Source code
Revision control
Copy as Markdown
Other Tools
//! Parsing interface for parsing a token stream into a syntax tree node.
//!
//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
//! these parser functions is a lower level mechanism built around the
//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
//! tokens in a token stream.
//!
//! [`Result<T>`]: Result
//! [`Cursor`]: crate::buffer::Cursor
//!
//! # Example
//!
//! Here is a snippet of parsing code to get a feel for the style of the
//! library. We define data structures for a subset of Rust syntax including
//! enums (not shown) and structs, then provide implementations of the [`Parse`]
//! trait to parse these syntax tree data structures from a token stream.
//!
//! Once `Parse` impls have been defined, they can be called conveniently from a
//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
//! the snippet. If the caller provides syntactically invalid input to the
//! procedural macro, they will receive a helpful compiler error message
//! pointing out the exact token that triggered the failure to parse.
//!
//! [`parse_macro_input!`]: crate::parse_macro_input!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
//! use syn::parse::{Parse, ParseStream};
//! use syn::punctuated::Punctuated;
//!
//! enum Item {
//! Struct(ItemStruct),
//! Enum(ItemEnum),
//! }
//!
//! struct ItemStruct {
//! struct_token: Token![struct],
//! ident: Ident,
//! brace_token: token::Brace,
//! fields: Punctuated<Field, Token![,]>,
//! }
//! #
//! # enum ItemEnum {}
//!
//! impl Parse for Item {
//! fn parse(input: ParseStream) -> Result<Self> {
//! let lookahead = input.lookahead1();
//! if lookahead.peek(Token![struct]) {
//! input.parse().map(Item::Struct)
//! } else if lookahead.peek(Token![enum]) {
//! input.parse().map(Item::Enum)
//! } else {
//! Err(lookahead.error())
//! }
//! }
//! }
//!
//! impl Parse for ItemStruct {
//! fn parse(input: ParseStream) -> Result<Self> {
//! let content;
//! Ok(ItemStruct {
//! struct_token: input.parse()?,
//! ident: input.parse()?,
//! brace_token: braced!(content in input),
//! fields: content.parse_terminated(Field::parse_named, Token![,])?,
//! })
//! }
//! }
//! #
//! # impl Parse for ItemEnum {
//! # fn parse(input: ParseStream) -> Result<Self> {
//! # unimplemented!()
//! # }
//! # }
//!
//! # const IGNORE: &str = stringify! {
//! #[proc_macro]
//! # };
//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
//! let input = parse_macro_input!(tokens as Item);
//!
//! /* ... */
//! # TokenStream::new()
//! }
//! ```
//!
//! # The `syn::parse*` functions
//!
//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
//! as an entry point for parsing syntax tree nodes that can be parsed in an
//! obvious default way. These functions can return any syntax tree node that
//! implements the [`Parse`] trait, which includes most types in Syn.
//!
//! [`syn::parse`]: crate::parse()
//! [`syn::parse2`]: crate::parse2()
//! [`syn::parse_str`]: crate::parse_str()
//!
//! ```
//! use syn::Type;
//!
//! # fn run_parser() -> syn::Result<()> {
//! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
//! # Ok(())
//! # }
//! #
//! # run_parser().unwrap();
//! ```
//!
//! The [`parse_quote!`] macro also uses this approach.
//!
//! [`parse_quote!`]: crate::parse_quote!
//!
//! # The `Parser` trait
//!
//! Some types can be parsed in several ways depending on context. For example
//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
//! may or may not allow trailing punctuation, and parsing it the wrong way
//! would either reject valid input or accept invalid input.
//!
//! [`Attribute`]: crate::Attribute
//! [`Punctuated`]: crate::punctuated
//!
//! The `Parse` trait is not implemented in these cases because there is no good
//! behavior to consider the default.
//!
//! ```compile_fail
//! # extern crate proc_macro;
//! #
//! # use syn::punctuated::Punctuated;
//! # use syn::{PathSegment, Result, Token};
//! #
//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
//! #
//! // Can't parse `Punctuated` without knowing whether trailing punctuation
//! // should be allowed in this context.
//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
//! #
//! # Ok(())
//! # }
//! ```
//!
//! In these cases the types provide a choice of parser functions rather than a
//! single `Parse` implementation, and those parser functions can be invoked
//! through the [`Parser`] trait.
//!
//!
//! ```
//! # extern crate proc_macro;
//! #
//! use proc_macro::TokenStream;
//! use syn::parse::Parser;
//! use syn::punctuated::Punctuated;
//! use syn::{Attribute, Expr, PathSegment, Result, Token};
//!
//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
//! // Parse a nonempty sequence of path segments separated by `::` punctuation
//! // with no trailing punctuation.
//! let tokens = input.clone();
//! let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
//! let _path = parser.parse(tokens)?;
//!
//! // Parse a possibly empty sequence of expressions terminated by commas with
//! // an optional trailing punctuation.
//! let tokens = input.clone();
//! let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
//! let _args = parser.parse(tokens)?;
//!
//! // Parse zero or more outer attributes but not inner attributes.
//! let tokens = input.clone();
//! let parser = Attribute::parse_outer;
//! let _attrs = parser.parse(tokens)?;
//!
//! Ok(())
//! }
//! ```
#[path = "discouraged.rs"]
pub mod discouraged;
use crate::buffer::{Cursor, TokenBuffer};
use crate::error;
use crate::lookahead;
use crate::punctuated::Punctuated;
use crate::token::Token;
use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
#[cfg(feature = "printing")]
use quote::ToTokens;
use std::cell::Cell;
use std::fmt::{self, Debug, Display};
#[cfg(feature = "extra-traits")]
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::str::FromStr;
pub use crate::error::{Error, Result};
pub use crate::lookahead::{Lookahead1, Peek};
/// Parsing interface implemented by all types that can be parsed in a default
/// way from a token stream.
///
/// Refer to the [module documentation] for details about implementing and using
/// the `Parse` trait.
///
/// [module documentation]: self
pub trait Parse: Sized {
fn parse(input: ParseStream) -> Result<Self>;
}
/// Input to a Syn parser function.
///
/// See the methods of this type under the documentation of [`ParseBuffer`]. For
/// an overview of parsing in Syn, refer to the [module documentation].
///
/// [module documentation]: self
pub type ParseStream<'a> = &'a ParseBuffer<'a>;
/// Cursor position within a buffered token stream.
///
/// This type is more commonly used through the type alias [`ParseStream`] which
/// is an alias for `&ParseBuffer`.
///
/// `ParseStream` is the input type for all parser functions in Syn. They have
/// the signature `fn(ParseStream) -> Result<T>`.
///
/// ## Calling a parser function
///
/// There is no public way to construct a `ParseBuffer`. Instead, if you are
/// looking to invoke a parser function that requires `ParseStream` as input,
/// you will need to go through one of the public parsing entry points.
///
/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
/// - One of [the `syn::parse*` functions][syn-parse]; or
/// - A method of the [`Parser`] trait.
///
/// [`parse_macro_input!`]: crate::parse_macro_input!
/// [syn-parse]: self#the-synparse-functions
pub struct ParseBuffer<'a> {
scope: Span,
// Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
// The rest of the code in this module needs to be careful that only a
// cursor derived from this `cell` is ever assigned to this `cell`.
//
// Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
// ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
// than 'a, and then assign a Cursor<'short> into the Cell.
//
// By extension, it would not be safe to expose an API that accepts a
// Cursor<'a> and trusts that it lives as long as the cursor currently in
// the cell.
cell: Cell<Cursor<'static>>,
marker: PhantomData<Cursor<'a>>,
unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
}
impl<'a> Drop for ParseBuffer<'a> {
fn drop(&mut self) {
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
let (inner, old_span) = inner_unexpected(self);
if old_span.is_none() {
inner.set(Unexpected::Some(unexpected_span));
}
}
}
}
impl<'a> Display for ParseBuffer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Display::fmt(&self.cursor().token_stream(), f)
}
}
impl<'a> Debug for ParseBuffer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
Debug::fmt(&self.cursor().token_stream(), f)
}
}
impl<'a> UnwindSafe for ParseBuffer<'a> {}
impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
/// Cursor state associated with speculative parsing.
///
/// This type is the input of the closure provided to [`ParseStream::step`].
///
/// [`ParseStream::step`]: ParseBuffer::step
///
/// # Example
///
/// ```
/// use proc_macro2::TokenTree;
/// use syn::Result;
/// use syn::parse::ParseStream;
///
/// // This function advances the stream past the next occurrence of `@`. If
/// // no `@` is present in the stream, the stream position is unchanged and
/// // an error is returned.
/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
/// input.step(|cursor| {
/// let mut rest = *cursor;
/// while let Some((tt, next)) = rest.token_tree() {
/// match &tt {
/// TokenTree::Punct(punct) if punct.as_char() == '@' => {
/// return Ok(((), next));
/// }
/// _ => rest = next,
/// }
/// }
/// Err(cursor.error("no `@` was found after this point"))
/// })
/// }
/// #
/// # fn remainder_after_skipping_past_next_at(
/// # input: ParseStream,
/// # ) -> Result<proc_macro2::TokenStream> {
/// # skip_past_next_at(input)?;
/// # input.parse()
/// # }
/// #
/// # use syn::parse::Parser;
/// # let remainder = remainder_after_skipping_past_next_at
/// # .parse_str("a @ b c")
/// # .unwrap();
/// # assert_eq!(remainder.to_string(), "b c");
/// ```
pub struct StepCursor<'c, 'a> {
scope: Span,
// This field is covariant in 'c.
cursor: Cursor<'c>,
// This field is contravariant in 'c. Together these make StepCursor
// invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
// different lifetime but can upcast into a StepCursor with a shorter
// lifetime 'a.
//
// As long as we only ever construct a StepCursor for which 'c outlives 'a,
// this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
// outlives 'a.
marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
}
impl<'c, 'a> Deref for StepCursor<'c, 'a> {
type Target = Cursor<'c>;
fn deref(&self) -> &Self::Target {
&self.cursor
}
}
impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
impl<'c, 'a> Clone for StepCursor<'c, 'a> {
fn clone(&self) -> Self {
*self
}
}
impl<'c, 'a> StepCursor<'c, 'a> {
/// Triggers an error at the current position of the parse stream.
///
/// The `ParseStream::step` invocation will return this same error without
/// advancing the stream state.
pub fn error<T: Display>(self, message: T) -> Error {
error::new_at(self.scope, self.cursor, message)
}
}
pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
// Refer to the comments within the StepCursor definition. We use the
// fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
// Cursor is covariant in its lifetime parameter so we can cast a
// Cursor<'c> to one with the shorter lifetime Cursor<'a>.
let _ = proof;
unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
}
pub(crate) fn new_parse_buffer(
scope: Span,
cursor: Cursor,
unexpected: Rc<Cell<Unexpected>>,
) -> ParseBuffer {
ParseBuffer {
scope,
// See comment on `cell` in the struct definition.
cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
marker: PhantomData,
unexpected: Cell::new(Some(unexpected)),
}
}
pub(crate) enum Unexpected {
None,
Some(Span),
Chain(Rc<Cell<Unexpected>>),
}
impl Default for Unexpected {
fn default() -> Self {
Unexpected::None
}
}
impl Clone for Unexpected {
fn clone(&self) -> Self {
match self {
Unexpected::None => Unexpected::None,
Unexpected::Some(span) => Unexpected::Some(*span),
Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
}
}
}
// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
// swapping in a None is cheap.
fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
let prev = cell.take();
let ret = prev.clone();
cell.set(prev);
ret
}
fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
let mut unexpected = get_unexpected(buffer);
loop {
match cell_clone(&unexpected) {
Unexpected::None => return (unexpected, None),
Unexpected::Some(span) => return (unexpected, Some(span)),
Unexpected::Chain(next) => unexpected = next,
}
}
}
pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
cell_clone(&buffer.unexpected).unwrap()
}
fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
if cursor.eof() {
return None;
}
while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
return Some(unexpected);
}
cursor = rest;
}
if cursor.eof() {
None
} else {
Some(cursor.span())
}
}
impl<'a> ParseBuffer<'a> {
/// Parses a syntax tree node of type `T`, advancing the position of our
/// parse stream past it.
pub fn parse<T: Parse>(&self) -> Result<T> {
T::parse(self)
}
/// Calls the given parser function to parse a syntax tree node of type `T`
/// from this stream.
///
/// # Example
///
/// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
/// zero or more outer attributes.
///
/// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
///
/// ```
/// use syn::{Attribute, Ident, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses a unit struct with attributes.
/// //
/// // #[path = "s.tmpl"]
/// // struct S;
/// struct UnitStruct {
/// attrs: Vec<Attribute>,
/// struct_token: Token![struct],
/// name: Ident,
/// semi_token: Token![;],
/// }
///
/// impl Parse for UnitStruct {
/// fn parse(input: ParseStream) -> Result<Self> {
/// Ok(UnitStruct {
/// attrs: input.call(Attribute::parse_outer)?,
/// struct_token: input.parse()?,
/// name: input.parse()?,
/// semi_token: input.parse()?,
/// })
/// }
/// }
/// ```
pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
function(self)
}
/// Looks at the next token in the parse stream to determine whether it
/// matches the requested type of token.
///
/// Does not advance the position of the parse stream.
///
/// # Syntax
///
/// Note that this method does not use turbofish syntax. Pass the peek type
/// inside of parentheses.
///
/// - `input.peek(Token![struct])`
/// - `input.peek(Token![==])`
/// - `input.peek(syn::Ident)` *(does not accept keywords)*
/// - `input.peek(syn::Ident::peek_any)`
/// - `input.peek(Lifetime)`
/// - `input.peek(token::Brace)`
///
/// # Example
///
/// In this example we finish parsing the list of supertraits when the next
/// token in the input is either `where` or an opening curly brace.
///
/// ```
/// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// // Parses a trait definition containing no associated items.
/// //
/// // trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
/// struct MarkerTrait {
/// trait_token: Token![trait],
/// ident: Ident,
/// generics: Generics,
/// colon_token: Option<Token![:]>,
/// supertraits: Punctuated<TypeParamBound, Token![+]>,
/// brace_token: token::Brace,
/// }
///
/// impl Parse for MarkerTrait {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let trait_token: Token![trait] = input.parse()?;
/// let ident: Ident = input.parse()?;
/// let mut generics: Generics = input.parse()?;
/// let colon_token: Option<Token![:]> = input.parse()?;
///
/// let mut supertraits = Punctuated::new();
/// if colon_token.is_some() {
/// loop {
/// supertraits.push_value(input.parse()?);
/// if input.peek(Token![where]) || input.peek(token::Brace) {
/// break;
/// }
/// supertraits.push_punct(input.parse()?);
/// }
/// }
///
/// generics.where_clause = input.parse()?;
/// let content;
/// let empty_brace_token = braced!(content in input);
///
/// Ok(MarkerTrait {
/// trait_token,
/// ident,
/// generics,
/// colon_token,
/// supertraits,
/// brace_token: empty_brace_token,
/// })
/// }
/// }
/// ```
pub fn peek<T: Peek>(&self, token: T) -> bool {
let _ = token;
T::Token::peek(self.cursor())
}
/// Looks at the second-next token in the parse stream.
///
/// This is commonly useful as a way to implement contextual keywords.
///
/// # Example
///
/// This example needs to use `peek2` because the symbol `union` is not a
/// keyword in Rust. We can't use just `peek` and decide to parse a union if
/// the very next token is `union`, because someone is free to write a `mod
/// union` and a macro invocation that looks like `union::some_macro! { ...
/// }`. In other words `union` is a contextual keyword.
///
/// ```
/// use syn::{Ident, ItemUnion, Macro, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses either a union or a macro invocation.
/// enum UnionOrMacro {
/// // union MaybeUninit<T> { uninit: (), value: T }
/// Union(ItemUnion),
/// // lazy_static! { ... }
/// Macro(Macro),
/// }
///
/// impl Parse for UnionOrMacro {
/// fn parse(input: ParseStream) -> Result<Self> {
/// if input.peek(Token![union]) && input.peek2(Ident) {
/// input.parse().map(UnionOrMacro::Union)
/// } else {
/// input.parse().map(UnionOrMacro::Macro)
/// }
/// }
/// }
/// ```
pub fn peek2<T: Peek>(&self, token: T) -> bool {
fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
buffer.cursor().skip().map_or(false, peek)
}
let _ = token;
peek2(self, T::Token::peek)
}
/// Looks at the third-next token in the parse stream.
pub fn peek3<T: Peek>(&self, token: T) -> bool {
fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
buffer
.cursor()
.skip()
.and_then(Cursor::skip)
.map_or(false, peek)
}
let _ = token;
peek3(self, T::Token::peek)
}
/// Parses zero or more occurrences of `T` separated by punctuation of type
/// `P`, with optional trailing punctuation.
///
/// Parsing continues until the end of this parse stream. The entire content
/// of this parse stream must consist of `T` and `P`.
///
/// # Example
///
/// ```
/// # use quote::quote;
/// #
/// use syn::{parenthesized, token, Ident, Result, Token, Type};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// // Parse a simplified tuple struct syntax like:
/// //
/// // struct S(A, B);
/// struct TupleStruct {
/// struct_token: Token![struct],
/// ident: Ident,
/// paren_token: token::Paren,
/// fields: Punctuated<Type, Token![,]>,
/// semi_token: Token![;],
/// }
///
/// impl Parse for TupleStruct {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let content;
/// Ok(TupleStruct {
/// struct_token: input.parse()?,
/// ident: input.parse()?,
/// paren_token: parenthesized!(content in input),
/// fields: content.parse_terminated(Type::parse, Token![,])?,
/// semi_token: input.parse()?,
/// })
/// }
/// }
/// #
/// # let input = quote! {
/// # struct S(A, B);
/// # };
/// # syn::parse2::<TupleStruct>(input).unwrap();
/// ```
///
/// # See also
///
/// If your separator is anything more complicated than an invocation of the
/// `Token!` macro, this method won't be applicable and you can instead
/// directly use `Punctuated`'s parser functions: [`parse_terminated`],
/// [`parse_separated_nonempty`] etc.
///
/// [`parse_terminated`]: Punctuated::parse_terminated
/// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
///
/// ```
/// use syn::{custom_keyword, Expr, Result, Token};
/// use syn::parse::{Parse, ParseStream};
/// use syn::punctuated::Punctuated;
///
/// mod kw {
/// syn::custom_keyword!(fin);
/// }
///
/// struct Fin(kw::fin, Token![;]);
///
/// impl Parse for Fin {
/// fn parse(input: ParseStream) -> Result<Self> {
/// Ok(Self(input.parse()?, input.parse()?))
/// }
/// }
///
/// struct Thing {
/// steps: Punctuated<Expr, Fin>,
/// }
///
/// impl Parse for Thing {
/// fn parse(input: ParseStream) -> Result<Self> {
/// # if true {
/// Ok(Thing {
/// steps: Punctuated::parse_terminated(input)?,
/// })
/// # } else {
/// // or equivalently, this means the same thing:
/// # Ok(Thing {
/// steps: input.call(Punctuated::parse_terminated)?,
/// # })
/// # }
/// }
/// }
/// ```
pub fn parse_terminated<T, P>(
&self,
parser: fn(ParseStream) -> Result<T>,
separator: P,
) -> Result<Punctuated<T, P::Token>>
where
P: Peek,
P::Token: Parse,
{
let _ = separator;
Punctuated::parse_terminated_with(self, parser)
}
/// Returns whether there are no more tokens remaining to be parsed from
/// this stream.
///
/// This method returns true upon reaching the end of the content within a
/// set of delimiters, as well as at the end of the tokens provided to the
/// outermost parsing entry point.
///
/// # Example
///
/// ```
/// use syn::{braced, token, Ident, Item, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Parses a Rust `mod m { ... }` containing zero or more items.
/// struct Mod {
/// mod_token: Token![mod],
/// name: Ident,
/// brace_token: token::Brace,
/// items: Vec<Item>,
/// }
///
/// impl Parse for Mod {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let content;
/// Ok(Mod {
/// mod_token: input.parse()?,
/// name: input.parse()?,
/// brace_token: braced!(content in input),
/// items: {
/// let mut items = Vec::new();
/// while !content.is_empty() {
/// items.push(content.parse()?);
/// }
/// items
/// },
/// })
/// }
/// }
/// ```
pub fn is_empty(&self) -> bool {
self.cursor().eof()
}
/// Constructs a helper for peeking at the next token in this stream and
/// building an error message if it is not one of a set of expected tokens.
///
/// # Example
///
/// ```
/// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
/// use syn::parse::{Parse, ParseStream};
///
/// // A generic parameter, a single one of the comma-separated elements inside
/// // angle brackets in:
/// //
/// // fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
/// //
/// // On invalid input, lookahead gives us a reasonable error message.
/// //
/// // error: expected one of: identifier, lifetime, `const`
/// // |
/// // 5 | fn f<!Sized>() {}
/// // | ^
/// enum GenericParam {
/// Type(TypeParam),
/// Lifetime(LifetimeParam),
/// Const(ConstParam),
/// }
///
/// impl Parse for GenericParam {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let lookahead = input.lookahead1();
/// if lookahead.peek(Ident) {
/// input.parse().map(GenericParam::Type)
/// } else if lookahead.peek(Lifetime) {
/// input.parse().map(GenericParam::Lifetime)
/// } else if lookahead.peek(Token![const]) {
/// input.parse().map(GenericParam::Const)
/// } else {
/// Err(lookahead.error())
/// }
/// }
/// }
/// ```
pub fn lookahead1(&self) -> Lookahead1<'a> {
lookahead::new(self.scope, self.cursor())
}
/// Forks a parse stream so that parsing tokens out of either the original
/// or the fork does not advance the position of the other.
///
/// # Performance
///
/// Forking a parse stream is a cheap fixed amount of work and does not
/// involve copying token buffers. Where you might hit performance problems
/// is if your macro ends up parsing a large amount of content more than
/// once.
///
/// ```
/// # use syn::{Expr, Result};
/// # use syn::parse::ParseStream;
/// #
/// # fn bad(input: ParseStream) -> Result<Expr> {
/// // Do not do this.
/// if input.fork().parse::<Expr>().is_ok() {
/// return input.parse::<Expr>();
/// }
/// # unimplemented!()
/// # }
/// ```
///
/// As a rule, avoid parsing an unbounded amount of tokens out of a forked
/// parse stream. Only use a fork when the amount of work performed against
/// the fork is small and bounded.
///
/// When complex speculative parsing against the forked stream is
/// unavoidable, use [`parse::discouraged::Speculative`] to advance the
/// original stream once the fork's parse is determined to have been
/// successful.
///
/// For a lower level way to perform speculative parsing at the token level,
/// consider using [`ParseStream::step`] instead.
///
/// [`parse::discouraged::Speculative`]: discouraged::Speculative
/// [`ParseStream::step`]: ParseBuffer::step
///
/// # Example
///
/// The parse implementation shown here parses possibly restricted `pub`
/// visibilities.
///
/// - `pub`
/// - `pub(crate)`
/// - `pub(self)`
/// - `pub(super)`
/// - `pub(in some::path)`
///
/// To handle the case of visibilities inside of tuple structs, the parser
/// needs to distinguish parentheses that specify visibility restrictions
/// from parentheses that form part of a tuple type.
///
/// ```
/// # struct A;
/// # struct B;
/// # struct C;
/// #
/// struct S(pub(crate) A, pub (B, C));
/// ```
///
/// In this example input the first tuple struct element of `S` has
/// `pub(crate)` visibility while the second tuple struct element has `pub`
/// visibility; the parentheses around `(B, C)` are part of the type rather
/// than part of a visibility restriction.
///
/// The parser uses a forked parse stream to check the first token inside of
/// parentheses after the `pub` keyword. This is a small bounded amount of
/// work performed against the forked parse stream.
///
/// ```
/// use syn::{parenthesized, token, Ident, Path, Result, Token};
/// use syn::ext::IdentExt;
/// use syn::parse::{Parse, ParseStream};
///
/// struct PubVisibility {
/// pub_token: Token![pub],
/// restricted: Option<Restricted>,
/// }
///
/// struct Restricted {
/// paren_token: token::Paren,
/// in_token: Option<Token![in]>,
/// path: Path,
/// }
///
/// impl Parse for PubVisibility {
/// fn parse(input: ParseStream) -> Result<Self> {
/// let pub_token: Token![pub] = input.parse()?;
///
/// if input.peek(token::Paren) {
/// let ahead = input.fork();
/// let mut content;
/// parenthesized!(content in ahead);
///
/// if content.peek(Token![crate])
/// || content.peek(Token![self])
/// || content.peek(Token![super])
/// {
/// return Ok(PubVisibility {
/// pub_token,
/// restricted: Some(Restricted {
/// paren_token: parenthesized!(content in input),
/// in_token: None,
/// path: Path::from(content.call(Ident::parse_any)?),
/// }),
/// });
/// } else if content.peek(Token![in]) {
/// return Ok(PubVisibility {
/// pub_token,
/// restricted: Some(Restricted {
/// paren_token: parenthesized!(content in input),
/// in_token: Some(content.parse()?),
/// path: content.call(Path::parse_mod_style)?,
/// }),
/// });
/// }
/// }
///
/// Ok(PubVisibility {
/// pub_token,
/// restricted: None,
/// })
/// }
/// }
/// ```
pub fn fork(&self) -> Self {
ParseBuffer {
scope: self.scope,
cell: self.cell.clone(),
marker: PhantomData,
// Not the parent's unexpected. Nothing cares whether the clone
// parses all the way unless we `advance_to`.
unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
}
}
/// Triggers an error at the current position of the parse stream.
///
/// # Example
///
/// ```
/// use syn::{Expr, Result, Token};
/// use syn::parse::{Parse, ParseStream};
///
/// // Some kind of loop: `while` or `for` or `loop`.
/// struct Loop {
/// expr: Expr,
/// }
///
/// impl Parse for Loop {
/// fn parse(input: ParseStream) -> Result<Self> {
/// if input.peek(Token![while])
/// || input.peek(Token![for])
/// || input.peek(Token![loop])
/// {
/// Ok(Loop {
/// expr: input.parse()?,
/// })
/// } else {
/// Err(input.error("expected some kind of loop"))
/// }
/// }
/// }
/// ```
pub fn error<T: Display>(&self, message: T) -> Error {
error::new_at(self.scope, self.cursor(), message)
}
/// Speculatively parses tokens from this parse stream, advancing the
/// position of this stream only if parsing succeeds.
///
/// This is a powerful low-level API used for defining the `Parse` impls of
/// the basic built-in token types. It is not something that will be used
/// widely outside of the Syn codebase.
///
/// # Example
///
/// ```
/// use proc_macro2::TokenTree;
/// use syn::Result;
/// use syn::parse::ParseStream;
///
/// // This function advances the stream past the next occurrence of `@`. If
/// // no `@` is present in the stream, the stream position is unchanged and
/// // an error is returned.
/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
/// input.step(|cursor| {
/// let mut rest = *cursor;
/// while let Some((tt, next)) = rest.token_tree() {
/// match &tt {
/// TokenTree::Punct(punct) if punct.as_char() == '@' => {
/// return Ok(((), next));
/// }
/// _ => rest = next,
/// }
/// }
/// Err(cursor.error("no `@` was found after this point"))
/// })
/// }
/// #
/// # fn remainder_after_skipping_past_next_at(
/// # input: ParseStream,
/// # ) -> Result<proc_macro2::TokenStream> {
/// # skip_past_next_at(input)?;
/// # input.parse()
/// # }
/// #
/// # use syn::parse::Parser;
/// # let remainder = remainder_after_skipping_past_next_at
/// # .parse_str("a @ b c")
/// # .unwrap();
/// # assert_eq!(remainder.to_string(), "b c");
/// ```
pub fn step<F, R>(&self, function: F) -> Result<R>
where
F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
{
// Since the user's function is required to work for any 'c, we know
// that the Cursor<'c> they return is either derived from the input
// StepCursor<'c, 'a> or from a Cursor<'static>.
//
// It would not be legal to write this function without the invariant
// lifetime 'c in StepCursor<'c, 'a>. If this function were written only
// in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
// a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
// `step` on their ParseBuffer<'short> with a closure that returns
// Cursor<'short>, and we would wrongly write that Cursor<'short> into
// the Cell intended to hold Cursor<'a>.
//
// In some cases it may be necessary for R to contain a Cursor<'a>.
// Within Syn we solve this using `advance_step_cursor` which uses the
// existence of a StepCursor<'c, 'a> as proof that it is safe to cast
// from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
// safe to expose that API as a method on StepCursor.
let (node, rest) = function(StepCursor {
scope: self.scope,
cursor: self.cell.get(),
marker: PhantomData,
})?;
self.cell.set(rest);
Ok(node)
}
/// Returns the `Span` of the next token in the parse stream, or
/// `Span::call_site()` if this parse stream has completely exhausted its
/// input `TokenStream`.
pub fn span(&self) -> Span {
let cursor = self.cursor();
if cursor.eof() {
self.scope
} else {
crate::buffer::open_span_of_group(cursor)
}
}
/// Provides low-level access to the token representation underlying this
/// parse stream.
///
/// Cursors are immutable so no operations you perform against the cursor
/// will affect the state of this parse stream.
///
/// # Example
///
/// ```
/// use proc_macro2::TokenStream;
/// use syn::buffer::Cursor;
/// use syn::parse::{ParseStream, Result};
///
/// // Run a parser that returns T, but get its output as TokenStream instead of T.
/// // This works without T needing to implement ToTokens.
/// fn recognize_token_stream<T>(
/// recognizer: fn(ParseStream) -> Result<T>,
/// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
/// move |input| {
/// let begin = input.cursor();
/// recognizer(input)?;
/// let end = input.cursor();
/// Ok(tokens_between(begin, end))
/// }
/// }
///
/// // Collect tokens between two cursors as a TokenStream.
/// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
/// assert!(begin <= end);
///
/// let mut cursor = begin;
/// let mut tokens = TokenStream::new();
/// while cursor < end {
/// let (token, next) = cursor.token_tree().unwrap();
/// tokens.extend(std::iter::once(token));
/// cursor = next;
/// }
/// tokens
/// }
///
/// fn main() {
/// use quote::quote;
/// use syn::parse::{Parse, Parser};
/// use syn::Token;
///
/// // Parse syn::Type as a TokenStream, surrounded by angle brackets.
/// fn example(input: ParseStream) -> Result<TokenStream> {
/// let _langle: Token![<] = input.parse()?;
/// let ty = recognize_token_stream(syn::Type::parse)(input)?;
/// let _rangle: Token![>] = input.parse()?;
/// Ok(ty)
/// }
///
/// let tokens = quote! { <fn() -> u8> };
/// println!("{}", example.parse2(tokens).unwrap());
/// }
/// ```
pub fn cursor(&self) -> Cursor<'a> {
self.cell.get()
}
fn check_unexpected(&self) -> Result<()> {
match inner_unexpected(self).1 {
Some(span) => Err(Error::new(span, "unexpected token")),
None => Ok(()),
}
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse> Parse for Box<T> {
fn parse(input: ParseStream) -> Result<Self> {
input.parse().map(Box::new)
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl<T: Parse + Token> Parse for Option<T> {
fn parse(input: ParseStream) -> Result<Self> {
if T::peek(input.cursor()) {
Ok(Some(input.parse()?))
} else {
Ok(None)
}
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenStream {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for TokenTree {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.token_tree() {
Some((tt, rest)) => Ok((tt, rest)),
None => Err(cursor.error("expected token tree")),
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Group {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| {
if let Some((group, rest)) = cursor.any_group_token() {
if group.delimiter() != Delimiter::None {
return Ok((group, rest));
}
}
Err(cursor.error("expected group token"))
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Punct {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.punct() {
Some((punct, rest)) => Ok((punct, rest)),
None => Err(cursor.error("expected punctuation token")),
})
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
impl Parse for Literal {
fn parse(input: ParseStream) -> Result<Self> {
input.step(|cursor| match cursor.literal() {
Some((literal, rest)) => Ok((literal, rest)),
None => Err(cursor.error("expected literal token")),
})
}
}
/// Parser that can parse Rust tokens into a particular syntax tree node.
///
/// Refer to the [module documentation] for details about parsing in Syn.
///
/// [module documentation]: self
pub trait Parser: Sized {
type Output;
/// Parse a proc-macro2 token stream into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the stream, an error is returned.
fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
/// Parse tokens of source code into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the stream, an error is returned.
#[cfg(feature = "proc-macro")]
#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
self.parse2(proc_macro2::TokenStream::from(tokens))
}
/// Parse a string of Rust code into the chosen syntax tree node.
///
/// This function will check that the input is fully parsed. If there are
/// any unparsed tokens at the end of the string, an error is returned.
///
/// # Hygiene
///
/// Every span in the resulting syntax tree will be set to resolve at the
/// macro call site.
fn parse_str(self, s: &str) -> Result<Self::Output> {
self.parse2(proc_macro2::TokenStream::from_str(s)?)
}
// Not public API.
#[doc(hidden)]
fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
let _ = scope;
self.parse2(tokens)
}
}
fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
let scope = Span::call_site();
let cursor = tokens.begin();
let unexpected = Rc::new(Cell::new(Unexpected::None));
new_parse_buffer(scope, cursor, unexpected)
}
impl<F, T> Parser for F
where
F: FnOnce(ParseStream) -> Result<T>,
{
type Output = T;
fn parse2(self, tokens: TokenStream) -> Result<T> {
let buf = TokenBuffer::new2(tokens);
let state = tokens_to_parse_buffer(&buf);
let node = self(&state)?;
state.check_unexpected()?;
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
Err(Error::new(unexpected_span, "unexpected token"))
} else {
Ok(node)
}
}
fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
let buf = TokenBuffer::new2(tokens);
let cursor = buf.begin();
let unexpected = Rc::new(Cell::new(Unexpected::None));
let state = new_parse_buffer(scope, cursor, unexpected);
let node = self(&state)?;
state.check_unexpected()?;
if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
Err(Error::new(unexpected_span, "unexpected token"))
} else {
Ok(node)
}
}
}
pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
f.__parse_scoped(scope, tokens)
}
/// An empty syntax tree node that consumes no tokens when parsed.
///
/// This is useful for attribute macros that want to ensure they are not
/// provided any attribute args.
///
/// ```
/// # extern crate proc_macro;
/// #
/// use proc_macro::TokenStream;
/// use syn::parse_macro_input;
/// use syn::parse::Nothing;
///
/// # const IGNORE: &str = stringify! {
/// #[proc_macro_attribute]
/// # };
/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
/// parse_macro_input!(args as Nothing);
///
/// /* ... */
/// # TokenStream::new()
/// }
/// ```
///
/// ```text
/// error: unexpected token
/// --> src/main.rs:3:19
/// |
/// 3 | #[my_attr(asdf)]
/// | ^^^^
/// ```
pub struct Nothing;
impl Parse for Nothing {
fn parse(_input: ParseStream) -> Result<Self> {
Ok(Nothing)
}
}
#[cfg(feature = "printing")]
#[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
impl ToTokens for Nothing {
fn to_tokens(&self, tokens: &mut TokenStream) {
let _ = tokens;
}
}
#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Clone for Nothing {
fn clone(&self) -> Self {
*self
}
}
#[cfg(feature = "clone-impls")]
#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
impl Copy for Nothing {}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Debug for Nothing {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("Nothing")
}
}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Eq for Nothing {}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl PartialEq for Nothing {
fn eq(&self, _other: &Self) -> bool {
true
}
}
#[cfg(feature = "extra-traits")]
#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
impl Hash for Nothing {
fn hash<H: Hasher>(&self, _state: &mut H) {}
}