Source code

Revision control

Copy as Markdown

Other Tools

// This is used when either vtab or modern-sqlite is on. Different methods are
// used in each feature. Avoid having to track this for each function. We will
// still warn for anything that's not used by either, though.
#![cfg_attr(not(feature = "vtab"), allow(dead_code))]
use crate::ffi;
use std::marker::PhantomData;
use std::os::raw::{c_char, c_int};
use std::ptr::NonNull;
// Space to hold this string must be obtained
// from an SQLite memory allocation function
pub(crate) fn alloc(s: &str) -> *mut c_char {
SqliteMallocString::from_str(s).into_raw()
}
/// A string we own that's allocated on the SQLite heap. Automatically calls
/// `sqlite3_free` when dropped, unless `into_raw` (or `into_inner`) is called
/// on it. If constructed from a rust string, `sqlite3_malloc` is used.
///
/// It has identical representation to a nonnull `*mut c_char`, so you can use
/// it transparently as one. It's nonnull, so Option<SqliteMallocString> can be
/// used for nullable ones (it's still just one pointer).
///
/// Most strings shouldn't use this! Only places where the string needs to be
/// freed with `sqlite3_free`. This includes `sqlite3_extended_sql` results,
/// some error message pointers... Note that misuse is extremely dangerous!
///
/// Note that this is *not* a lossless interface. Incoming strings with internal
/// NULs are modified, and outgoing strings which are non-UTF8 are modified.
/// This seems unavoidable -- it tries very hard to not panic.
#[repr(transparent)]
pub(crate) struct SqliteMallocString {
ptr: NonNull<c_char>,
_boo: PhantomData<Box<[c_char]>>,
}
// This is owned data for a primitive type, and thus it's safe to implement
// these. That said, nothing needs them, and they make things easier to misuse.
// unsafe impl Send for SqliteMallocString {}
// unsafe impl Sync for SqliteMallocString {}
impl SqliteMallocString {
/// SAFETY: Caller must be certain that `m` a nul-terminated c string
/// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
#[inline]
pub(crate) unsafe fn from_raw_nonnull(ptr: NonNull<c_char>) -> Self {
Self {
ptr,
_boo: PhantomData,
}
}
/// SAFETY: Caller must be certain that `m` a nul-terminated c string
/// allocated by `sqlite3_malloc`, and that SQLite expects us to free it!
#[inline]
pub(crate) unsafe fn from_raw(ptr: *mut c_char) -> Option<Self> {
NonNull::new(ptr).map(|p| Self::from_raw_nonnull(p))
}
/// Get the pointer behind `self`. After this is called, we no longer manage
/// it.
#[inline]
pub(crate) fn into_inner(self) -> NonNull<c_char> {
let p = self.ptr;
std::mem::forget(self);
p
}
/// Get the pointer behind `self`. After this is called, we no longer manage
/// it.
#[inline]
pub(crate) fn into_raw(self) -> *mut c_char {
self.into_inner().as_ptr()
}
/// Borrow the pointer behind `self`. We still manage it when this function
/// returns. If you want to relinquish ownership, use `into_raw`.
#[inline]
pub(crate) fn as_ptr(&self) -> *const c_char {
self.ptr.as_ptr()
}
#[inline]
pub(crate) fn as_cstr(&self) -> &std::ffi::CStr {
unsafe { std::ffi::CStr::from_ptr(self.as_ptr()) }
}
#[inline]
pub(crate) fn to_string_lossy(&self) -> std::borrow::Cow<'_, str> {
self.as_cstr().to_string_lossy()
}
/// Convert `s` into a SQLite string.
///
/// This should almost never be done except for cases like error messages or
/// other strings that SQLite frees.
///
/// If `s` contains internal NULs, we'll replace them with
/// `NUL_REPLACE_CHAR`.
///
/// Except for `debug_assert`s which may trigger during testing, this
/// function never panics. If we hit integer overflow or the allocation
/// fails, we call `handle_alloc_error` which aborts the program after
/// calling a global hook.
///
/// This means it's safe to use in extern "C" functions even outside of
/// `catch_unwind`.
pub(crate) fn from_str(s: &str) -> Self {
let s = if s.as_bytes().contains(&0) {
std::borrow::Cow::Owned(make_nonnull(s))
} else {
std::borrow::Cow::Borrowed(s)
};
debug_assert!(!s.as_bytes().contains(&0));
let bytes: &[u8] = s.as_ref().as_bytes();
let src_ptr: *const c_char = bytes.as_ptr().cast();
let src_len = bytes.len();
let maybe_len_plus_1 = s.len().checked_add(1).and_then(|v| c_int::try_from(v).ok());
unsafe {
let res_ptr = maybe_len_plus_1
.and_then(|len_to_alloc| {
// `>` because we added 1.
debug_assert!(len_to_alloc > 0);
debug_assert_eq!((len_to_alloc - 1) as usize, src_len);
NonNull::new(ffi::sqlite3_malloc(len_to_alloc).cast::<c_char>())
})
.unwrap_or_else(|| {
use std::alloc::{handle_alloc_error, Layout};
// Report via handle_alloc_error so that it can be handled with any
// other allocation errors and properly diagnosed.
//
// This is safe:
// - `align` is never 0
// - `align` is always a power of 2.
// - `size` needs no realignment because it's guaranteed to be aligned
// (everything is aligned to 1)
// - `size` is also never zero, although this function doesn't actually require
// it now.
let len = s.len().saturating_add(1).min(isize::MAX as usize);
let layout = Layout::from_size_align_unchecked(len, 1);
// Note: This call does not return.
handle_alloc_error(layout);
});
let buf: *mut c_char = res_ptr.as_ptr().cast::<c_char>();
src_ptr.copy_to_nonoverlapping(buf, src_len);
buf.add(src_len).write(0);
debug_assert_eq!(std::ffi::CStr::from_ptr(res_ptr.as_ptr()).to_bytes(), bytes);
Self::from_raw_nonnull(res_ptr)
}
}
}
const NUL_REPLACE: &str = "␀";
#[cold]
fn make_nonnull(v: &str) -> String {
v.replace('\0', NUL_REPLACE)
}
impl Drop for SqliteMallocString {
#[inline]
fn drop(&mut self) {
unsafe { ffi::sqlite3_free(self.ptr.as_ptr().cast()) };
}
}
impl std::fmt::Debug for SqliteMallocString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.to_string_lossy().fmt(f)
}
}
impl std::fmt::Display for SqliteMallocString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.to_string_lossy().fmt(f)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_str() {
let to_check = [
("", ""),
("\0", "␀"),
("␀", "␀"),
("\0bar", "␀bar"),
("foo\0bar", "foo␀bar"),
("foo\0", "foo␀"),
("a\0b\0c\0\0d", "a␀b␀c␀␀d"),
("foobar0123", "foobar0123"),
];
for &(input, output) in &to_check {
let s = SqliteMallocString::from_str(input);
assert_eq!(s.to_string_lossy(), output);
assert_eq!(s.as_cstr().to_str().unwrap(), output);
}
}
// This will trigger an asan error if into_raw still freed the ptr.
#[test]
fn test_lossy() {
let p = SqliteMallocString::from_str("abcd").into_raw();
// Make invalid
let s = unsafe {
p.cast::<u8>().write(b'\xff');
SqliteMallocString::from_raw(p).unwrap()
};
assert_eq!(s.to_string_lossy().as_ref(), "\u{FFFD}bcd");
}
// This will trigger an asan error if into_raw still freed the ptr.
#[test]
fn test_into_raw() {
let mut v = vec![];
for i in 0..1000 {
v.push(SqliteMallocString::from_str(&i.to_string()).into_raw());
v.push(SqliteMallocString::from_str(&format!("abc {i} 😀")).into_raw());
}
unsafe {
for (i, s) in v.chunks_mut(2).enumerate() {
let s0 = std::mem::replace(&mut s[0], std::ptr::null_mut());
let s1 = std::mem::replace(&mut s[1], std::ptr::null_mut());
assert_eq!(
std::ffi::CStr::from_ptr(s0).to_str().unwrap(),
&i.to_string()
);
assert_eq!(
std::ffi::CStr::from_ptr(s1).to_str().unwrap(),
&format!("abc {i} 😀")
);
let _ = SqliteMallocString::from_raw(s0).unwrap();
let _ = SqliteMallocString::from_raw(s1).unwrap();
}
}
}
}