Source code

Revision control

Copy as Markdown

Other Tools

use alloc::vec::Vec;
use std::fmt;
use std::iter::once;
use super::lazy_buffer::LazyBuffer;
/// An iterator adaptor that iterates through all the `k`-permutations of the
/// elements from an iterator.
///
/// See [`.permutations()`](crate::Itertools::permutations) for
/// more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Permutations<I: Iterator> {
vals: LazyBuffer<I>,
state: PermutationState,
}
impl<I> Clone for Permutations<I>
where I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(vals, state);
}
#[derive(Clone, Debug)]
enum PermutationState {
StartUnknownLen {
k: usize,
},
OngoingUnknownLen {
k: usize,
min_n: usize,
},
Complete(CompleteState),
Empty,
}
#[derive(Clone, Debug)]
enum CompleteState {
Start {
n: usize,
k: usize,
},
Ongoing {
indices: Vec<usize>,
cycles: Vec<usize>,
}
}
enum CompleteStateRemaining {
Known(usize),
Overflow,
}
impl<I> fmt::Debug for Permutations<I>
where I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Permutations, vals, state);
}
pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> {
let mut vals = LazyBuffer::new(iter);
if k == 0 {
// Special case, yields single empty vec; `n` is irrelevant
let state = PermutationState::Complete(CompleteState::Start { n: 0, k: 0 });
return Permutations {
vals,
state
};
}
let mut enough_vals = true;
while vals.len() < k {
if !vals.get_next() {
enough_vals = false;
break;
}
}
let state = if enough_vals {
PermutationState::StartUnknownLen { k }
} else {
PermutationState::Empty
};
Permutations {
vals,
state
}
}
impl<I> Iterator for Permutations<I>
where
I: Iterator,
I::Item: Clone
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
self.advance();
let &mut Permutations { ref vals, ref state } = self;
match *state {
PermutationState::StartUnknownLen { .. } => panic!("unexpected iterator state"),
PermutationState::OngoingUnknownLen { k, min_n } => {
let latest_idx = min_n - 1;
let indices = (0..(k - 1)).chain(once(latest_idx));
Some(indices.map(|i| vals[i].clone()).collect())
}
PermutationState::Complete(CompleteState::Ongoing { ref indices, ref cycles }) => {
let k = cycles.len();
Some(indices[0..k].iter().map(|&i| vals[i].clone()).collect())
},
PermutationState::Complete(CompleteState::Start { .. }) | PermutationState::Empty => None
}
}
fn count(self) -> usize {
fn from_complete(complete_state: CompleteState) -> usize {
match complete_state.remaining() {
CompleteStateRemaining::Known(count) => count,
CompleteStateRemaining::Overflow => {
panic!("Iterator count greater than usize::MAX");
}
}
}
let Permutations { vals, state } = self;
match state {
PermutationState::StartUnknownLen { k } => {
let n = vals.len() + vals.it.count();
let complete_state = CompleteState::Start { n, k };
from_complete(complete_state)
}
PermutationState::OngoingUnknownLen { k, min_n } => {
let prev_iteration_count = min_n - k + 1;
let n = vals.len() + vals.it.count();
let complete_state = CompleteState::Start { n, k };
from_complete(complete_state) - prev_iteration_count
},
PermutationState::Complete(state) => from_complete(state),
PermutationState::Empty => 0
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.state {
PermutationState::StartUnknownLen { .. } |
PermutationState::OngoingUnknownLen { .. } => (0, None), // TODO can we improve this lower bound?
PermutationState::Complete(ref state) => match state.remaining() {
CompleteStateRemaining::Known(count) => (count, Some(count)),
CompleteStateRemaining::Overflow => (::std::usize::MAX, None)
}
PermutationState::Empty => (0, Some(0))
}
}
}
impl<I> Permutations<I>
where
I: Iterator,
I::Item: Clone
{
fn advance(&mut self) {
let &mut Permutations { ref mut vals, ref mut state } = self;
*state = match *state {
PermutationState::StartUnknownLen { k } => {
PermutationState::OngoingUnknownLen { k, min_n: k }
}
PermutationState::OngoingUnknownLen { k, min_n } => {
if vals.get_next() {
PermutationState::OngoingUnknownLen { k, min_n: min_n + 1 }
} else {
let n = min_n;
let prev_iteration_count = n - k + 1;
let mut complete_state = CompleteState::Start { n, k };
// Advance the complete-state iterator to the correct point
for _ in 0..(prev_iteration_count + 1) {
complete_state.advance();
}
PermutationState::Complete(complete_state)
}
}
PermutationState::Complete(ref mut state) => {
state.advance();
return;
}
PermutationState::Empty => { return; }
};
}
}
impl CompleteState {
fn advance(&mut self) {
*self = match *self {
CompleteState::Start { n, k } => {
let indices = (0..n).collect();
let cycles = ((n - k)..n).rev().collect();
CompleteState::Ongoing {
cycles,
indices
}
},
CompleteState::Ongoing { ref mut indices, ref mut cycles } => {
let n = indices.len();
let k = cycles.len();
for i in (0..k).rev() {
if cycles[i] == 0 {
cycles[i] = n - i - 1;
let to_push = indices.remove(i);
indices.push(to_push);
} else {
let swap_index = n - cycles[i];
indices.swap(i, swap_index);
cycles[i] -= 1;
return;
}
}
CompleteState::Start { n, k }
}
}
}
fn remaining(&self) -> CompleteStateRemaining {
use self::CompleteStateRemaining::{Known, Overflow};
match *self {
CompleteState::Start { n, k } => {
if n < k {
return Known(0);
}
let count: Option<usize> = (n - k + 1..n + 1).fold(Some(1), |acc, i| {
acc.and_then(|acc| acc.checked_mul(i))
});
match count {
Some(count) => Known(count),
None => Overflow
}
}
CompleteState::Ongoing { ref indices, ref cycles } => {
let mut count: usize = 0;
for (i, &c) in cycles.iter().enumerate() {
let radix = indices.len() - i;
let next_count = count.checked_mul(radix)
.and_then(|count| count.checked_add(c));
count = match next_count {
Some(count) => count,
None => { return Overflow; }
};
}
Known(count)
}
}
}
}