_Impl<E, Allocator>& aOther) {
// The only case this might fail were if someone called this with a
// AutoTArray upcast to nsTArray_Impl, under the conditions mentioned in the
// overload for AutoTArray below.
this->template SwapArrayElements<InfallibleAlloc>(
aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
template <size_t N>
void SwapElements(AutoTArray<E, N>& aOther) {
// Allocation might fail if Alloc==FallibleAlloc and
// Allocator==InfallibleAlloc and aOther uses auto storage. Allow this for
// small inline sizes, and crash in the rare case of a small OOM error.
static_assert(!std::is_same_v<Alloc, FallibleAlloc> ||
sizeof(E) * N <= 1024);
this->template SwapArrayElements<InfallibleAlloc>(
aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
template <class Allocator>
[[nodiscard]] auto SwapElements(nsTArray_Impl<E, Allocator>& aOther,
const mozilla::fallible_t&) {
// Allocation might fail if Alloc==FallibleAlloc and
// Allocator==InfallibleAlloc and aOther uses auto storage.
return FallibleAlloc::Result(
this->template SwapArrayElements<FallibleAlloc>(
aOther, sizeof(value_type), MOZ_ALIGNOF(value_type)));
}
private:
// Used by ApplyIf functions to invoke a callable that takes either:
// - Nothing: F(void)
// - Index only: F(size_t)
// - Reference to element only: F(maybe-const value_type&)
// - Both index and reference: F(size_t, maybe-const value_type&)
// `value_type` must be const when called from const method.
template <typename T, typename Param0, typename Param1>
struct InvokeWithIndexAndOrReferenceHelper {
static constexpr bool valid = false;
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, void, void> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t, T&) {
return f();
}
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, size_t, void> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t i, T&) {
return f(i);
}
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, T&, void> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t, T& e) {
return f(e);
}
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, const T&, void> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t, T& e) {
return f(e);
}
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, size_t, T&> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t i, T& e) {
return f(i, e);
}
};
template <typename T>
struct InvokeWithIndexAndOrReferenceHelper<T, size_t, const T&> {
static constexpr bool valid = true;
template <typename F>
static auto Invoke(F&& f, size_t i, T& e) {
return f(i, e);
}
};
template <typename T, typename F>
static auto InvokeWithIndexAndOrReference(F&& f, size_t i, T& e) {
using Invoker = InvokeWithIndexAndOrReferenceHelper<
T, typename mozilla::FunctionTypeTraits<F>::template ParameterType<0>,
typename mozilla::FunctionTypeTraits<F>::template ParameterType<1>>;
static_assert(Invoker::valid,
"ApplyIf's Function parameters must match either: (void), "
"(size_t), (maybe-const value_type&), or "
"(size_t, maybe-const value_type&)");
return Invoker::Invoke(std::forward<F>(f), i, e);
}
public:
// 'Apply' family of methods.
//
// The advantages of using Apply methods with lambdas include:
// - Safety of accessing elements from within the call, when the array cannot
// have been modified between the iteration and the subsequent access.
// - Avoiding moot conversions: pointer->index during a search, followed by
// index->pointer after the search when accessing the element.
// - Embedding your code into the algorithm, giving the compiler more chances
// to optimize.
// Search for the first element comparing equal to aItem with the given
// comparator (`==` by default).
// If such an element exists, return the result of evaluating either:
// - `aFunction()`
// - `aFunction(index_type)`
// - `aFunction(maybe-const? value_type&)`
// - `aFunction(index_type, maybe-const? value_type&)`
// (`aFunction` must have one of the above signatures with these exact types,
// including references; implicit conversions or generic types not allowed.
// If `this` array is const, the referenced `value_type` must be const too;
// otherwise it may be either const or non-const.)
// But if the element is not found, return the result of evaluating
// `aFunctionElse()`.
template <class Item, class Comparator, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, index_type aStart, const Comparator& aComp,
Function&& aFunction, FunctionElse&& aFunctionElse) const {
static_assert(
std::is_same_v<
typename mozilla::FunctionTypeTraits<Function>::ReturnType,
typename mozilla::FunctionTypeTraits<FunctionElse>::ReturnType>,
"ApplyIf's `Function` and `FunctionElse` must return the same type.");
::detail::CompareWrapper<Comparator, Item> comp(aComp);
const value_type* const elements = Elements();
const value_type* const iend = elements + Length();
for (const value_type* iter = elements + aStart; iter != iend; ++iter) {
if (comp.Equals(*iter, aItem)) {
return InvokeWithIndexAndOrReference<const value_type>(
std::forward<Function>(aFunction), iter - elements, *iter);
}
}
return aFunctionElse();
}
template <class Item, class Comparator, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, index_type aStart, const Comparator& aComp,
Function&& aFunction, FunctionElse&& aFunctionElse) {
static_assert(
std::is_same_v<
typename mozilla::FunctionTypeTraits<Function>::ReturnType,
typename mozilla::FunctionTypeTraits<FunctionElse>::ReturnType>,
"ApplyIf's `Function` and `FunctionElse` must return the same type.");
::detail::CompareWrapper<Comparator, Item> comp(aComp);
value_type* const elements = Elements();
value_type* const iend = elements + Length();
for (value_type* iter = elements + aStart; iter != iend; ++iter) {
if (comp.Equals(*iter, aItem)) {
return InvokeWithIndexAndOrReference<value_type>(
std::forward<Function>(aFunction), iter - elements, *iter);
}
}
return aFunctionElse();
}
template <class Item, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, index_type aStart, Function&& aFunction,
FunctionElse&& aFunctionElse) const {
return ApplyIf(aItem, aStart, nsDefaultComparator<value_type, Item>(),
std::forward<Function>(aFunction),
std::forward<FunctionElse>(aFunctionElse));
}
template <class Item, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, index_type aStart, Function&& aFunction,
FunctionElse&& aFunctionElse) {
return ApplyIf(aItem, aStart, nsDefaultComparator<value_type, Item>(),
std::forward<Function>(aFunction),
std::forward<FunctionElse>(aFunctionElse));
}
template <class Item, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, Function&& aFunction,
FunctionElse&& aFunctionElse) const {
return ApplyIf(aItem, 0, std::forward<Function>(aFunction),
std::forward<FunctionElse>(aFunctionElse));
}
template <class Item, class Function, class FunctionElse>
auto ApplyIf(const Item& aItem, Function&& aFunction,
FunctionElse&& aFunctionElse) {
return ApplyIf(aItem, 0, std::forward<Function>(aFunction),
std::forward<FunctionElse>(aFunctionElse));
}
//
// Allocation
//
// This method may increase the capacity of this array object to the
// specified amount. This method may be called in advance of several
// AppendElement operations to minimize heap re-allocations. This method
// will not reduce the number of elements in this array.
// @param aCapacity The desired capacity of this array.
// @return True if the operation succeeded; false if we ran out of memory
protected:
template <typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetCapacity(size_type aCapacity) {
return ActualAlloc::Result(this->template EnsureCapacity<ActualAlloc>(
aCapacity, sizeof(value_type)));
}
public:
[[nodiscard]] bool SetCapacity(size_type aCapacity,
const mozilla::fallible_t&) {
return SetCapacity<FallibleAlloc>(aCapacity);
}
// This method modifies the length of the array. If the new length is
// larger than the existing length of the array, then new elements will be
// constructed using value_type's default constructor. Otherwise, this call
// removes elements from the array (see also RemoveElementsAt).
// @param aNewLen The desired length of this array.
// @return True if the operation succeeded; false otherwise.
// See also TruncateLength for a more efficient variant if the new length is
// guaranteed to be smaller than the old.
protected:
template <typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType SetLength(size_type aNewLen) {
const size_type oldLen = Length();
if (aNewLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
InsertElementsAtInternal<ActualAlloc>(oldLen, aNewLen - oldLen) !=
nullptr);
}
TruncateLengthUnsafe(aNewLen);
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
[[nodiscard]] bool SetLength(size_type aNewLen, const mozilla::fallible_t&) {
return SetLength<FallibleAlloc>(aNewLen);
}
// This method modifies the length of the array, but may only be
// called when the new length is shorter than the old. It can
// therefore be called when value_type has no default constructor,
// unlike SetLength. It removes elements from the array (see also
// RemoveElementsAt).
// @param aNewLen The desired length of this array.
void TruncateLength(size_type aNewLen) {
// This assertion is redundant, but produces a better error message than the
// release assertion below.
MOZ_ASSERT(aNewLen <= Length(), "caller should use SetLength instead");
if (MOZ_UNLIKELY(aNewLen > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aNewLen, Length());
}
TruncateLengthUnsafe(aNewLen);
}
private:
void TruncateLengthUnsafe(size_type aNewLen) {
const size_type oldLen = Length();
if (oldLen) {
DestructRange(aNewLen, oldLen - aNewLen);
base_type::mHdr->mLength = aNewLen;
}
}
// This method ensures that the array has length at least the given
// length. If the current length is shorter than the given length,
// then new elements will be constructed using value_type's default
// constructor.
// @param aMinLen The desired minimum length of this array.
// @return True if the operation succeeded; false otherwise.
protected:
template <typename ActualAlloc = Alloc>
typename ActualAlloc::ResultType EnsureLengthAtLeast(size_type aMinLen) {
size_type oldLen = Length();
if (aMinLen > oldLen) {
return ActualAlloc::ConvertBoolToResultType(
!!InsertElementsAtInternal<ActualAlloc>(oldLen, aMinLen - oldLen));
}
return ActualAlloc::ConvertBoolToResultType(true);
}
public:
[[nodiscard]] bool EnsureLengthAtLeast(size_type aMinLen,
const mozilla::fallible_t&) {
return EnsureLengthAtLeast<FallibleAlloc>(aMinLen);
}
// This method inserts elements into the array, constructing
// them using value_type's default constructor.
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert
private:
template <typename ActualAlloc>
value_type* InsertElementsAtInternal(index_type aIndex, size_type aCount) {
if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
aIndex, aCount, sizeof(value_type), MOZ_ALIGNOF(value_type)))) {
return nullptr;
}
// Initialize the extra array elements
value_type* iter = Elements() + aIndex;
value_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter);
}
return Elements() + aIndex;
}
public:
[[nodiscard]] value_type* InsertElementsAt(index_type aIndex,
size_type aCount,
const mozilla::fallible_t&) {
return InsertElementsAtInternal<FallibleAlloc>(aIndex, aCount);
}
// This method inserts elements into the array, constructing them
// value_type's copy constructor (or whatever one-arg constructor
// happens to match the Item type).
// @param aIndex the place to insert the new elements. This must be no
// greater than the current length of the array.
// @param aCount the number of elements to insert.
// @param aItem the value to use when constructing the new elements.
private:
template <typename ActualAlloc, class Item>
value_type* InsertElementsAtInternal(index_type aIndex, size_type aCount,
const Item& aItem);
public:
template <class Item>
[[nodiscard]] value_type* InsertElementsAt(index_type aIndex,
size_type aCount,
const Item& aItem,
const mozilla::fallible_t&) {
return InsertElementsAt<Item, FallibleAlloc>(aIndex, aCount, aItem);
}
// This method may be called to minimize the memory used by this array.
void Compact() {
ShrinkCapacity(sizeof(value_type), MOZ_ALIGNOF(value_type));
}
//
// Sorting
//
// This method sorts the elements of the array. It uses the LessThan
// method defined on the given Comparator object to collate elements or
// it wraps a tri-state comparison lambda into such a comparator.
// It uses std::sort. It expects value_type to be move assignable and
// constructible and uses those always, regardless of the chosen
// nsTArray_RelocationStrategy.
//
// @param aComp The Comparator used to collate elements.
template <class Comparator>
void Sort(const Comparator& aComp) {
static_assert(std::is_move_assignable_v<value_type>);
static_assert(std::is_move_constructible_v<value_type>);
::detail::CompareWrapper<Comparator, value_type> comp(aComp);
std::sort(Elements(), Elements() + Length(),
[&comp](const auto& left, const auto& right) {
return comp.LessThan(left, right);
});
}
// A variation on the Sort method defined above that assumes that
// 'operator<' is defined for 'value_type'.
void Sort() { Sort(nsDefaultComparator<value_type, value_type>()); }
// This method sorts the elements of the array in a stable way (i.e. not
// changing the relative order of elements considered equal by the
// Comparator). It uses the LessThan method defined on the given Comparator
// object to collate elements.
// It uses std::stable_sort. It expects value_type to be move assignable and
// constructible and uses those always, regardless of the chosen
// nsTArray_RelocationStrategy.
//
// @param aComp The Comparator used to collate elements.
template <class Comparator>
void StableSort(const Comparator& aComp) {
static_assert(std::is_move_assignable_v<value_type>);
static_assert(std::is_move_constructible_v<value_type>);
const ::detail::CompareWrapper<Comparator, value_type> comp(aComp);
std::stable_sort(Elements(), Elements() + Length(),
[&comp](const auto& lhs, const auto& rhs) {
return comp.LessThan(lhs, rhs);
});
}
// A variation on the StableSort method defined above that assumes that
// 'operator<' is defined for 'value_type'.
void StableSort() {
StableSort(nsDefaultComparator<value_type, value_type>());
}
// This method reverses the array in place.
void Reverse() {
value_type* elements = Elements();
const size_type len = Length();
for (index_type i = 0, iend = len / 2; i < iend; ++i) {
std::swap(elements[i], elements[len - i - 1]);
}
}
protected:
using base_type::Hdr;
using base_type::ShrinkCapacity;
// This method invokes value_type's destructor on a range of elements.
// @param aStart The index of the first element to destroy.
// @param aCount The number of elements to destroy.
void DestructRange(index_type aStart, size_type aCount) {
value_type* iter = Elements() + aStart;
value_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Destruct(iter);
}
}
// This method invokes value_type's copy-constructor on a range of elements.
// @param aStart The index of the first element to construct.
// @param aCount The number of elements to construct.
// @param aValues The array of elements to copy.
template <class Item>
void AssignRange(index_type aStart, size_type aCount, const Item* aValues) {
AssignRangeAlgorithm<
std::is_trivially_copy_constructible_v<Item>,
std::is_same_v<Item, value_type>>::implementation(Elements(), aStart,
aCount, aValues);
}
};
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AssignInternal(const Item* aArray,
size_type aArrayLen) ->
typename ActualAlloc::ResultType {
static_assert(std::is_same_v<ActualAlloc, InfallibleAlloc> ||
std::is_same_v<ActualAlloc, FallibleAlloc>);
if constexpr (std::is_same_v<ActualAlloc, InfallibleAlloc>) {
ClearAndRetainStorage();
}
// Adjust memory allocation up-front to catch errors in the fallible case.
// We might relocate the elements to be destroyed unnecessarily. This could be
// optimized, but would make things more complicated.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
aArrayLen, sizeof(value_type)))) {
return ActualAlloc::ConvertBoolToResultType(false);
}
MOZ_ASSERT_IF(this->HasEmptyHeader(), aArrayLen == 0);
if (!this->HasEmptyHeader()) {
if constexpr (std::is_same_v<ActualAlloc, FallibleAlloc>) {
ClearAndRetainStorage();
}
AssignRange(0, aArrayLen, aArray);
base_type::mHdr->mLength = aArrayLen;
}
return ActualAlloc::ConvertBoolToResultType(true);
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::ReplaceElementsAtInternal(
index_type aStart, size_type aCount, const Item* aArray,
size_type aArrayLen) -> value_type* {
if (MOZ_UNLIKELY(aStart > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aStart, Length());
}
if (MOZ_UNLIKELY(aCount > Length() - aStart)) {
mozilla::detail::InvalidArrayIndex_CRASH(aStart + aCount, Length());
}
// Adjust memory allocation up-front to catch errors.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + aArrayLen - aCount, sizeof(value_type)))) {
return nullptr;
}
DestructRange(aStart, aCount);
this->template ShiftData<ActualAlloc>(
aStart, aCount, aArrayLen, sizeof(value_type), MOZ_ALIGNOF(value_type));
AssignRange(aStart, aArrayLen, aArray);
return Elements() + aStart;
}
template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::RemoveElementsAt(index_type aStart,
size_type aCount) {
MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");
mozilla::CheckedInt<index_type> rangeEnd = aStart;
rangeEnd += aCount;
if (MOZ_UNLIKELY(!rangeEnd.isValid() || rangeEnd.value() > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aStart, Length());
}
RemoveElementsAtUnsafe(aStart, aCount);
}
template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::RemoveElementsAtUnsafe(index_type aStart,
size_type aCount) {
DestructRange(aStart, aCount);
this->template ShiftData<InfallibleAlloc>(
aStart, aCount, 0, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
template <typename E, class Alloc>
void nsTArray_Impl<E, Alloc>::UnorderedRemoveElementsAt(index_type aStart,
size_type aCount) {
MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index");
mozilla::CheckedInt<index_type> rangeEnd = aStart;
rangeEnd += aCount;
if (MOZ_UNLIKELY(!rangeEnd.isValid() || rangeEnd.value() > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aStart, Length());
}
// Destroy the elements which are being removed, and then swap elements in to
// replace them from the end. See the docs on the declaration of this
// function.
DestructRange(aStart, aCount);
this->template SwapFromEnd<InfallibleAlloc>(
aStart, aCount, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
template <typename E, class Alloc>
template <typename Predicate>
auto nsTArray_Impl<E, Alloc>::RemoveElementsBy(Predicate aPredicate)
-> size_type {
if (this->HasEmptyHeader()) {
return 0;
}
index_type j = 0;
const index_type len = Length();
value_type* const elements = Elements();
for (index_type i = 0; i < len; ++i) {
const bool result = aPredicate(elements[i]);
// Check that the array has not been modified by the predicate.
MOZ_DIAGNOSTIC_ASSERT(len == base_type::mHdr->mLength &&
elements == Elements());
if (result) {
elem_traits::Destruct(elements + i);
} else {
if (j < i) {
relocation_type::RelocateNonOverlappingRegion(
elements + j, elements + i, 1, sizeof(value_type));
}
++j;
}
}
base_type::mHdr->mLength = j;
return len - j;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::InsertElementsAtInternal(
index_type aIndex, size_type aCount, const Item& aItem) -> value_type* {
if (!ActualAlloc::Successful(this->template InsertSlotsAt<ActualAlloc>(
aIndex, aCount, sizeof(value_type), MOZ_ALIGNOF(value_type)))) {
return nullptr;
}
// Initialize the extra array elements
value_type* iter = Elements() + aIndex;
value_type* iend = iter + aCount;
for (; iter != iend; ++iter) {
elem_traits::Construct(iter, aItem);
}
return Elements() + aIndex;
}
template <typename E, class Alloc>
template <typename ActualAlloc>
auto nsTArray_Impl<E, Alloc>::InsertElementAtInternal(index_type aIndex)
-> value_type* {
if (MOZ_UNLIKELY(aIndex > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
}
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(value_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(value_type),
MOZ_ALIGNOF(value_type));
value_type* elem = Elements() + aIndex;
elem_traits::Construct(elem);
return elem;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::InsertElementAtInternal(
index_type aIndex, Item&& aItem) -> value_type* {
if (MOZ_UNLIKELY(aIndex > Length())) {
mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
}
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(value_type)))) {
return nullptr;
}
this->template ShiftData<ActualAlloc>(aIndex, 0, 1, sizeof(value_type),
MOZ_ALIGNOF(value_type));
value_type* elem = Elements() + aIndex;
elem_traits::Construct(elem, std::forward<Item>(aItem));
return elem;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AppendElementsInternal(
const Item* aArray, size_type aArrayLen) -> value_type* {
if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
Length(), aArrayLen, sizeof(value_type)))) {
return nullptr;
}
index_type len = Length();
AssignRange(len, aArrayLen, aArray);
this->IncrementLength(aArrayLen);
return Elements() + len;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item, class Allocator>
auto nsTArray_Impl<E, Alloc>::AppendElementsInternal(
nsTArray_Impl<Item, Allocator>&& aArray) -> value_type* {
if constexpr (std::is_same_v<Alloc, Allocator>) {
MOZ_ASSERT(&aArray != this, "argument must be different aArray");
}
if (Length() == 0) {
// XXX This might still be optimized. If aArray uses auto-storage but we
// won't, we might better retain our storage if it's sufficiently large.
this->ShrinkCapacityToZero(sizeof(value_type), MOZ_ALIGNOF(value_type));
this->MoveInit(aArray, sizeof(value_type), MOZ_ALIGNOF(value_type));
return Elements();
}
index_type len = Length();
index_type otherLen = aArray.Length();
if (!ActualAlloc::Successful(this->template ExtendCapacity<ActualAlloc>(
len, otherLen, sizeof(value_type)))) {
return nullptr;
}
relocation_type::RelocateNonOverlappingRegion(
Elements() + len, aArray.Elements(), otherLen, sizeof(value_type));
this->IncrementLength(otherLen);
aArray.template ShiftData<ActualAlloc>(0, otherLen, 0, sizeof(value_type),
MOZ_ALIGNOF(value_type));
return Elements() + len;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class Item>
auto nsTArray_Impl<E, Alloc>::AppendElementInternal(Item&& aItem)
-> value_type* {
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(value_type)))) {
return nullptr;
}
value_type* elem = Elements() + Length();
elem_traits::Construct(elem, std::forward<Item>(aItem));
this->mHdr->mLength += 1;
return elem;
}
template <typename E, class Alloc>
template <typename ActualAlloc, class... Args>
auto nsTArray_Impl<E, Alloc>::EmplaceBackInternal(Args&&... aArgs)
-> value_type* {
// Length() + 1 is guaranteed to not overflow, so EnsureCapacity is OK.
if (!ActualAlloc::Successful(this->template EnsureCapacity<ActualAlloc>(
Length() + 1, sizeof(value_type)))) {
return nullptr;
}
value_type* elem = Elements() + Length();
elem_traits::Emplace(elem, std::forward<Args>(aArgs)...);
this->mHdr->mLength += 1;
return elem;
}
template <typename E, typename Alloc>
inline void ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField) {
aField.Clear();
}
namespace detail {
// This is defined in the cpp file to avoid including
// nsCycleCollectionNoteChild.h in this header file.
void SetCycleCollectionArrayFlag(uint32_t& aFlags);
} // namespace detail
template <typename E, typename Alloc>
inline void ImplCycleCollectionTraverse(
nsCycleCollectionTraversalCallback& aCallback,
nsTArray_Impl<E, Alloc>& aField, const char* aName, uint32_t aFlags = 0) {
::detail::SetCycleCollectionArrayFlag(aFlags);
size_t length = aField.Length();
E* elements = aField.Elements();
for (size_t i = 0; i < length; ++i) {
ImplCycleCollectionTraverse(aCallback, elements[i], aName, aFlags);
}
}
//
// nsTArray is an infallible vector class. See the comment at the top of this
// file for more details.
//
template <class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator> {
public:
using InfallibleAlloc = nsTArrayInfallibleAllocator;
using base_type = nsTArray_Impl<E, InfallibleAlloc>;
using self_type = nsTArray<E>;
using typename base_type::index_type;
using typename base_type::size_type;
using typename base_type::value_type;
nsTArray() {}
explicit nsTArray(size_type aCapacity) : base_type(aCapacity) {}
MOZ_IMPLICIT nsTArray(std::initializer_list<E> aIL) {
AppendElements(aIL.begin(), aIL.size());
}
template <class Item>
nsTArray(const Item* aArray, size_type aArrayLen) {
AppendElements(aArray, aArrayLen);
}
template <class Item>
explicit nsTArray(mozilla::Span<Item> aSpan) {
AppendElements(aSpan);
}
template <class Allocator>
explicit nsTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther) {}
template <class Allocator>
MOZ_IMPLICIT nsTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(std::move(aOther)) {}
template <class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
base_type::operator=(aOther);
return *this;
}
template <class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
// This is quite complex, since we don't know if we are an AutoTArray. While
// AutoTArray overrides this operator=, this might be called on a nsTArray&
// bound to an AutoTArray.
base_type::operator=(std::move(aOther));
return *this;
}
using base_type::AppendElement;
using base_type::AppendElements;
using base_type::EmplaceBack;
using base_type::EnsureLengthAtLeast;
using base_type::InsertElementAt;
using base_type::InsertElementsAt;
using base_type::InsertElementSorted;
using base_type::ReplaceElementsAt;
using base_type::SetCapacity;
using base_type::SetLength;
template <class Item>
mozilla::NotNull<value_type*> AppendElements(const Item* aArray,
size_type aArrayLen) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(aArray,
aArrayLen));
}
template <class Item>
mozilla::NotNull<value_type*> AppendElements(mozilla::Span<Item> aSpan) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(aSpan.Elements(),
aSpan.Length()));
}
template <class Item, class Allocator>
mozilla::NotNull<value_type*> AppendElements(
const nsTArray_Impl<Item, Allocator>& aArray) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(
aArray.Elements(), aArray.Length()));
}
template <class Item, class Allocator>
mozilla::NotNull<value_type*> AppendElements(
nsTArray_Impl<Item, Allocator>&& aArray) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(
std::move(aArray)));
}
template <class Item>
mozilla::NotNull<value_type*> AppendElement(Item&& aItem) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementInternal<InfallibleAlloc>(
std::forward<Item>(aItem)));
}
mozilla::NotNull<value_type*> AppendElements(size_type aCount) {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(aCount));
}
mozilla::NotNull<value_type*> AppendElement() {
return mozilla::WrapNotNullUnchecked(
this->template AppendElementsInternal<InfallibleAlloc>(1));
}
self_type Clone() const {
self_type result;
result.Assign(*this);
return result;
}
mozilla::NotNull<value_type*> InsertElementsAt(index_type aIndex,
size_type aCount) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementsAtInternal<InfallibleAlloc>(aIndex,
aCount));
}
template <class Item>
mozilla::NotNull<value_type*> InsertElementsAt(index_type aIndex,
size_type aCount,
const Item& aItem) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementsAtInternal<InfallibleAlloc>(aIndex, aCount,
aItem));
}
template <class Item>
mozilla::NotNull<value_type*> InsertElementsAt(index_type aIndex,
const Item* aArray,
size_type aArrayLen) {
return mozilla::WrapNotNullUnchecked(
this->template ReplaceElementsAtInternal<InfallibleAlloc>(
aIndex, 0, aArray, aArrayLen));
}
template <class Item, class Allocator>
mozilla::NotNull<value_type*> InsertElementsAt(
index_type aIndex, const nsTArray_Impl<Item, Allocator>& aArray) {
return mozilla::WrapNotNullUnchecked(
this->template ReplaceElementsAtInternal<InfallibleAlloc>(
aIndex, 0, aArray.Elements(), aArray.Length()));
}
template <class Item>
mozilla::NotNull<value_type*> InsertElementsAt(index_type aIndex,
mozilla::Span<Item> aSpan) {
return mozilla::WrapNotNullUnchecked(
this->template ReplaceElementsAtInternal<InfallibleAlloc>(
aIndex, 0, aSpan.Elements(), aSpan.Length()));
}
mozilla::NotNull<value_type*> InsertElementAt(index_type aIndex) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementAtInternal<InfallibleAlloc>(aIndex));
}
template <class Item>
mozilla::NotNull<value_type*> InsertElementAt(index_type aIndex,
Item&& aItem) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementAtInternal<InfallibleAlloc>(
aIndex, std::forward<Item>(aItem)));
}
template <class Item>
mozilla::NotNull<value_type*> ReplaceElementsAt(index_type aStart,
size_type aCount,
const Item* aArray,
size_type aArrayLen) {
return mozilla::WrapNotNullUnchecked(
this->template ReplaceElementsAtInternal<InfallibleAlloc>(
aStart, aCount, aArray, aArrayLen));
}
template <class Item>
mozilla::NotNull<value_type*> ReplaceElementsAt(
index_type aStart, size_type aCount, const nsTArray<Item>& aArray) {
return ReplaceElementsAt(aStart, aCount, aArray.Elements(),
aArray.Length());
}
template <class Item>
mozilla::NotNull<value_type*> ReplaceElementsAt(index_type aStart,
size_type aCount,
mozilla::Span<Item> aSpan) {
return ReplaceElementsAt(aStart, aCount, aSpan.Elements(), aSpan.Length());
}
template <class Item>
mozilla::NotNull<value_type*> ReplaceElementsAt(index_type aStart,
size_type aCount,
const Item& aItem) {
return ReplaceElementsAt(aStart, aCount, &aItem, 1);
}
template <class Item, class Comparator>
mozilla::NotNull<value_type*> InsertElementSorted(Item&& aItem,
const Comparator& aComp) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementSortedInternal<InfallibleAlloc>(
std::forward<Item>(aItem), aComp));
}
template <class Item>
mozilla::NotNull<value_type*> InsertElementSorted(Item&& aItem) {
return mozilla::WrapNotNullUnchecked(
this->template InsertElementSortedInternal<InfallibleAlloc>(
std::forward<Item>(aItem),
nsDefaultComparator<value_type, Item>{}));
}
template <class... Args>
mozilla::NotNull<value_type*> EmplaceBack(Args&&... aArgs) {
return mozilla::WrapNotNullUnchecked(
this->template EmplaceBackInternal<InfallibleAlloc, Args...>(
std::forward<Args>(aArgs)...));
}
};
template <class E>
class CopyableTArray : public nsTArray<E> {
public:
using nsTArray<E>::nsTArray;
CopyableTArray(const CopyableTArray& aOther) : nsTArray<E>() {
this->Assign(aOther);
}
CopyableTArray& operator=(const CopyableTArray& aOther) {
if (this != &aOther) {
this->Assign(aOther);
}
return *this;
}
template <typename Allocator>
MOZ_IMPLICIT CopyableTArray(const nsTArray_Impl<E, Allocator>& aOther) {
this->Assign(aOther);
}
template <typename Allocator>
CopyableTArray& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
if constexpr (std::is_same_v<Allocator, nsTArrayInfallibleAllocator>) {
if (this == &aOther) {
return *this;
}
}
this->Assign(aOther);
return *this;
}
template <typename Allocator>
MOZ_IMPLICIT CopyableTArray(nsTArray_Impl<E, Allocator>&& aOther)
: nsTArray<E>{std::move(aOther)} {}
template <typename Allocator>
CopyableTArray& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
static_cast<nsTArray<E>&>(*this) = std::move(aOther);
return *this;
}
CopyableTArray(CopyableTArray&&) = default;
CopyableTArray& operator=(CopyableTArray&&) = default;
};
//
// FallibleTArray is a fallible vector class.
//
template <class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator> {
public:
typedef nsTArray_Impl<E, nsTArrayFallibleAllocator> base_type;
typedef FallibleTArray<E> self_type;
typedef typename base_type::size_type size_type;
FallibleTArray() = default;
explicit FallibleTArray(size_type aCapacity) : base_type(aCapacity) {}
template <class Allocator>
explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& aOther)
: base_type(aOther) {}
template <class Allocator>
explicit FallibleTArray(nsTArray_Impl<E, Allocator>&& aOther)
: base_type(std::move(aOther)) {}
template <class Allocator>
self_type& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
base_type::operator=(aOther);
return *this;
}
template <class Allocator>
self_type& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
base_type::operator=(std::move(aOther));
return *this;
}
};
//
// AutoTArray<E, N> is like nsTArray<E>, but with N elements of inline storage.
// Storing more than N elements is fine, but it will cause a heap allocation.
//
template <class E, size_t N>
class MOZ_NON_MEMMOVABLE AutoTArray : public nsTArray<E> {
static_assert(N != 0, "AutoTArray<E, 0> should be specialized");
public:
typedef AutoTArray<E, N> self_type;
typedef nsTArray<E> base_type;
typedef typename base_type::Header Header;
typedef typename base_type::value_type value_type;
AutoTArray() : mAlign() { Init(); }
AutoTArray(self_type&& aOther) : nsTArray<E>() {
Init();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
explicit AutoTArray(base_type&& aOther) : mAlign() {
Init();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
template <typename Allocator>
explicit AutoTArray(nsTArray_Impl<value_type, Allocator>&& aOther) {
Init();
this->MoveInit(aOther, sizeof(value_type), MOZ_ALIGNOF(value_type));
}
MOZ_IMPLICIT AutoTArray(std::initializer_list<E> aIL) : mAlign() {
Init();
this->AppendElements(aIL.begin(), aIL.size());
}
self_type& operator=(self_type&& aOther) {
base_type::operator=(std::move(aOther));
return *this;
}
template <typename Allocator>
self_type& operator=(nsTArray_Impl<value_type, Allocator>&& aOther) {
base_type::operator=(std::move(aOther));
return *this;
}
// Intentionally hides nsTArray_Impl::Clone to make clones usually be
// AutoTArray as well.
self_type Clone() const {
self_type result;
result.Assign(*this);
return result;
}
private:
// nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
// to mAutoBuf.
template <class Allocator, class RelocationStrategy>
friend class nsTArray_base;
void Init() {
static_assert(MOZ_ALIGNOF(value_type) <= 8,
"can't handle alignments greater than 8, "
"see nsTArray_base::UsesAutoArrayBuffer()");
// Temporary work around for VS2012 RC compiler crash
Header** phdr = base_type::PtrToHdr();
*phdr = reinterpret_cast<Header*>(&mAutoBuf);
(*phdr)->mLength = 0;
(*phdr)->mCapacity = N;
(*phdr)->mIsAutoArray = 1;
MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(value_type)) ==
reinterpret_cast<Header*>(&mAutoBuf),
"GetAutoArrayBuffer needs to be fixed");
}
// Declare mAutoBuf aligned to the maximum of the header's alignment and
// value_type's alignment. We need to use a union rather than
// MOZ_ALIGNED_DECL because GCC is picky about what goes into
// __attribute__((aligned(foo))).
union {
char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(value_type)];
// Do the max operation inline to ensure that it is a compile-time constant.
mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(value_type))
? MOZ_ALIGNOF(Header)
: MOZ_ALIGNOF(value_type)>
mAlign;
};
};
//
// Specialization of AutoTArray<E, N> for the case where N == 0.
// AutoTArray<E, 0> behaves exactly like nsTArray<E>, but without this
// specialization, it stores a useless inline header.
//
// We do have many AutoTArray<E, 0> objects in memory: about 2,000 per tab as
// of May 2014. These are typically not explicitly AutoTArray<E, 0> but rather
// AutoTArray<E, N> for some value N depending on template parameters, in
// generic code.
//
// For that reason, we optimize this case with the below partial specialization,
// which ensures that AutoTArray<E, 0> is just like nsTArray<E>, without any
// inline header overhead.
//
template <class E>
class AutoTArray<E, 0> : public nsTArray<E> {
using nsTArray<E>::nsTArray;
};
template <class E, size_t N>
struct nsTArray_RelocationStrategy<AutoTArray<E, N>> {
using Type = nsTArray_RelocateUsingMoveConstructor<AutoTArray<E, N>>;
};
template <class E, size_t N>
class CopyableAutoTArray : public AutoTArray<E, N> {
public:
typedef CopyableAutoTArray<E, N> self_type;
using AutoTArray<E, N>::AutoTArray;
CopyableAutoTArray(const CopyableAutoTArray& aOther) : AutoTArray<E, N>() {
this->Assign(aOther);
}
CopyableAutoTArray& operator=(const CopyableAutoTArray& aOther) {
if (this != &aOther) {
this->Assign(aOther);
}
return *this;
}
template <typename Allocator>
MOZ_IMPLICIT CopyableAutoTArray(const nsTArray_Impl<E, Allocator>& aOther) {
this->Assign(aOther);
}
template <typename Allocator>
CopyableAutoTArray& operator=(const nsTArray_Impl<E, Allocator>& aOther) {
if constexpr (std::is_same_v<Allocator, nsTArrayInfallibleAllocator>) {
if (this == &aOther) {
return *this;
}
}
this->Assign(aOther);
return *this;
}
template <typename Allocator>
MOZ_IMPLICIT CopyableAutoTArray(nsTArray_Impl<E, Allocator>&& aOther)
: AutoTArray<E, N>{std::move(aOther)} {}
template <typename Allocator>
CopyableAutoTArray& operator=(nsTArray_Impl<E, Allocator>&& aOther) {
static_cast<AutoTArray<E, N>&>(*this) = std::move(aOther);
return *this;
}
// CopyableTArray exists for cases where an explicit Clone is not possible.
// These uses should not be mixed, so we delete Clone() here.
self_type Clone() const = delete;
CopyableAutoTArray(CopyableAutoTArray&&) = default;
CopyableAutoTArray& operator=(CopyableAutoTArray&&) = default;
};
namespace mozilla {
template <typename E, typename ArrayT>
class nsTArrayBackInserter {
ArrayT* mArray;
class Proxy {
ArrayT& mArray;
public:
explicit Proxy(ArrayT& aArray) : mArray{aArray} {}
template <typename E2>
void operator=(E2&& aValue) {
mArray.AppendElement(std::forward<E2>(aValue));
}
};
public:
using iterator_category = std::output_iterator_tag;
using value_type = void;
using difference_type = void;
using pointer = void;
using reference = void;
explicit nsTArrayBackInserter(ArrayT& aArray) : mArray{&aArray} {}
// Return a proxy so that nsTArrayBackInserter has the default special member
// functions, and the operator= template is defined in Proxy rather than this
// class (which otherwise breaks with recent MS STL versions).
Proxy operator*() { return Proxy(*mArray); }
nsTArrayBackInserter& operator++() { return *this; }
nsTArrayBackInserter& operator++(int) { return *this; }
};
} // namespace mozilla
template <typename E>
auto MakeBackInserter(nsTArray<E>& aArray) {
return mozilla::nsTArrayBackInserter<E, nsTArray<E>>{aArray};
}
// Span integration
namespace mozilla {
template <typename E, class Alloc>
Span(nsTArray_Impl<E, Alloc>&) -> Span<E>;
template <typename E, class Alloc>
Span(const nsTArray_Impl<E, Alloc>&) -> Span<const E>;
// Provides a view on a nsTArray through which the existing array elements can
// be accessed in a non-const way, but the array itself cannot be modified, so
// that references to elements are guaranteed to be stable.
template <typename E>
class nsTArrayView {
public:
using element_type = E;
using pointer = element_type*;
using reference = element_type&;
using index_type = typename Span<element_type>::index_type;
using size_type = typename Span<element_type>::index_type;
explicit nsTArrayView(nsTArray<element_type> aArray)
: mArray(std::move(aArray)), mSpan(mArray) {}
element_type& operator[](index_type aIndex) { return mSpan[aIndex]; }
const element_type& operator[](index_type aIndex) const {
return mSpan[aIndex];
}
size_type Length() const { return mSpan.Length(); }
auto begin() { return mSpan.begin(); }
auto end() { return mSpan.end(); }
auto begin() const { return mSpan.begin(); }
auto end() const { return mSpan.end(); }
auto cbegin() const { return mSpan.cbegin(); }
auto cend() const { return mSpan.cend(); }
Span<element_type> AsSpan() { return mSpan; }
Span<const element_type> AsSpan() const { return mSpan; }
private:
nsTArray<element_type> mArray;
const Span<element_type> mSpan;
};
// NOTE(emilio): If changing the name of this or so, make sure to change
// specializations too.
template <typename Range,
typename = std::enable_if_t<std::is_same_v<
typename std::iterator_traits<typename std::remove_reference_t<
Range>::iterator>::iterator_category,
std::random_access_iterator_tag>>>
size_t RangeSizeEstimate(const Range& aRange) {
// overloads'.
using std::begin;
using std::end;
return std::distance(begin(aRange), end(aRange));
}
/**
* Materialize a range as a nsTArray (or a compatible variant, like AutoTArray)
* of an explicitly specified type. The array value type must be implicitly
* convertible from the range's value type.
*/
template <typename Array, typename Range>
auto ToTArray(Range&& aRange) {
using std::begin;
using std::end;
Array res;
if (auto estimate = RangeSizeEstimate(aRange)) {
res.SetCapacity(estimate);
}
std::copy(begin(aRange), end(aRange), MakeBackInserter(res));
return res;
}
/**
* Materialize a range as a nsTArray of its (decayed) value type.
*/
template <typename Range>
auto ToArray(Range&& aRange) {
return ToTArray<nsTArray<std::decay_t<typename std::iterator_traits<
typename std::remove_reference_t<Range>::iterator>::value_type>>>(
std::forward<Range>(aRange));
}
/**
* Appends all elements from a range to an array.
*/
template <typename Array, typename Range>
void AppendToArray(Array& aArray, Range&& aRange) {
using std::begin;
using std::end;
if (auto estimate = RangeSizeEstimate(aRange)) {
aArray.SetCapacity(aArray.Length() + estimate);
}
std::copy(begin(aRange), end(aRange), MakeBackInserter(aArray));
}
} // namespace mozilla
// MOZ_DBG support
template <class E, class Alloc>
std::ostream& operator<<(std::ostream& aOut,
const nsTArray_Impl<E, Alloc>& aTArray) {
return aOut << mozilla::Span(aTArray);
}
// Assert that AutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. AutoTArray<uint32_t, 1> wouldn't work. Since AutoTArray
// contains a pointer, its size must be a multiple of alignof(void*). (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.) The compiler pads the end of the structure to
// enforce this rule.
//
// If we used AutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.
static_assert(sizeof(AutoTArray<uint32_t, 2>) ==
sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
"AutoTArray shouldn't contain any extra padding, "
"see the comment");
// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"
#endif // nsTArray_h__