Source code
Revision control
Copy as Markdown
Other Tools
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A `HashMap` wrapper that holds key-value pairs in insertion order.
//!
//! # Examples
//!
//! ```
//! use linked_hash_map::LinkedHashMap;
//!
//! let mut map = LinkedHashMap::new();
//! map.insert(2, 20);
//! map.insert(1, 10);
//! map.insert(3, 30);
//! assert_eq!(map[&1], 10);
//! assert_eq!(map[&2], 20);
//! assert_eq!(map[&3], 30);
//!
//! let items: Vec<(i32, i32)> = map.iter().map(|t| (*t.0, *t.1)).collect();
//! assert_eq!(items, [(2, 20), (1, 10), (3, 30)]);
//! ```
#![forbid(missing_docs)]
#![cfg_attr(all(feature = "nightly", test), feature(test))]
// Optional Serde support
#[cfg(feature = "serde_impl")]
pub mod serde;
// Optional Heapsize support
#[cfg(feature = "heapsize_impl")]
mod heapsize;
#[cfg(test)]
mod tests;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::collections::hash_map::{self, HashMap};
use std::fmt;
use std::hash::{BuildHasher, Hash, Hasher};
use std::iter;
use std::marker;
use std::mem;
use std::ops::{Index, IndexMut};
use std::ptr::{self, addr_of_mut};
struct KeyRef<K> {
k: *const K,
}
struct Node<K, V> {
next: *mut Node<K, V>,
prev: *mut Node<K, V>,
key: K,
value: V,
}
/// A linked hash map.
pub struct LinkedHashMap<K, V, S = hash_map::RandomState> {
map: HashMap<KeyRef<K>, *mut Node<K, V>, S>,
head: *mut Node<K, V>,
free: *mut Node<K, V>,
}
impl<K: Hash> Hash for KeyRef<K> {
fn hash<H: Hasher>(&self, state: &mut H) {
unsafe { (*self.k).hash(state) }
}
}
impl<K: PartialEq> PartialEq for KeyRef<K> {
fn eq(&self, other: &Self) -> bool {
unsafe { (*self.k).eq(&*other.k) }
}
}
impl<K: Eq> Eq for KeyRef<K> {}
// This type exists only to support borrowing `KeyRef`s, which cannot be borrowed to `Q` directly
// due to conflicting implementations of `Borrow`. The layout of `&Qey<Q>` must be identical to
// `&Q` in order to support transmuting in the `Qey::from_ref` method.
#[derive(Hash, PartialEq, Eq)]
#[repr(transparent)]
struct Qey<Q: ?Sized>(Q);
impl<Q: ?Sized> Qey<Q> {
fn from_ref(q: &Q) -> &Self {
unsafe { mem::transmute(q) }
}
}
impl<K, Q: ?Sized> Borrow<Qey<Q>> for KeyRef<K>
where
K: Borrow<Q>,
{
fn borrow(&self) -> &Qey<Q> {
Qey::from_ref(unsafe { (*self.k).borrow() })
}
}
impl<K, V> Node<K, V> {
fn new(k: K, v: V) -> Self {
Node {
key: k,
value: v,
next: ptr::null_mut(),
prev: ptr::null_mut(),
}
}
}
// drop empty node without dropping its key and value
unsafe fn drop_empty_node<K, V>(the_box: *mut Node<K, V>) {
// Safety:
// In this crate all `Node` is allocated via `Box` or `alloc`, and `Box` uses the
// Global allocator for its allocation,
// deallocate the pointer to `Node` by calling `dealloc` method
let layout = std::alloc::Layout::new::<Node<K, V>>();
std::alloc::dealloc(the_box as *mut u8, layout);
}
impl<K: Hash + Eq, V> LinkedHashMap<K, V> {
/// Creates a linked hash map.
pub fn new() -> Self {
Self::with_map(HashMap::new())
}
/// Creates an empty linked hash map with the given initial capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self::with_map(HashMap::with_capacity(capacity))
}
}
impl<K, V, S> LinkedHashMap<K, V, S> {
#[inline]
fn detach(&mut self, node: *mut Node<K, V>) {
unsafe {
(*(*node).prev).next = (*node).next;
(*(*node).next).prev = (*node).prev;
}
}
#[inline]
fn attach(&mut self, node: *mut Node<K, V>) {
unsafe {
(*node).next = (*self.head).next;
(*node).prev = self.head;
(*self.head).next = node;
(*(*node).next).prev = node;
}
}
// Caller must check `!self.head.is_null()`
unsafe fn drop_entries(&mut self) {
let mut cur = (*self.head).next;
while cur != self.head {
let next = (*cur).next;
Box::from_raw(cur);
cur = next;
}
}
fn clear_free_list(&mut self) {
unsafe {
let mut free = self.free;
while !free.is_null() {
let next_free = (*free).next;
drop_empty_node(free);
free = next_free;
}
self.free = ptr::null_mut();
}
}
fn ensure_guard_node(&mut self) {
if self.head.is_null() {
// allocate the guard node if not present
unsafe {
let node_layout = std::alloc::Layout::new::<Node<K, V>>();
self.head = std::alloc::alloc(node_layout) as *mut Node<K, V>;
(*self.head).next = self.head;
(*self.head).prev = self.head;
}
}
}
}
impl<K: Hash + Eq, V, S: BuildHasher> LinkedHashMap<K, V, S> {
fn with_map(map: HashMap<KeyRef<K>, *mut Node<K, V>, S>) -> Self {
LinkedHashMap {
map,
head: ptr::null_mut(),
free: ptr::null_mut(),
}
}
/// Creates an empty linked hash map with the given initial hash builder.
pub fn with_hasher(hash_builder: S) -> Self {
Self::with_map(HashMap::with_hasher(hash_builder))
}
/// Creates an empty linked hash map with the given initial capacity and hash builder.
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
Self::with_map(HashMap::with_capacity_and_hasher(capacity, hash_builder))
}
/// Reserves capacity for at least `additional` more elements to be inserted into the map. The
/// map may reserve more space to avoid frequent allocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows `usize.`
pub fn reserve(&mut self, additional: usize) {
self.map.reserve(additional);
}
/// Shrinks the capacity of the map as much as possible. It will drop down as much as possible
/// while maintaining the internal rules and possibly leaving some space in accordance with the
/// resize policy.
pub fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit();
self.clear_free_list();
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut letters = LinkedHashMap::new();
///
/// for ch in "a short treatise on fungi".chars() {
/// let counter = letters.entry(ch).or_insert(0);
/// *counter += 1;
/// }
///
/// assert_eq!(letters[&'s'], 2);
/// assert_eq!(letters[&'t'], 3);
/// assert_eq!(letters[&'u'], 1);
/// assert_eq!(letters.get(&'y'), None);
/// ```
pub fn entry(&mut self, k: K) -> Entry<K, V, S> {
let self_ptr: *mut Self = self;
if let Some(entry) = self.map.get_mut(&KeyRef { k: &k }) {
return Entry::Occupied(OccupiedEntry {
entry: *entry,
map: self_ptr,
marker: marker::PhantomData,
});
}
Entry::Vacant(VacantEntry { key: k, map: self })
}
/// Returns an iterator visiting all entries in insertion order.
/// Iterator element type is `OccupiedEntry<K, V, S>`. Allows for removal
/// as well as replacing the entry.
///
/// # Examples
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
/// map.insert("a", 10);
/// map.insert("c", 30);
/// map.insert("b", 20);
///
/// {
/// let mut iter = map.entries();
/// let mut entry = iter.next().unwrap();
/// assert_eq!(&"a", entry.key());
/// *entry.get_mut() = 17;
/// }
///
/// assert_eq!(&17, map.get(&"a").unwrap());
/// ```
pub fn entries(&mut self) -> Entries<K, V, S> {
let head = if !self.head.is_null() {
unsafe { (*self.head).prev }
} else {
ptr::null_mut()
};
Entries {
map: self,
head,
remaining: self.len(),
marker: marker::PhantomData,
}
}
/// Inserts a key-value pair into the map. If the key already existed, the old value is
/// returned.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
///
/// map.insert(1, "a");
/// map.insert(2, "b");
/// assert_eq!(map[&1], "a");
/// assert_eq!(map[&2], "b");
/// ```
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
self.ensure_guard_node();
let (node, old_val) = match self.map.get(&KeyRef { k: &k }) {
Some(node) => {
let old_val = unsafe { ptr::replace(&mut (**node).value, v) };
(*node, Some(old_val))
}
None => {
let node = if self.free.is_null() {
Box::into_raw(Box::new(Node::new(k, v)))
} else {
// use a recycled box
unsafe {
let free = self.free;
self.free = (*free).next;
ptr::write(free, Node::new(k, v));
free
}
};
(node, None)
}
};
match old_val {
Some(_) => {
// Existing node, just update LRU position
self.detach(node);
self.attach(node);
}
None => {
let keyref = unsafe { &(*node).key };
self.map.insert(KeyRef { k: keyref }, node);
self.attach(node);
}
}
old_val
}
/// Checks if the map contains the given key.
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Eq + Hash,
{
self.map.contains_key(Qey::from_ref(k))
}
/// Returns the value corresponding to the key in the map.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
///
/// map.insert(1, "a");
/// map.insert(2, "b");
/// map.insert(2, "c");
/// map.insert(3, "d");
///
/// assert_eq!(map.get(&1), Some(&"a"));
/// assert_eq!(map.get(&2), Some(&"c"));
/// ```
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Eq + Hash,
{
self.map
.get(Qey::from_ref(k))
.map(|e| unsafe { &(**e).value })
}
/// Returns the mutable reference corresponding to the key in the map.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
///
/// map.insert(1, "a");
/// map.insert(2, "b");
///
/// *map.get_mut(&1).unwrap() = "c";
/// assert_eq!(map.get(&1), Some(&"c"));
/// ```
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Eq + Hash,
{
self.map
.get(Qey::from_ref(k))
.map(|e| unsafe { &mut (**e).value })
}
/// Returns the value corresponding to the key in the map.
///
/// If value is found, it is moved to the end of the list.
/// This operation can be used in implemenation of LRU cache.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
///
/// map.insert(1, "a");
/// map.insert(2, "b");
/// map.insert(3, "d");
///
/// assert_eq!(map.get_refresh(&2), Some(&mut "b"));
///
/// assert_eq!((&2, &"b"), map.iter().rev().next().unwrap());
/// ```
pub fn get_refresh<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Eq + Hash,
{
let (value, node_ptr_opt) = match self.map.get(Qey::from_ref(k)) {
None => (None, None),
Some(node) => (Some(unsafe { &mut (**node).value }), Some(*node)),
};
if let Some(node_ptr) = node_ptr_opt {
self.detach(node_ptr);
self.attach(node_ptr);
}
value
}
/// Removes and returns the value corresponding to the key from the map.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
///
/// map.insert(2, "a");
///
/// assert_eq!(map.remove(&1), None);
/// assert_eq!(map.remove(&2), Some("a"));
/// assert_eq!(map.remove(&2), None);
/// assert_eq!(map.len(), 0);
/// ```
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Eq + Hash,
{
let removed = self.map.remove(Qey::from_ref(k));
removed.map(|node| {
self.detach(node);
unsafe {
// add to free list
(*node).next = self.free;
self.free = node;
// drop the key and return the value
drop(ptr::read(&(*node).key));
ptr::read(&(*node).value)
}
})
}
/// Returns the maximum number of key-value pairs the map can hold without reallocating.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map: LinkedHashMap<i32, &str> = LinkedHashMap::new();
/// let capacity = map.capacity();
/// ```
pub fn capacity(&self) -> usize {
self.map.capacity()
}
/// Removes the first entry.
///
/// Can be used in implementation of LRU cache.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
/// map.insert(1, 10);
/// map.insert(2, 20);
/// map.pop_front();
/// assert_eq!(map.get(&1), None);
/// assert_eq!(map.get(&2), Some(&20));
/// ```
#[inline]
pub fn pop_front(&mut self) -> Option<(K, V)> {
if self.is_empty() {
return None;
}
let lru = unsafe { (*self.head).prev };
self.detach(lru);
self.map
.remove(&KeyRef {
k: unsafe { &(*lru).key },
})
.map(|e| {
let e = *unsafe { Box::from_raw(e) };
(e.key, e.value)
})
}
/// Gets the first entry.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
/// map.insert(1, 10);
/// map.insert(2, 20);
/// assert_eq!(map.front(), Some((&1, &10)));
/// ```
#[inline]
pub fn front(&self) -> Option<(&K, &V)> {
if self.is_empty() {
return None;
}
let lru = unsafe { (*self.head).prev };
self.map
.get(&KeyRef {
k: unsafe { &(*lru).key },
})
.map(|e| unsafe { (&(**e).key, &(**e).value) })
}
/// Removes the last entry.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
/// map.insert(1, 10);
/// map.insert(2, 20);
/// map.pop_back();
/// assert_eq!(map.get(&1), Some(&10));
/// assert_eq!(map.get(&2), None);
/// ```
#[inline]
pub fn pop_back(&mut self) -> Option<(K, V)> {
if self.is_empty() {
return None;
}
let mru = unsafe { (*self.head).next };
self.detach(mru);
self.map
.remove(&KeyRef {
k: unsafe { &(*mru).key },
})
.map(|e| {
let e = *unsafe { Box::from_raw(e) };
(e.key, e.value)
})
}
/// Gets the last entry.
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
/// let mut map = LinkedHashMap::new();
/// map.insert(1, 10);
/// map.insert(2, 20);
/// assert_eq!(map.back(), Some((&2, &20)));
/// ```
#[inline]
pub fn back(&self) -> Option<(&K, &V)> {
if self.is_empty() {
return None;
}
let mru = unsafe { (*self.head).next };
self.map
.get(&KeyRef {
k: unsafe { &(*mru).key },
})
.map(|e| unsafe { (&(**e).key, &(**e).value) })
}
/// Returns the number of key-value pairs in the map.
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns whether the map is currently empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns a reference to the map's hasher.
pub fn hasher(&self) -> &S {
self.map.hasher()
}
/// Clears the map of all key-value pairs.
pub fn clear(&mut self) {
self.map.clear();
// update the guard node if present
if !self.head.is_null() {
unsafe {
self.drop_entries();
(*self.head).prev = self.head;
(*self.head).next = self.head;
}
}
}
/// Returns a double-ended iterator visiting all key-value pairs in order of insertion.
/// Iterator element type is `(&'a K, &'a V)`
///
/// # Examples
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
/// map.insert("a", 10);
/// map.insert("c", 30);
/// map.insert("b", 20);
///
/// let mut iter = map.iter();
/// assert_eq!((&"a", &10), iter.next().unwrap());
/// assert_eq!((&"c", &30), iter.next().unwrap());
/// assert_eq!((&"b", &20), iter.next().unwrap());
/// assert_eq!(None, iter.next());
/// ```
pub fn iter(&self) -> Iter<K, V> {
let head = if self.head.is_null() {
ptr::null_mut()
} else {
unsafe { (*self.head).prev }
};
Iter {
head,
tail: self.head,
remaining: self.len(),
marker: marker::PhantomData,
}
}
/// Returns a double-ended iterator visiting all key-value pairs in order of insertion.
/// Iterator element type is `(&'a K, &'a mut V)`
/// # Examples
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
/// map.insert("a", 10);
/// map.insert("c", 30);
/// map.insert("b", 20);
///
/// {
/// let mut iter = map.iter_mut();
/// let mut entry = iter.next().unwrap();
/// assert_eq!(&"a", entry.0);
/// *entry.1 = 17;
/// }
///
/// assert_eq!(&17, map.get(&"a").unwrap());
/// ```
pub fn iter_mut(&mut self) -> IterMut<K, V> {
let head = if self.head.is_null() {
ptr::null_mut()
} else {
unsafe { (*self.head).prev }
};
IterMut {
head,
tail: self.head,
remaining: self.len(),
marker: marker::PhantomData,
}
}
/// Clears the map, returning all key-value pairs as an iterator. Keeps the
/// allocated memory for reuse.
///
/// If the returned iterator is dropped before being fully consumed, it
/// drops the remaining key-value pairs. The returned iterator keeps a
/// mutable borrow on the vector to optimize its implementation.
///
/// Current performance implications (why to use this over into_iter()):
///
/// * Clears the inner HashMap instead of dropping it
/// * Puts all drained nodes in the free-list instead of deallocating them
/// * Avoids deallocating the sentinel node
pub fn drain(&mut self) -> Drain<K, V> {
let len = self.len();
// Map should be empty now, regardless of current state
self.map.clear();
let (head, tail) = if len != 0 {
// This is basically the same as IntoIter's impl, but we don't
// deallocate/drop anything. Instead we make the sentinel head node
// point at itself (same state you get from removing the last element from a map),
// and then append the entire list to the free list. At this point all the entries
// have essentially been fed into mem::forget. The Drain iterator will then iterate
// over those nodes in the freelist (using `len` to know where to stop) and `read`
// the values out of the nodes, "unforgetting" them.
//
// This design results in no observable consequences for mem::forgetting the
// drain iterator, because the drain iterator has no responsibility to "fix up"
// things during iteration/destruction. That said, you will effectively mem::forget
// any elements that weren't yielded yet.
unsafe {
debug_assert!(!self.head.is_null());
debug_assert!(!(*self.head).prev.is_null());
debug_assert!((*self.head).prev != self.head);
let head = (*self.head).prev;
let tail = (*self.head).next;
(*self.head).prev = self.head;
(*self.head).next = self.head;
(*head).next = self.free;
(*tail).prev = ptr::null_mut();
self.free = tail;
(head, tail)
}
} else {
(ptr::null_mut(), ptr::null_mut())
};
Drain {
head,
tail,
remaining: len,
marker: marker::PhantomData,
}
}
/// Returns a double-ended iterator visiting all key in order of insertion.
///
/// # Examples
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
/// map.insert('a', 10);
/// map.insert('c', 30);
/// map.insert('b', 20);
///
/// let mut keys = map.keys();
/// assert_eq!(&'a', keys.next().unwrap());
/// assert_eq!(&'c', keys.next().unwrap());
/// assert_eq!(&'b', keys.next().unwrap());
/// assert_eq!(None, keys.next());
/// ```
pub fn keys(&self) -> Keys<K, V> {
Keys { inner: self.iter() }
}
/// Returns a double-ended iterator visiting all values in order of insertion.
///
/// # Examples
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
/// map.insert('a', 10);
/// map.insert('c', 30);
/// map.insert('b', 20);
///
/// let mut values = map.values();
/// assert_eq!(&10, values.next().unwrap());
/// assert_eq!(&30, values.next().unwrap());
/// assert_eq!(&20, values.next().unwrap());
/// assert_eq!(None, values.next());
/// ```
pub fn values(&self) -> Values<K, V> {
Values { inner: self.iter() }
}
}
impl<'a, K, V, S, Q: ?Sized> Index<&'a Q> for LinkedHashMap<K, V, S>
where
K: Hash + Eq + Borrow<Q>,
S: BuildHasher,
Q: Eq + Hash,
{
type Output = V;
fn index(&self, index: &'a Q) -> &V {
self.get(index).expect("no entry found for key")
}
}
impl<'a, K, V, S, Q: ?Sized> IndexMut<&'a Q> for LinkedHashMap<K, V, S>
where
K: Hash + Eq + Borrow<Q>,
S: BuildHasher,
Q: Eq + Hash,
{
fn index_mut(&mut self, index: &'a Q) -> &mut V {
self.get_mut(index).expect("no entry found for key")
}
}
impl<K: Hash + Eq + Clone, V: Clone, S: BuildHasher + Clone> Clone for LinkedHashMap<K, V, S> {
fn clone(&self) -> Self {
let mut map = Self::with_hasher(self.map.hasher().clone());
map.extend(self.iter().map(|(k, v)| (k.clone(), v.clone())));
map
}
}
impl<K: Hash + Eq, V, S: BuildHasher + Default> Default for LinkedHashMap<K, V, S> {
fn default() -> Self {
Self::with_hasher(S::default())
}
}
impl<K: Hash + Eq, V, S: BuildHasher> Extend<(K, V)> for LinkedHashMap<K, V, S> {
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
for (k, v) in iter {
self.insert(k, v);
}
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for LinkedHashMap<K, V, S>
where
K: 'a + Hash + Eq + Copy,
V: 'a + Copy,
S: BuildHasher,
{
fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
for (&k, &v) in iter {
self.insert(k, v);
}
}
}
impl<K: Hash + Eq, V, S: BuildHasher + Default> iter::FromIterator<(K, V)>
for LinkedHashMap<K, V, S>
{
fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut map = Self::with_capacity_and_hasher(iter.size_hint().0, S::default());
map.extend(iter);
map
}
}
impl<A: fmt::Debug + Hash + Eq, B: fmt::Debug, S: BuildHasher> fmt::Debug
for LinkedHashMap<A, B, S>
{
/// Returns a string that lists the key-value pairs in insertion order.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map().entries(self).finish()
}
}
impl<K: Hash + Eq, V: PartialEq, S: BuildHasher> PartialEq for LinkedHashMap<K, V, S> {
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other)
}
}
impl<K: Hash + Eq, V: Eq, S: BuildHasher> Eq for LinkedHashMap<K, V, S> {}
impl<K: Hash + Eq + PartialOrd, V: PartialOrd, S: BuildHasher> PartialOrd
for LinkedHashMap<K, V, S>
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
fn lt(&self, other: &Self) -> bool {
self.iter().lt(other)
}
fn le(&self, other: &Self) -> bool {
self.iter().le(other)
}
fn ge(&self, other: &Self) -> bool {
self.iter().ge(other)
}
fn gt(&self, other: &Self) -> bool {
self.iter().gt(other)
}
}
impl<K: Hash + Eq + Ord, V: Ord, S: BuildHasher> Ord for LinkedHashMap<K, V, S> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<K: Hash + Eq, V: Hash, S: BuildHasher> Hash for LinkedHashMap<K, V, S> {
fn hash<H: Hasher>(&self, h: &mut H) {
for e in self.iter() {
e.hash(h);
}
}
}
unsafe impl<K: Send, V: Send, S: Send> Send for LinkedHashMap<K, V, S> {}
unsafe impl<K: Sync, V: Sync, S: Sync> Sync for LinkedHashMap<K, V, S> {}
impl<K, V, S> Drop for LinkedHashMap<K, V, S> {
fn drop(&mut self) {
if !self.head.is_null() {
unsafe {
self.drop_entries();
drop_empty_node(self.head);
}
}
self.clear_free_list();
}
}
/// An insertion-order iterator over a `LinkedHashMap`'s entries, with immutable references to the
/// values.
pub struct Iter<'a, K: 'a, V: 'a> {
head: *const Node<K, V>,
tail: *const Node<K, V>,
remaining: usize,
marker: marker::PhantomData<(&'a K, &'a V)>,
}
/// An insertion-order iterator over a `LinkedHashMap`'s entries, with mutable references to the
/// values.
pub struct IterMut<'a, K: 'a, V: 'a> {
head: *mut Node<K, V>,
tail: *mut Node<K, V>,
remaining: usize,
marker: marker::PhantomData<(&'a K, &'a mut V)>,
}
/// A consuming insertion-order iterator over a `LinkedHashMap`'s entries.
pub struct IntoIter<K, V> {
head: *mut Node<K, V>,
tail: *mut Node<K, V>,
remaining: usize,
marker: marker::PhantomData<(K, V)>,
}
/// A draining insertion-order iterator over a `LinkedHashMap`'s entries.
pub struct Drain<'a, K, V> {
head: *mut Node<K, V>,
tail: *mut Node<K, V>,
remaining: usize,
marker: marker::PhantomData<&'a mut (K, V)>,
}
/// An insertion-order iterator over a `LinkedHashMap`'s entries represented as
/// an `OccupiedEntry`.
pub struct Entries<'a, K: 'a, V: 'a, S: 'a = hash_map::RandomState> {
map: *mut LinkedHashMap<K, V, S>,
head: *mut Node<K, V>,
remaining: usize,
marker: marker::PhantomData<(&'a K, &'a mut V, &'a S)>,
}
unsafe impl<'a, K, V> Send for Iter<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V> Send for IterMut<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V> Send for Drain<'a, K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<K, V> Send for IntoIter<K, V>
where
K: Send,
V: Send,
{
}
unsafe impl<'a, K, V, S> Send for Entries<'a, K, V, S>
where
K: Send,
V: Send,
S: Send,
{
}
unsafe impl<'a, K, V> Sync for Iter<'a, K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<'a, K, V> Sync for IterMut<'a, K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<'a, K, V> Sync for Drain<'a, K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<K, V> Sync for IntoIter<K, V>
where
K: Sync,
V: Sync,
{
}
unsafe impl<'a, K, V, S> Sync for Entries<'a, K, V, S>
where
K: Sync,
V: Sync,
S: Sync,
{
}
impl<'a, K, V> Clone for Iter<'a, K, V> {
fn clone(&self) -> Self {
Iter { ..*self }
}
}
impl<K, V> Clone for IntoIter<K, V>
where
K: Clone,
V: Clone,
{
fn clone(&self) -> Self {
if self.remaining == 0 {
return IntoIter { ..*self };
}
fn clone_node<K, V>(e: *mut Node<K, V>) -> *mut Node<K, V>
where
K: Clone,
V: Clone,
{
Box::into_raw(Box::new(Node::new(unsafe { (*e).key.clone() }, unsafe {
(*e).value.clone()
})))
}
let mut cur = self.head;
let head = clone_node(cur);
let mut tail = head;
for _ in 1..self.remaining {
unsafe {
(*tail).prev = clone_node((*cur).prev);
(*(*tail).prev).next = tail;
tail = (*tail).prev;
cur = (*cur).prev;
}
}
IntoIter {
head,
tail,
remaining: self.remaining,
marker: marker::PhantomData,
}
}
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<(&'a K, &'a V)> {
if self.head == self.tail {
None
} else {
self.remaining -= 1;
unsafe {
let r = Some((&(*self.head).key, &(*self.head).value));
self.head = (*self.head).prev;
r
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
if self.head == self.tail {
None
} else {
self.remaining -= 1;
unsafe {
let r = Some((&(*self.head).key, &mut (*self.head).value));
self.head = (*self.head).prev;
r
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
fn next(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let prev = (*self.head).prev;
let e = *Box::from_raw(self.head);
self.head = prev;
Some((e.key, e.value))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> Iterator for Drain<'a, K, V> {
type Item = (K, V);
fn next(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let prev = (*self.head).prev;
// Read the values out, the node is in the free-list already so these will
// be treated as uninit memory.
let k = addr_of_mut!((*self.head).key).read();
let v = addr_of_mut!((*self.head).value).read();
self.head = prev;
Some((k, v))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> DoubleEndedIterator for Drain<'a, K, V> {
fn next_back(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let next = (*self.tail).next;
// Read the values out, the node is in the free-list already so these will
// be treated as uninit memory.
let k = addr_of_mut!((*self.tail).key).read();
let v = addr_of_mut!((*self.tail).value).read();
self.tail = next;
Some((k, v))
}
}
}
impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
fn len(&self) -> usize {
self.remaining
}
}
impl<'a, K, V, S: BuildHasher> Iterator for Entries<'a, K, V, S> {
type Item = OccupiedEntry<'a, K, V, S>;
fn next(&mut self) -> Option<OccupiedEntry<'a, K, V, S>> {
if self.remaining == 0 {
None
} else {
self.remaining -= 1;
unsafe {
let r = Some(OccupiedEntry {
map: self.map,
entry: self.head,
marker: marker::PhantomData,
});
self.head = (*self.head).prev;
r
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<'a, K, V> DoubleEndedIterator for Iter<'a, K, V> {
fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
if self.head == self.tail {
None
} else {
self.remaining -= 1;
unsafe {
self.tail = (*self.tail).next;
Some((&(*self.tail).key, &(*self.tail).value))
}
}
}
}
impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
if self.head == self.tail {
None
} else {
self.remaining -= 1;
unsafe {
self.tail = (*self.tail).next;
Some((&(*self.tail).key, &mut (*self.tail).value))
}
}
}
}
impl<K, V> DoubleEndedIterator for IntoIter<K, V> {
fn next_back(&mut self) -> Option<(K, V)> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
unsafe {
let next = (*self.tail).next;
let e = *Box::from_raw(self.tail);
self.tail = next;
Some((e.key, e.value))
}
}
}
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
fn len(&self) -> usize {
self.remaining
}
}
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
fn len(&self) -> usize {
self.remaining
}
}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
fn len(&self) -> usize {
self.remaining
}
}
impl<K, V> Drop for IntoIter<K, V> {
fn drop(&mut self) {
for _ in 0..self.remaining {
unsafe {
let next = (*self.tail).next;
Box::from_raw(self.tail);
self.tail = next;
}
}
}
}
impl<'a, K, V> Drop for Drain<'a, K, V> {
fn drop(&mut self) {
for _ in self {}
}
}
/// An insertion-order iterator over a `LinkedHashMap`'s keys.
pub struct Keys<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
impl<'a, K, V> Clone for Keys<'a, K, V> {
fn clone(&self) -> Self {
Keys {
inner: self.inner.clone(),
}
}
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
#[inline]
fn next(&mut self) -> Option<&'a K> {
self.inner.next().map(|e| e.0)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<&'a K> {
self.inner.next_back().map(|e| e.0)
}
}
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
fn len(&self) -> usize {
self.inner.len()
}
}
/// An insertion-order iterator over a `LinkedHashMap`'s values.
pub struct Values<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
impl<'a, K, V> Clone for Values<'a, K, V> {
fn clone(&self) -> Self {
Values {
inner: self.inner.clone(),
}
}
}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
#[inline]
fn next(&mut self) -> Option<&'a V> {
self.inner.next().map(|e| e.1)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
#[inline]
fn next_back(&mut self) -> Option<&'a V> {
self.inner.next_back().map(|e| e.1)
}
}
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K: Hash + Eq, V, S: BuildHasher> IntoIterator for &'a LinkedHashMap<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Iter<'a, K, V> {
self.iter()
}
}
impl<'a, K: Hash + Eq, V, S: BuildHasher> IntoIterator for &'a mut LinkedHashMap<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> IterMut<'a, K, V> {
self.iter_mut()
}
}
impl<K: Hash + Eq, V, S: BuildHasher> IntoIterator for LinkedHashMap<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
fn into_iter(mut self) -> IntoIter<K, V> {
let (head, tail) = if !self.head.is_null() {
unsafe { ((*self.head).prev, (*self.head).next) }
} else {
(ptr::null_mut(), ptr::null_mut())
};
let len = self.len();
if !self.head.is_null() {
unsafe { drop_empty_node(self.head) }
}
self.clear_free_list();
// drop the HashMap but not the LinkedHashMap
unsafe {
ptr::drop_in_place(&mut self.map);
}
mem::forget(self);
IntoIter {
head,
tail,
remaining: len,
marker: marker::PhantomData,
}
}
}
/// A view into a single location in a map, which may be vacant or occupied.
pub enum Entry<'a, K: 'a, V: 'a, S: 'a = hash_map::RandomState> {
/// An occupied Entry.
Occupied(OccupiedEntry<'a, K, V, S>),
/// A vacant Entry.
Vacant(VacantEntry<'a, K, V, S>),
}
/// A view into a single occupied location in a `LinkedHashMap`.
pub struct OccupiedEntry<'a, K: 'a, V: 'a, S: 'a = hash_map::RandomState> {
entry: *mut Node<K, V>,
map: *mut LinkedHashMap<K, V, S>,
marker: marker::PhantomData<&'a K>,
}
/// A view into a single empty location in a `LinkedHashMap`.
pub struct VacantEntry<'a, K: 'a, V: 'a, S: 'a = hash_map::RandomState> {
key: K,
map: &'a mut LinkedHashMap<K, V, S>,
}
impl<'a, K: Hash + Eq, V, S: BuildHasher> Entry<'a, K, V, S> {
/// Returns the entry key
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::<String, u32>::new();
///
/// assert_eq!("hello", map.entry("hello".to_string()).key());
/// ```
pub fn key(&self) -> &K {
match *self {
Entry::Occupied(ref e) => e.key(),
Entry::Vacant(ref e) => e.key(),
}
}
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// a mutable reference to the value in the entry.
pub fn or_insert(self, default: V) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns a mutable reference to the value in the entry.
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default()),
}
}
/// Provides in-place mutable access to an occupied entry before any
/// potential inserts into the map.
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Entry::Occupied(mut entry) => {
f(entry.get_mut());
Entry::Occupied(entry)
}
Entry::Vacant(entry) => Entry::Vacant(entry),
}
}
/// Ensures a value is in the entry by inserting the default value if empty,
/// and returns a mutable reference to the value in the entry.
pub fn or_default(self) -> &'a mut V
where
V: Default,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(V::default()),
}
}
}
impl<'a, K: Hash + Eq, V, S: BuildHasher> OccupiedEntry<'a, K, V, S> {
/// Gets a reference to the entry key
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::new();
///
/// map.insert("foo".to_string(), 1);
/// assert_eq!("foo", map.entry("foo".to_string()).key());
/// ```
pub fn key(&self) -> &K {
unsafe { &(*self.entry).key }
}
/// Gets a reference to the value in the entry.
pub fn get(&self) -> &V {
unsafe { &(*self.entry).value }
}
/// Gets a mutable reference to the value in the entry.
pub fn get_mut(&mut self) -> &mut V {
unsafe { &mut (*self.entry).value }
}
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
/// with a lifetime bound to the map itself
pub fn into_mut(self) -> &'a mut V {
unsafe { &mut (*self.entry).value }
}
/// Sets the value of the entry, and returns the entry's old value
pub fn insert(&mut self, value: V) -> V {
unsafe {
(*self.map).ensure_guard_node();
let old_val = mem::replace(&mut (*self.entry).value, value);
let node_ptr: *mut Node<K, V> = self.entry;
// Existing node, just update LRU position
(*self.map).detach(node_ptr);
(*self.map).attach(node_ptr);
old_val
}
}
/// Takes the value out of the entry, and returns it
pub fn remove(self) -> V {
unsafe { (*self.map).remove(&(*self.entry).key) }.unwrap()
}
}
impl<'a, K: 'a + Hash + Eq, V: 'a, S: BuildHasher> VacantEntry<'a, K, V, S> {
/// Gets a reference to the entry key
///
/// # Examples
///
/// ```
/// use linked_hash_map::LinkedHashMap;
///
/// let mut map = LinkedHashMap::<String, u32>::new();
///
/// assert_eq!("foo", map.entry("foo".to_string()).key());
/// ```
pub fn key(&self) -> &K {
&self.key
}
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it
pub fn insert(self, value: V) -> &'a mut V {
self.map.ensure_guard_node();
let node = if self.map.free.is_null() {
Box::into_raw(Box::new(Node::new(self.key, value)))
} else {
// use a recycled box
unsafe {
let free = self.map.free;
self.map.free = (*free).next;
ptr::write(free, Node::new(self.key, value));
free
}
};
let keyref = unsafe { &(*node).key };
self.map.attach(node);
let ret = self.map.map.entry(KeyRef { k: keyref }).or_insert(node);
unsafe { &mut (**ret).value }
}
}