Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright 2017 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wabt/leb128.h"
#include <type_traits>
#include "wabt/stream.h"
#define MAX_U32_LEB128_BYTES 5
#define MAX_U64_LEB128_BYTES 10
namespace wabt {
Offset U32Leb128Length(uint32_t value) {
uint32_t size = 0;
do {
value >>= 7;
size++;
} while (value != 0);
return size;
}
#define LEB128_LOOP_UNTIL(end_cond) \
do { \
uint8_t byte = value & 0x7f; \
value >>= 7; \
if (end_cond) { \
data[length++] = byte; \
break; \
} else { \
data[length++] = byte | 0x80; \
} \
} while (1)
Offset WriteFixedU32Leb128At(Stream* stream,
Offset offset,
uint32_t value,
const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length =
WriteFixedU32Leb128Raw(data, data + MAX_U32_LEB128_BYTES, value);
stream->WriteDataAt(offset, data, length, desc);
return length;
}
void WriteU32Leb128(Stream* stream, uint32_t value, const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length = 0;
LEB128_LOOP_UNTIL(value == 0);
stream->WriteData(data, length, desc);
}
void WriteFixedU32Leb128(Stream* stream, uint32_t value, const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length =
WriteFixedU32Leb128Raw(data, data + MAX_U32_LEB128_BYTES, value);
stream->WriteData(data, length, desc);
}
// returns the length of the leb128.
Offset WriteU32Leb128At(Stream* stream,
Offset offset,
uint32_t value,
const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length = 0;
LEB128_LOOP_UNTIL(value == 0);
stream->WriteDataAt(offset, data, length, desc);
return length;
}
Offset WriteU32Leb128Raw(uint8_t* dest, uint8_t* dest_end, uint32_t value) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length = 0;
LEB128_LOOP_UNTIL(value == 0);
if (static_cast<Offset>(dest_end - dest) < length) {
return 0;
}
memcpy(dest, data, length);
return length;
}
Offset WriteFixedU32Leb128Raw(uint8_t* data, uint8_t* end, uint32_t value) {
if (end - data < MAX_U32_LEB128_BYTES) {
return 0;
}
data[0] = (value & 0x7f) | 0x80;
data[1] = ((value >> 7) & 0x7f) | 0x80;
data[2] = ((value >> 14) & 0x7f) | 0x80;
data[3] = ((value >> 21) & 0x7f) | 0x80;
data[4] = ((value >> 28) & 0x0f);
return MAX_U32_LEB128_BYTES;
}
static void WriteS32Leb128(Stream* stream, int32_t value, const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
Offset length = 0;
if (value < 0) {
LEB128_LOOP_UNTIL(value == -1 && (byte & 0x40));
} else {
LEB128_LOOP_UNTIL(value == 0 && !(byte & 0x40));
}
stream->WriteData(data, length, desc);
}
static void WriteS64Leb128(Stream* stream, int64_t value, const char* desc) {
uint8_t data[MAX_U64_LEB128_BYTES];
Offset length = 0;
if (value < 0) {
LEB128_LOOP_UNTIL(value == -1 && (byte & 0x40));
} else {
LEB128_LOOP_UNTIL(value == 0 && !(byte & 0x40));
}
stream->WriteData(data, length, desc);
}
void WriteS32Leb128(Stream* stream, uint32_t value, const char* desc) {
WriteS32Leb128(stream, Bitcast<int32_t>(value), desc);
}
void WriteU64Leb128(Stream* stream, uint64_t value, const char* desc) {
uint8_t data[MAX_U64_LEB128_BYTES];
Offset length = 0;
LEB128_LOOP_UNTIL(value == 0);
stream->WriteData(data, length, desc);
}
void WriteS64Leb128(Stream* stream, uint64_t value, const char* desc) {
WriteS64Leb128(stream, Bitcast<int64_t>(value), desc);
}
void WriteFixedS32Leb128(Stream* stream, uint32_t value, const char* desc) {
uint8_t data[MAX_U32_LEB128_BYTES];
data[0] = (value & 0x7f) | 0x80;
data[1] = ((value >> 7) & 0x7f) | 0x80;
data[2] = ((value >> 14) & 0x7f) | 0x80;
data[3] = ((value >> 21) & 0x7f) | 0x80;
// The last byte needs to be sign-extended.
data[4] = ((value >> 28) & 0x0f);
if (static_cast<int32_t>(value) < 0) {
data[4] |= 0x70;
}
stream->WriteData(data, MAX_U32_LEB128_BYTES, desc);
}
#undef LEB128_LOOP_UNTIL
#define BYTE_AT(type, i, shift) ((static_cast<type>(p[i]) & 0x7f) << (shift))
#define LEB128_1(type) (BYTE_AT(type, 0, 0))
#define LEB128_2(type) (BYTE_AT(type, 1, 7) | LEB128_1(type))
#define LEB128_3(type) (BYTE_AT(type, 2, 14) | LEB128_2(type))
#define LEB128_4(type) (BYTE_AT(type, 3, 21) | LEB128_3(type))
#define LEB128_5(type) (BYTE_AT(type, 4, 28) | LEB128_4(type))
#define LEB128_6(type) (BYTE_AT(type, 5, 35) | LEB128_5(type))
#define LEB128_7(type) (BYTE_AT(type, 6, 42) | LEB128_6(type))
#define LEB128_8(type) (BYTE_AT(type, 7, 49) | LEB128_7(type))
#define LEB128_9(type) (BYTE_AT(type, 8, 56) | LEB128_8(type))
#define LEB128_10(type) (BYTE_AT(type, 9, 63) | LEB128_9(type))
#define SHIFT_AMOUNT(type, sign_bit) (sizeof(type) * 8 - 1 - (sign_bit))
#define SIGN_EXTEND(type, value, sign_bit) \
(static_cast<type>((value) << SHIFT_AMOUNT(type, sign_bit)) >> \
SHIFT_AMOUNT(type, sign_bit))
size_t ReadU32Leb128(const uint8_t* p,
const uint8_t* end,
uint32_t* out_value) {
if (p < end && (p[0] & 0x80) == 0) {
*out_value = LEB128_1(uint32_t);
return 1;
} else if (p + 1 < end && (p[1] & 0x80) == 0) {
*out_value = LEB128_2(uint32_t);
return 2;
} else if (p + 2 < end && (p[2] & 0x80) == 0) {
*out_value = LEB128_3(uint32_t);
return 3;
} else if (p + 3 < end && (p[3] & 0x80) == 0) {
*out_value = LEB128_4(uint32_t);
return 4;
} else if (p + 4 < end && (p[4] & 0x80) == 0) {
// The top bits set represent values > 32 bits.
if (p[4] & 0xf0) {
return 0;
}
*out_value = LEB128_5(uint32_t);
return 5;
} else {
// past the end.
*out_value = 0;
return 0;
}
}
size_t ReadU64Leb128(const uint8_t* p,
const uint8_t* end,
uint64_t* out_value) {
if (p < end && (p[0] & 0x80) == 0) {
*out_value = LEB128_1(uint64_t);
return 1;
} else if (p + 1 < end && (p[1] & 0x80) == 0) {
*out_value = LEB128_2(uint64_t);
return 2;
} else if (p + 2 < end && (p[2] & 0x80) == 0) {
*out_value = LEB128_3(uint64_t);
return 3;
} else if (p + 3 < end && (p[3] & 0x80) == 0) {
*out_value = LEB128_4(uint64_t);
return 4;
} else if (p + 4 < end && (p[4] & 0x80) == 0) {
*out_value = LEB128_5(uint64_t);
return 5;
} else if (p + 5 < end && (p[5] & 0x80) == 0) {
*out_value = LEB128_6(uint64_t);
return 6;
} else if (p + 6 < end && (p[6] & 0x80) == 0) {
*out_value = LEB128_7(uint64_t);
return 7;
} else if (p + 7 < end && (p[7] & 0x80) == 0) {
*out_value = LEB128_8(uint64_t);
return 8;
} else if (p + 8 < end && (p[8] & 0x80) == 0) {
*out_value = LEB128_9(uint64_t);
return 9;
} else if (p + 9 < end && (p[9] & 0x80) == 0) {
// The top bits set represent values > 32 bits.
if (p[9] & 0xf0) {
return 0;
}
*out_value = LEB128_10(uint64_t);
return 10;
} else {
// past the end.
*out_value = 0;
return 0;
}
}
size_t ReadS32Leb128(const uint8_t* p,
const uint8_t* end,
uint32_t* out_value) {
if (p < end && (p[0] & 0x80) == 0) {
uint32_t result = LEB128_1(uint32_t);
*out_value = SIGN_EXTEND(int32_t, result, 6);
return 1;
} else if (p + 1 < end && (p[1] & 0x80) == 0) {
uint32_t result = LEB128_2(uint32_t);
*out_value = SIGN_EXTEND(int32_t, result, 13);
return 2;
} else if (p + 2 < end && (p[2] & 0x80) == 0) {
uint32_t result = LEB128_3(uint32_t);
*out_value = SIGN_EXTEND(int32_t, result, 20);
return 3;
} else if (p + 3 < end && (p[3] & 0x80) == 0) {
uint32_t result = LEB128_4(uint32_t);
*out_value = SIGN_EXTEND(int32_t, result, 27);
return 4;
} else if (p + 4 < end && (p[4] & 0x80) == 0) {
// The top bits should be a sign-extension of the sign bit.
bool sign_bit_set = (p[4] & 0x8);
int top_bits = p[4] & 0xf0;
if ((sign_bit_set && top_bits != 0x70) ||
(!sign_bit_set && top_bits != 0)) {
return 0;
}
uint32_t result = LEB128_5(uint32_t);
*out_value = result;
return 5;
} else {
// Past the end.
return 0;
}
}
size_t ReadS64Leb128(const uint8_t* p,
const uint8_t* end,
uint64_t* out_value) {
if (p < end && (p[0] & 0x80) == 0) {
uint64_t result = LEB128_1(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 6);
return 1;
} else if (p + 1 < end && (p[1] & 0x80) == 0) {
uint64_t result = LEB128_2(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 13);
return 2;
} else if (p + 2 < end && (p[2] & 0x80) == 0) {
uint64_t result = LEB128_3(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 20);
return 3;
} else if (p + 3 < end && (p[3] & 0x80) == 0) {
uint64_t result = LEB128_4(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 27);
return 4;
} else if (p + 4 < end && (p[4] & 0x80) == 0) {
uint64_t result = LEB128_5(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 34);
return 5;
} else if (p + 5 < end && (p[5] & 0x80) == 0) {
uint64_t result = LEB128_6(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 41);
return 6;
} else if (p + 6 < end && (p[6] & 0x80) == 0) {
uint64_t result = LEB128_7(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 48);
return 7;
} else if (p + 7 < end && (p[7] & 0x80) == 0) {
uint64_t result = LEB128_8(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 55);
return 8;
} else if (p + 8 < end && (p[8] & 0x80) == 0) {
uint64_t result = LEB128_9(uint64_t);
*out_value = SIGN_EXTEND(int64_t, result, 62);
return 9;
} else if (p + 9 < end && (p[9] & 0x80) == 0) {
// The top bits should be a sign-extension of the sign bit.
bool sign_bit_set = (p[9] & 0x1);
int top_bits = p[9] & 0xfe;
if ((sign_bit_set && top_bits != 0x7e) ||
(!sign_bit_set && top_bits != 0)) {
return 0;
}
uint64_t result = LEB128_10(uint64_t);
*out_value = result;
return 10;
} else {
// Past the end.
return 0;
}
}
#undef BYTE_AT
#undef LEB128_1
#undef LEB128_2
#undef LEB128_3
#undef LEB128_4
#undef LEB128_5
#undef LEB128_6
#undef LEB128_7
#undef LEB128_8
#undef LEB128_9
#undef LEB128_10
#undef SHIFT_AMOUNT
#undef SIGN_EXTEND
} // namespace wabt