Source code
Revision control
Copy as Markdown
Other Tools
//! **Ignore me!** This module is for things that are conceptually private but that must
//! be made public for typenum to work correctly.
//!
//! Unless you are working on typenum itself, **there is no need to view anything here**.
//!
//! Certainly don't implement any of the traits here for anything.
//!
//!
//! Just look away.
//!
//!
//! Loooooooooooooooooooooooooooooooooook awaaaaaaaaaaaayyyyyyyyyyyyyyyyyyyyyyyyyyyyy...
//!
//!
//! If you do manage to find something of use in here, please let me know. If you can make a
//! compelling case, it may be moved out of __private.
//!
//! Note: Aliases for private type operators will all be named simply that operator followed
//! by an abbreviated name of its associated type.
#![doc(hidden)]
use crate::{
bit::{Bit, B0, B1},
uint::{UInt, UTerm, Unsigned},
};
/// A marker for restricting a method on a public trait to internal use only.
pub(crate) enum Internal {}
pub trait InternalMarker {}
impl InternalMarker for Internal {}
/// Convenience trait. Calls `Invert` -> `TrimTrailingZeros` -> `Invert`
pub trait Trim {
type Output;
fn trim(self) -> Self::Output;
}
pub type TrimOut<A> = <A as Trim>::Output;
/// Gets rid of all zeros until it hits a one.
// ONLY IMPLEMENT FOR INVERTED NUMBERS!
pub trait TrimTrailingZeros {
type Output;
fn trim_trailing_zeros(self) -> Self::Output;
}
pub type TrimTrailingZerosOut<A> = <A as TrimTrailingZeros>::Output;
/// Converts between standard numbers and inverted ones that have the most significant
/// digit on the outside.
pub trait Invert {
type Output;
fn invert(self) -> Self::Output;
}
pub type InvertOut<A> = <A as Invert>::Output;
/// Doubly private! Called by invert to make the magic happen once its done the first step.
/// The Rhs is what we've got so far.
pub trait PrivateInvert<Rhs> {
type Output;
fn private_invert(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateInvertOut<A, Rhs> = <A as PrivateInvert<Rhs>>::Output;
/// Terminating character for `InvertedUInt`s
pub struct InvertedUTerm;
/// Inverted `UInt` (has most significant digit on the outside)
pub struct InvertedUInt<IU: InvertedUnsigned, B: Bit> {
msb: IU,
lsb: B,
}
/// Does the real anding for `UInt`s; `And` just calls this and then `Trim`.
pub trait PrivateAnd<Rhs = Self> {
type Output;
fn private_and(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateAndOut<A, Rhs> = <A as PrivateAnd<Rhs>>::Output;
/// Does the real xoring for `UInt`s; `Xor` just calls this and then `Trim`.
pub trait PrivateXor<Rhs = Self> {
type Output;
fn private_xor(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateXorOut<A, Rhs> = <A as PrivateXor<Rhs>>::Output;
/// Does the real subtraction for `UInt`s; `Sub` just calls this and then `Trim`.
pub trait PrivateSub<Rhs = Self> {
type Output;
fn private_sub(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateSubOut<A, Rhs> = <A as PrivateSub<Rhs>>::Output;
/// Used for addition of signed integers; `C = P.cmp(N)`
/// Assumes `P = Self` is positive and `N` is negative
/// where `P` and `N` are both passed as unsigned integers
pub trait PrivateIntegerAdd<C, N> {
type Output;
fn private_integer_add(self, _: C, _: N) -> Self::Output;
}
pub type PrivateIntegerAddOut<P, C, N> = <P as PrivateIntegerAdd<C, N>>::Output;
pub trait PrivatePow<Y, N> {
type Output;
fn private_pow(self, _: Y, _: N) -> Self::Output;
}
pub type PrivatePowOut<A, Y, N> = <A as PrivatePow<Y, N>>::Output;
/// Performs `Shl` on `Lhs` so that `SizeOf(Lhs) = SizeOf(Rhs)`
/// Fails if `SizeOf(Lhs) > SizeOf(Rhs)`
pub trait ShiftDiff<Rhs> {
type Output;
}
pub type ShiftDiffOut<A, Rhs> = <A as ShiftDiff<Rhs>>::Output;
/// Gives `SizeOf(Lhs) - SizeOf(Rhs)`
pub trait BitDiff<Rhs> {
type Output;
}
pub type BitDiffOut<A, Rhs> = <A as BitDiff<Rhs>>::Output;
/// Inverted unsigned numbers
pub trait InvertedUnsigned {
fn to_u64() -> u64;
}
impl InvertedUnsigned for InvertedUTerm {
#[inline]
fn to_u64() -> u64 {
0
}
}
impl<IU: InvertedUnsigned, B: Bit> InvertedUnsigned for InvertedUInt<IU, B> {
#[inline]
fn to_u64() -> u64 {
u64::from(B::to_u8()) | IU::to_u64() << 1
}
}
impl Invert for UTerm {
type Output = InvertedUTerm;
#[inline]
fn invert(self) -> Self::Output {
InvertedUTerm
}
}
impl<U: Unsigned, B: Bit> Invert for UInt<U, B>
where
U: PrivateInvert<InvertedUInt<InvertedUTerm, B>>,
{
type Output = PrivateInvertOut<U, InvertedUInt<InvertedUTerm, B>>;
#[inline]
fn invert(self) -> Self::Output {
self.msb.private_invert(InvertedUInt {
msb: InvertedUTerm,
lsb: self.lsb,
})
}
}
impl<IU: InvertedUnsigned> PrivateInvert<IU> for UTerm {
type Output = IU;
#[inline]
fn private_invert(self, rhs: IU) -> Self::Output {
rhs
}
}
impl<IU: InvertedUnsigned, U: Unsigned, B: Bit> PrivateInvert<IU> for UInt<U, B>
where
U: PrivateInvert<InvertedUInt<IU, B>>,
{
type Output = PrivateInvertOut<U, InvertedUInt<IU, B>>;
#[inline]
fn private_invert(self, rhs: IU) -> Self::Output {
self.msb.private_invert(InvertedUInt {
msb: rhs,
lsb: self.lsb,
})
}
}
#[test]
fn test_inversion() {
type Test4 = <crate::consts::U4 as Invert>::Output;
type Test5 = <crate::consts::U5 as Invert>::Output;
type Test12 = <crate::consts::U12 as Invert>::Output;
type Test16 = <crate::consts::U16 as Invert>::Output;
assert_eq!(1, <Test4 as InvertedUnsigned>::to_u64());
assert_eq!(5, <Test5 as InvertedUnsigned>::to_u64());
assert_eq!(3, <Test12 as InvertedUnsigned>::to_u64());
assert_eq!(1, <Test16 as InvertedUnsigned>::to_u64());
}
impl Invert for InvertedUTerm {
type Output = UTerm;
#[inline]
fn invert(self) -> Self::Output {
UTerm
}
}
impl<IU: InvertedUnsigned, B: Bit> Invert for InvertedUInt<IU, B>
where
IU: PrivateInvert<UInt<UTerm, B>>,
{
type Output = <IU as PrivateInvert<UInt<UTerm, B>>>::Output;
#[inline]
fn invert(self) -> Self::Output {
self.msb.private_invert(UInt {
msb: UTerm,
lsb: self.lsb,
})
}
}
impl<U: Unsigned> PrivateInvert<U> for InvertedUTerm {
type Output = U;
#[inline]
fn private_invert(self, rhs: U) -> Self::Output {
rhs
}
}
impl<U: Unsigned, IU: InvertedUnsigned, B: Bit> PrivateInvert<U> for InvertedUInt<IU, B>
where
IU: PrivateInvert<UInt<U, B>>,
{
type Output = <IU as PrivateInvert<UInt<U, B>>>::Output;
#[inline]
fn private_invert(self, rhs: U) -> Self::Output {
self.msb.private_invert(UInt {
msb: rhs,
lsb: self.lsb,
})
}
}
#[test]
fn test_double_inversion() {
type Test4 = <<crate::consts::U4 as Invert>::Output as Invert>::Output;
type Test5 = <<crate::consts::U5 as Invert>::Output as Invert>::Output;
type Test12 = <<crate::consts::U12 as Invert>::Output as Invert>::Output;
type Test16 = <<crate::consts::U16 as Invert>::Output as Invert>::Output;
assert_eq!(4, <Test4 as Unsigned>::to_u64());
assert_eq!(5, <Test5 as Unsigned>::to_u64());
assert_eq!(12, <Test12 as Unsigned>::to_u64());
assert_eq!(16, <Test16 as Unsigned>::to_u64());
}
impl TrimTrailingZeros for InvertedUTerm {
type Output = InvertedUTerm;
#[inline]
fn trim_trailing_zeros(self) -> Self::Output {
InvertedUTerm
}
}
impl<IU: InvertedUnsigned> TrimTrailingZeros for InvertedUInt<IU, B1> {
type Output = Self;
#[inline]
fn trim_trailing_zeros(self) -> Self::Output {
self
}
}
impl<IU: InvertedUnsigned> TrimTrailingZeros for InvertedUInt<IU, B0>
where
IU: TrimTrailingZeros,
{
type Output = <IU as TrimTrailingZeros>::Output;
#[inline]
fn trim_trailing_zeros(self) -> Self::Output {
self.msb.trim_trailing_zeros()
}
}
impl<U: Unsigned> Trim for U
where
U: Invert,
<U as Invert>::Output: TrimTrailingZeros,
<<U as Invert>::Output as TrimTrailingZeros>::Output: Invert,
{
type Output = <<<U as Invert>::Output as TrimTrailingZeros>::Output as Invert>::Output;
#[inline]
fn trim(self) -> Self::Output {
self.invert().trim_trailing_zeros().invert()
}
}
// Note: Trimming is tested when we do subtraction.
pub trait PrivateCmp<Rhs, SoFar> {
type Output;
fn private_cmp(&self, _: &Rhs, _: SoFar) -> Self::Output;
}
pub type PrivateCmpOut<A, Rhs, SoFar> = <A as PrivateCmp<Rhs, SoFar>>::Output;
// Set Bit
pub trait PrivateSetBit<I, B> {
type Output;
fn private_set_bit(self, _: I, _: B) -> Self::Output;
}
pub type PrivateSetBitOut<N, I, B> = <N as PrivateSetBit<I, B>>::Output;
// Div
pub trait PrivateDiv<N, D, Q, R, I> {
type Quotient;
type Remainder;
fn private_div_quotient(self, _: N, _: D, _: Q, _: R, _: I) -> Self::Quotient;
fn private_div_remainder(self, _: N, _: D, _: Q, _: R, _: I) -> Self::Remainder;
}
pub type PrivateDivQuot<N, D, Q, R, I> = <() as PrivateDiv<N, D, Q, R, I>>::Quotient;
pub type PrivateDivRem<N, D, Q, R, I> = <() as PrivateDiv<N, D, Q, R, I>>::Remainder;
pub trait PrivateDivIf<N, D, Q, R, I, RcmpD> {
type Quotient;
type Remainder;
fn private_div_if_quotient(self, _: N, _: D, _: Q, _: R, _: I, _: RcmpD) -> Self::Quotient;
fn private_div_if_remainder(self, _: N, _: D, _: Q, _: R, _: I, _: RcmpD) -> Self::Remainder;
}
pub type PrivateDivIfQuot<N, D, Q, R, I, RcmpD> =
<() as PrivateDivIf<N, D, Q, R, I, RcmpD>>::Quotient;
pub type PrivateDivIfRem<N, D, Q, R, I, RcmpD> =
<() as PrivateDivIf<N, D, Q, R, I, RcmpD>>::Remainder;
// Div for signed ints
pub trait PrivateDivInt<C, Divisor> {
type Output;
fn private_div_int(self, _: C, _: Divisor) -> Self::Output;
}
pub type PrivateDivIntOut<A, C, Divisor> = <A as PrivateDivInt<C, Divisor>>::Output;
pub trait PrivateRem<URem, Divisor> {
type Output;
fn private_rem(self, _: URem, _: Divisor) -> Self::Output;
}
pub type PrivateRemOut<A, URem, Divisor> = <A as PrivateRem<URem, Divisor>>::Output;
// min max
pub trait PrivateMin<Rhs, CmpResult> {
type Output;
fn private_min(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateMinOut<A, B, CmpResult> = <A as PrivateMin<B, CmpResult>>::Output;
pub trait PrivateMax<Rhs, CmpResult> {
type Output;
fn private_max(self, rhs: Rhs) -> Self::Output;
}
pub type PrivateMaxOut<A, B, CmpResult> = <A as PrivateMax<B, CmpResult>>::Output;
// Comparisons
use crate::{Equal, False, Greater, Less, True};
pub trait IsLessPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_less_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsLessPrivate<B, Less> for A {
type Output = True;
#[inline]
fn is_less_private(self, _: B, _: Less) -> Self::Output {
B1
}
}
impl<A, B> IsLessPrivate<B, Equal> for A {
type Output = False;
#[inline]
fn is_less_private(self, _: B, _: Equal) -> Self::Output {
B0
}
}
impl<A, B> IsLessPrivate<B, Greater> for A {
type Output = False;
#[inline]
fn is_less_private(self, _: B, _: Greater) -> Self::Output {
B0
}
}
pub trait IsEqualPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_equal_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsEqualPrivate<B, Less> for A {
type Output = False;
#[inline]
fn is_equal_private(self, _: B, _: Less) -> Self::Output {
B0
}
}
impl<A, B> IsEqualPrivate<B, Equal> for A {
type Output = True;
#[inline]
fn is_equal_private(self, _: B, _: Equal) -> Self::Output {
B1
}
}
impl<A, B> IsEqualPrivate<B, Greater> for A {
type Output = False;
#[inline]
fn is_equal_private(self, _: B, _: Greater) -> Self::Output {
B0
}
}
pub trait IsGreaterPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_greater_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsGreaterPrivate<B, Less> for A {
type Output = False;
#[inline]
fn is_greater_private(self, _: B, _: Less) -> Self::Output {
B0
}
}
impl<A, B> IsGreaterPrivate<B, Equal> for A {
type Output = False;
#[inline]
fn is_greater_private(self, _: B, _: Equal) -> Self::Output {
B0
}
}
impl<A, B> IsGreaterPrivate<B, Greater> for A {
type Output = True;
#[inline]
fn is_greater_private(self, _: B, _: Greater) -> Self::Output {
B1
}
}
pub trait IsLessOrEqualPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_less_or_equal_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsLessOrEqualPrivate<B, Less> for A {
type Output = True;
#[inline]
fn is_less_or_equal_private(self, _: B, _: Less) -> Self::Output {
B1
}
}
impl<A, B> IsLessOrEqualPrivate<B, Equal> for A {
type Output = True;
#[inline]
fn is_less_or_equal_private(self, _: B, _: Equal) -> Self::Output {
B1
}
}
impl<A, B> IsLessOrEqualPrivate<B, Greater> for A {
type Output = False;
#[inline]
fn is_less_or_equal_private(self, _: B, _: Greater) -> Self::Output {
B0
}
}
pub trait IsNotEqualPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_not_equal_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsNotEqualPrivate<B, Less> for A {
type Output = True;
#[inline]
fn is_not_equal_private(self, _: B, _: Less) -> Self::Output {
B1
}
}
impl<A, B> IsNotEqualPrivate<B, Equal> for A {
type Output = False;
#[inline]
fn is_not_equal_private(self, _: B, _: Equal) -> Self::Output {
B0
}
}
impl<A, B> IsNotEqualPrivate<B, Greater> for A {
type Output = True;
#[inline]
fn is_not_equal_private(self, _: B, _: Greater) -> Self::Output {
B1
}
}
pub trait IsGreaterOrEqualPrivate<Rhs, Cmp> {
type Output: Bit;
fn is_greater_or_equal_private(self, _: Rhs, _: Cmp) -> Self::Output;
}
impl<A, B> IsGreaterOrEqualPrivate<B, Less> for A {
type Output = False;
#[inline]
fn is_greater_or_equal_private(self, _: B, _: Less) -> Self::Output {
B0
}
}
impl<A, B> IsGreaterOrEqualPrivate<B, Equal> for A {
type Output = True;
#[inline]
fn is_greater_or_equal_private(self, _: B, _: Equal) -> Self::Output {
B1
}
}
impl<A, B> IsGreaterOrEqualPrivate<B, Greater> for A {
type Output = True;
#[inline]
fn is_greater_or_equal_private(self, _: B, _: Greater) -> Self::Output {
B1
}
}
pub trait PrivateSquareRoot {
type Output;
}
pub trait PrivateLogarithm2 {
type Output;
}