Source code

Revision control

Copy as Markdown

Other Tools

use std::error::Error as StdError;
use std::fmt;
use std::future::Future;
use std::io;
use std::marker::PhantomData;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{self, Poll};
use std::time::Duration;
use futures_util::future::Either;
use http::uri::{Scheme, Uri};
use pin_project_lite::pin_project;
use tokio::net::{TcpSocket, TcpStream};
use tokio::time::Sleep;
use tracing::{debug, trace, warn};
use super::dns::{self, resolve, GaiResolver, Resolve};
use super::{Connected, Connection};
//#[cfg(feature = "runtime")] use super::dns::TokioThreadpoolGaiResolver;
/// A connector for the `http` scheme.
///
/// Performs DNS resolution in a thread pool, and then connects over TCP.
///
/// # Note
///
/// Sets the [`HttpInfo`](HttpInfo) value on responses, which includes
/// transport information such as the remote socket address used.
#[cfg_attr(docsrs, doc(cfg(feature = "tcp")))]
#[derive(Clone)]
pub struct HttpConnector<R = GaiResolver> {
config: Arc<Config>,
resolver: R,
}
/// Extra information about the transport when an HttpConnector is used.
///
/// # Example
///
/// ```
/// # async fn doc() -> hyper::Result<()> {
/// use hyper::Uri;
/// use hyper::client::{Client, connect::HttpInfo};
///
/// let client = Client::new();
/// let uri = Uri::from_static("http://example.com");
///
/// let res = client.get(uri).await?;
/// res
/// .extensions()
/// .get::<HttpInfo>()
/// .map(|info| {
/// println!("remote addr = {}", info.remote_addr());
/// });
/// # Ok(())
/// # }
/// ```
///
/// # Note
///
/// If a different connector is used besides [`HttpConnector`](HttpConnector),
/// this value will not exist in the extensions. Consult that specific
/// connector to see what "extra" information it might provide to responses.
#[derive(Clone, Debug)]
pub struct HttpInfo {
remote_addr: SocketAddr,
local_addr: SocketAddr,
}
#[derive(Clone)]
struct Config {
connect_timeout: Option<Duration>,
enforce_http: bool,
happy_eyeballs_timeout: Option<Duration>,
keep_alive_timeout: Option<Duration>,
local_address_ipv4: Option<Ipv4Addr>,
local_address_ipv6: Option<Ipv6Addr>,
nodelay: bool,
reuse_address: bool,
send_buffer_size: Option<usize>,
recv_buffer_size: Option<usize>,
}
// ===== impl HttpConnector =====
impl HttpConnector {
/// Construct a new HttpConnector.
pub fn new() -> HttpConnector {
HttpConnector::new_with_resolver(GaiResolver::new())
}
}
/*
#[cfg(feature = "runtime")]
impl HttpConnector<TokioThreadpoolGaiResolver> {
/// Construct a new HttpConnector using the `TokioThreadpoolGaiResolver`.
///
/// This resolver **requires** the threadpool runtime to be used.
pub fn new_with_tokio_threadpool_resolver() -> Self {
HttpConnector::new_with_resolver(TokioThreadpoolGaiResolver::new())
}
}
*/
impl<R> HttpConnector<R> {
/// Construct a new HttpConnector.
///
/// Takes a [`Resolver`](crate::client::connect::dns#resolvers-are-services) to handle DNS lookups.
pub fn new_with_resolver(resolver: R) -> HttpConnector<R> {
HttpConnector {
config: Arc::new(Config {
connect_timeout: None,
enforce_http: true,
happy_eyeballs_timeout: Some(Duration::from_millis(300)),
keep_alive_timeout: None,
local_address_ipv4: None,
local_address_ipv6: None,
nodelay: false,
reuse_address: false,
send_buffer_size: None,
recv_buffer_size: None,
}),
resolver,
}
}
/// Option to enforce all `Uri`s have the `http` scheme.
///
/// Enabled by default.
#[inline]
pub fn enforce_http(&mut self, is_enforced: bool) {
self.config_mut().enforce_http = is_enforced;
}
/// Set that all sockets have `SO_KEEPALIVE` set with the supplied duration.
///
/// If `None`, the option will not be set.
///
/// Default is `None`.
#[inline]
pub fn set_keepalive(&mut self, dur: Option<Duration>) {
self.config_mut().keep_alive_timeout = dur;
}
/// Set that all sockets have `SO_NODELAY` set to the supplied value `nodelay`.
///
/// Default is `false`.
#[inline]
pub fn set_nodelay(&mut self, nodelay: bool) {
self.config_mut().nodelay = nodelay;
}
/// Sets the value of the SO_SNDBUF option on the socket.
#[inline]
pub fn set_send_buffer_size(&mut self, size: Option<usize>) {
self.config_mut().send_buffer_size = size;
}
/// Sets the value of the SO_RCVBUF option on the socket.
#[inline]
pub fn set_recv_buffer_size(&mut self, size: Option<usize>) {
self.config_mut().recv_buffer_size = size;
}
/// Set that all sockets are bound to the configured address before connection.
///
/// If `None`, the sockets will not be bound.
///
/// Default is `None`.
#[inline]
pub fn set_local_address(&mut self, addr: Option<IpAddr>) {
let (v4, v6) = match addr {
Some(IpAddr::V4(a)) => (Some(a), None),
Some(IpAddr::V6(a)) => (None, Some(a)),
_ => (None, None),
};
let cfg = self.config_mut();
cfg.local_address_ipv4 = v4;
cfg.local_address_ipv6 = v6;
}
/// Set that all sockets are bound to the configured IPv4 or IPv6 address (depending on host's
/// preferences) before connection.
#[inline]
pub fn set_local_addresses(&mut self, addr_ipv4: Ipv4Addr, addr_ipv6: Ipv6Addr) {
let cfg = self.config_mut();
cfg.local_address_ipv4 = Some(addr_ipv4);
cfg.local_address_ipv6 = Some(addr_ipv6);
}
/// Set the connect timeout.
///
/// If a domain resolves to multiple IP addresses, the timeout will be
/// evenly divided across them.
///
/// Default is `None`.
#[inline]
pub fn set_connect_timeout(&mut self, dur: Option<Duration>) {
self.config_mut().connect_timeout = dur;
}
/// Set timeout for [RFC 6555 (Happy Eyeballs)][RFC 6555] algorithm.
///
/// If hostname resolves to both IPv4 and IPv6 addresses and connection
/// cannot be established using preferred address family before timeout
/// elapses, then connector will in parallel attempt connection using other
/// address family.
///
/// If `None`, parallel connection attempts are disabled.
///
/// Default is 300 milliseconds.
///
#[inline]
pub fn set_happy_eyeballs_timeout(&mut self, dur: Option<Duration>) {
self.config_mut().happy_eyeballs_timeout = dur;
}
/// Set that all socket have `SO_REUSEADDR` set to the supplied value `reuse_address`.
///
/// Default is `false`.
#[inline]
pub fn set_reuse_address(&mut self, reuse_address: bool) -> &mut Self {
self.config_mut().reuse_address = reuse_address;
self
}
// private
fn config_mut(&mut self) -> &mut Config {
// If the are HttpConnector clones, this will clone the inner
// config. So mutating the config won't ever affect previous
// clones.
Arc::make_mut(&mut self.config)
}
}
static INVALID_NOT_HTTP: &str = "invalid URL, scheme is not http";
static INVALID_MISSING_SCHEME: &str = "invalid URL, scheme is missing";
static INVALID_MISSING_HOST: &str = "invalid URL, host is missing";
// R: Debug required for now to allow adding it to debug output later...
impl<R: fmt::Debug> fmt::Debug for HttpConnector<R> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("HttpConnector").finish()
}
}
impl<R> tower_service::Service<Uri> for HttpConnector<R>
where
R: Resolve + Clone + Send + Sync + 'static,
R::Future: Send,
{
type Response = TcpStream;
type Error = ConnectError;
type Future = HttpConnecting<R>;
fn poll_ready(&mut self, cx: &mut task::Context<'_>) -> Poll<Result<(), Self::Error>> {
ready!(self.resolver.poll_ready(cx)).map_err(ConnectError::dns)?;
Poll::Ready(Ok(()))
}
fn call(&mut self, dst: Uri) -> Self::Future {
let mut self_ = self.clone();
HttpConnecting {
fut: Box::pin(async move { self_.call_async(dst).await }),
_marker: PhantomData,
}
}
}
fn get_host_port<'u>(config: &Config, dst: &'u Uri) -> Result<(&'u str, u16), ConnectError> {
trace!(
"Http::connect; scheme={:?}, host={:?}, port={:?}",
dst.scheme(),
dst.host(),
dst.port(),
);
if config.enforce_http {
if dst.scheme() != Some(&Scheme::HTTP) {
return Err(ConnectError {
msg: INVALID_NOT_HTTP.into(),
cause: None,
});
}
} else if dst.scheme().is_none() {
return Err(ConnectError {
msg: INVALID_MISSING_SCHEME.into(),
cause: None,
});
}
let host = match dst.host() {
Some(s) => s,
None => {
return Err(ConnectError {
msg: INVALID_MISSING_HOST.into(),
cause: None,
})
}
};
let port = match dst.port() {
Some(port) => port.as_u16(),
None => {
if dst.scheme() == Some(&Scheme::HTTPS) {
443
} else {
80
}
}
};
Ok((host, port))
}
impl<R> HttpConnector<R>
where
R: Resolve,
{
async fn call_async(&mut self, dst: Uri) -> Result<TcpStream, ConnectError> {
let config = &self.config;
let (host, port) = get_host_port(config, &dst)?;
let host = host.trim_start_matches('[').trim_end_matches(']');
// If the host is already an IP addr (v4 or v6),
// skip resolving the dns and start connecting right away.
let addrs = if let Some(addrs) = dns::SocketAddrs::try_parse(host, port) {
addrs
} else {
let addrs = resolve(&mut self.resolver, dns::Name::new(host.into()))
.await
.map_err(ConnectError::dns)?;
let addrs = addrs
.map(|mut addr| {
addr.set_port(port);
addr
})
.collect();
dns::SocketAddrs::new(addrs)
};
let c = ConnectingTcp::new(addrs, config);
let sock = c.connect().await?;
if let Err(e) = sock.set_nodelay(config.nodelay) {
warn!("tcp set_nodelay error: {}", e);
}
Ok(sock)
}
}
impl Connection for TcpStream {
fn connected(&self) -> Connected {
let connected = Connected::new();
if let (Ok(remote_addr), Ok(local_addr)) = (self.peer_addr(), self.local_addr()) {
connected.extra(HttpInfo { remote_addr, local_addr })
} else {
connected
}
}
}
impl HttpInfo {
/// Get the remote address of the transport used.
pub fn remote_addr(&self) -> SocketAddr {
self.remote_addr
}
/// Get the local address of the transport used.
pub fn local_addr(&self) -> SocketAddr {
self.local_addr
}
}
pin_project! {
// Not publicly exported (so missing_docs doesn't trigger).
//
// We return this `Future` instead of the `Pin<Box<dyn Future>>` directly
// so that users don't rely on it fitting in a `Pin<Box<dyn Future>>` slot
// (and thus we can change the type in the future).
#[must_use = "futures do nothing unless polled"]
#[allow(missing_debug_implementations)]
pub struct HttpConnecting<R> {
#[pin]
fut: BoxConnecting,
_marker: PhantomData<R>,
}
}
type ConnectResult = Result<TcpStream, ConnectError>;
type BoxConnecting = Pin<Box<dyn Future<Output = ConnectResult> + Send>>;
impl<R: Resolve> Future for HttpConnecting<R> {
type Output = ConnectResult;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
self.project().fut.poll(cx)
}
}
// Not publicly exported (so missing_docs doesn't trigger).
pub struct ConnectError {
msg: Box<str>,
cause: Option<Box<dyn StdError + Send + Sync>>,
}
impl ConnectError {
fn new<S, E>(msg: S, cause: E) -> ConnectError
where
S: Into<Box<str>>,
E: Into<Box<dyn StdError + Send + Sync>>,
{
ConnectError {
msg: msg.into(),
cause: Some(cause.into()),
}
}
fn dns<E>(cause: E) -> ConnectError
where
E: Into<Box<dyn StdError + Send + Sync>>,
{
ConnectError::new("dns error", cause)
}
fn m<S, E>(msg: S) -> impl FnOnce(E) -> ConnectError
where
S: Into<Box<str>>,
E: Into<Box<dyn StdError + Send + Sync>>,
{
move |cause| ConnectError::new(msg, cause)
}
}
impl fmt::Debug for ConnectError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref cause) = self.cause {
f.debug_tuple("ConnectError")
.field(&self.msg)
.field(cause)
.finish()
} else {
self.msg.fmt(f)
}
}
}
impl fmt::Display for ConnectError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.msg)?;
if let Some(ref cause) = self.cause {
write!(f, ": {}", cause)?;
}
Ok(())
}
}
impl StdError for ConnectError {
fn source(&self) -> Option<&(dyn StdError + 'static)> {
self.cause.as_ref().map(|e| &**e as _)
}
}
struct ConnectingTcp<'a> {
preferred: ConnectingTcpRemote,
fallback: Option<ConnectingTcpFallback>,
config: &'a Config,
}
impl<'a> ConnectingTcp<'a> {
fn new(remote_addrs: dns::SocketAddrs, config: &'a Config) -> Self {
if let Some(fallback_timeout) = config.happy_eyeballs_timeout {
let (preferred_addrs, fallback_addrs) = remote_addrs
.split_by_preference(config.local_address_ipv4, config.local_address_ipv6);
if fallback_addrs.is_empty() {
return ConnectingTcp {
preferred: ConnectingTcpRemote::new(preferred_addrs, config.connect_timeout),
fallback: None,
config,
};
}
ConnectingTcp {
preferred: ConnectingTcpRemote::new(preferred_addrs, config.connect_timeout),
fallback: Some(ConnectingTcpFallback {
delay: tokio::time::sleep(fallback_timeout),
remote: ConnectingTcpRemote::new(fallback_addrs, config.connect_timeout),
}),
config,
}
} else {
ConnectingTcp {
preferred: ConnectingTcpRemote::new(remote_addrs, config.connect_timeout),
fallback: None,
config,
}
}
}
}
struct ConnectingTcpFallback {
delay: Sleep,
remote: ConnectingTcpRemote,
}
struct ConnectingTcpRemote {
addrs: dns::SocketAddrs,
connect_timeout: Option<Duration>,
}
impl ConnectingTcpRemote {
fn new(addrs: dns::SocketAddrs, connect_timeout: Option<Duration>) -> Self {
let connect_timeout = connect_timeout.map(|t| t / (addrs.len() as u32));
Self {
addrs,
connect_timeout,
}
}
}
impl ConnectingTcpRemote {
async fn connect(&mut self, config: &Config) -> Result<TcpStream, ConnectError> {
let mut err = None;
for addr in &mut self.addrs {
debug!("connecting to {}", addr);
match connect(&addr, config, self.connect_timeout)?.await {
Ok(tcp) => {
debug!("connected to {}", addr);
return Ok(tcp);
}
Err(e) => {
trace!("connect error for {}: {:?}", addr, e);
err = Some(e);
}
}
}
match err {
Some(e) => Err(e),
None => Err(ConnectError::new(
"tcp connect error",
std::io::Error::new(std::io::ErrorKind::NotConnected, "Network unreachable"),
)),
}
}
}
fn bind_local_address(
socket: &socket2::Socket,
dst_addr: &SocketAddr,
local_addr_ipv4: &Option<Ipv4Addr>,
local_addr_ipv6: &Option<Ipv6Addr>,
) -> io::Result<()> {
match (*dst_addr, local_addr_ipv4, local_addr_ipv6) {
(SocketAddr::V4(_), Some(addr), _) => {
socket.bind(&SocketAddr::new(addr.clone().into(), 0).into())?;
}
(SocketAddr::V6(_), _, Some(addr)) => {
socket.bind(&SocketAddr::new(addr.clone().into(), 0).into())?;
}
_ => {
if cfg!(windows) {
// Windows requires a socket be bound before calling connect
let any: SocketAddr = match *dst_addr {
SocketAddr::V4(_) => ([0, 0, 0, 0], 0).into(),
SocketAddr::V6(_) => ([0, 0, 0, 0, 0, 0, 0, 0], 0).into(),
};
socket.bind(&any.into())?;
}
}
}
Ok(())
}
fn connect(
addr: &SocketAddr,
config: &Config,
connect_timeout: Option<Duration>,
) -> Result<impl Future<Output = Result<TcpStream, ConnectError>>, ConnectError> {
// TODO(eliza): if Tokio's `TcpSocket` gains support for setting the
// keepalive timeout, it would be nice to use that instead of socket2,
// and avoid the unsafe `into_raw_fd`/`from_raw_fd` dance...
use socket2::{Domain, Protocol, Socket, TcpKeepalive, Type};
use std::convert::TryInto;
let domain = Domain::for_address(*addr);
let socket = Socket::new(domain, Type::STREAM, Some(Protocol::TCP))
.map_err(ConnectError::m("tcp open error"))?;
// When constructing a Tokio `TcpSocket` from a raw fd/socket, the user is
// responsible for ensuring O_NONBLOCK is set.
socket
.set_nonblocking(true)
.map_err(ConnectError::m("tcp set_nonblocking error"))?;
if let Some(dur) = config.keep_alive_timeout {
let conf = TcpKeepalive::new().with_time(dur);
if let Err(e) = socket.set_tcp_keepalive(&conf) {
warn!("tcp set_keepalive error: {}", e);
}
}
bind_local_address(
&socket,
addr,
&config.local_address_ipv4,
&config.local_address_ipv6,
)
.map_err(ConnectError::m("tcp bind local error"))?;
#[cfg(unix)]
let socket = unsafe {
// Safety: `from_raw_fd` is only safe to call if ownership of the raw
// file descriptor is transferred. Since we call `into_raw_fd` on the
// socket2 socket, it gives up ownership of the fd and will not close
// it, so this is safe.
use std::os::unix::io::{FromRawFd, IntoRawFd};
TcpSocket::from_raw_fd(socket.into_raw_fd())
};
#[cfg(windows)]
let socket = unsafe {
// Safety: `from_raw_socket` is only safe to call if ownership of the raw
// Windows SOCKET is transferred. Since we call `into_raw_socket` on the
// socket2 socket, it gives up ownership of the SOCKET and will not close
// it, so this is safe.
use std::os::windows::io::{FromRawSocket, IntoRawSocket};
TcpSocket::from_raw_socket(socket.into_raw_socket())
};
if config.reuse_address {
if let Err(e) = socket.set_reuseaddr(true) {
warn!("tcp set_reuse_address error: {}", e);
}
}
if let Some(size) = config.send_buffer_size {
if let Err(e) = socket.set_send_buffer_size(size.try_into().unwrap_or(std::u32::MAX)) {
warn!("tcp set_buffer_size error: {}", e);
}
}
if let Some(size) = config.recv_buffer_size {
if let Err(e) = socket.set_recv_buffer_size(size.try_into().unwrap_or(std::u32::MAX)) {
warn!("tcp set_recv_buffer_size error: {}", e);
}
}
let connect = socket.connect(*addr);
Ok(async move {
match connect_timeout {
Some(dur) => match tokio::time::timeout(dur, connect).await {
Ok(Ok(s)) => Ok(s),
Ok(Err(e)) => Err(e),
Err(e) => Err(io::Error::new(io::ErrorKind::TimedOut, e)),
},
None => connect.await,
}
.map_err(ConnectError::m("tcp connect error"))
})
}
impl ConnectingTcp<'_> {
async fn connect(mut self) -> Result<TcpStream, ConnectError> {
match self.fallback {
None => self.preferred.connect(self.config).await,
Some(mut fallback) => {
let preferred_fut = self.preferred.connect(self.config);
futures_util::pin_mut!(preferred_fut);
let fallback_fut = fallback.remote.connect(self.config);
futures_util::pin_mut!(fallback_fut);
let fallback_delay = fallback.delay;
futures_util::pin_mut!(fallback_delay);
let (result, future) =
match futures_util::future::select(preferred_fut, fallback_delay).await {
Either::Left((result, _fallback_delay)) => {
(result, Either::Right(fallback_fut))
}
Either::Right(((), preferred_fut)) => {
// Delay is done, start polling both the preferred and the fallback
futures_util::future::select(preferred_fut, fallback_fut)
.await
.factor_first()
}
};
if result.is_err() {
// Fallback to the remaining future (could be preferred or fallback)
// if we get an error
future.await
} else {
result
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::io;
use ::http::Uri;
use super::super::sealed::{Connect, ConnectSvc};
use super::{Config, ConnectError, HttpConnector};
async fn connect<C>(
connector: C,
dst: Uri,
) -> Result<<C::_Svc as ConnectSvc>::Connection, <C::_Svc as ConnectSvc>::Error>
where
C: Connect,
{
connector.connect(super::super::sealed::Internal, dst).await
}
#[tokio::test]
async fn test_errors_enforce_http() {
let dst = "https://example.domain/foo/bar?baz".parse().unwrap();
let connector = HttpConnector::new();
let err = connect(connector, dst).await.unwrap_err();
assert_eq!(&*err.msg, super::INVALID_NOT_HTTP);
}
#[cfg(any(target_os = "linux", target_os = "macos"))]
fn get_local_ips() -> (Option<std::net::Ipv4Addr>, Option<std::net::Ipv6Addr>) {
use std::net::{IpAddr, TcpListener};
let mut ip_v4 = None;
let mut ip_v6 = None;
let ips = pnet_datalink::interfaces()
.into_iter()
.flat_map(|i| i.ips.into_iter().map(|n| n.ip()));
for ip in ips {
match ip {
IpAddr::V4(ip) if TcpListener::bind((ip, 0)).is_ok() => ip_v4 = Some(ip),
IpAddr::V6(ip) if TcpListener::bind((ip, 0)).is_ok() => ip_v6 = Some(ip),
_ => (),
}
if ip_v4.is_some() && ip_v6.is_some() {
break;
}
}
(ip_v4, ip_v6)
}
#[tokio::test]
async fn test_errors_missing_scheme() {
let dst = "example.domain".parse().unwrap();
let mut connector = HttpConnector::new();
connector.enforce_http(false);
let err = connect(connector, dst).await.unwrap_err();
assert_eq!(&*err.msg, super::INVALID_MISSING_SCHEME);
}
// NOTE: pnet crate that we use in this test doesn't compile on Windows
#[cfg(any(target_os = "linux", target_os = "macos"))]
#[tokio::test]
async fn local_address() {
use std::net::{IpAddr, TcpListener};
let _ = pretty_env_logger::try_init();
let (bind_ip_v4, bind_ip_v6) = get_local_ips();
let server4 = TcpListener::bind("127.0.0.1:0").unwrap();
let port = server4.local_addr().unwrap().port();
let server6 = TcpListener::bind(&format!("[::1]:{}", port)).unwrap();
let assert_client_ip = |dst: String, server: TcpListener, expected_ip: IpAddr| async move {
let mut connector = HttpConnector::new();
match (bind_ip_v4, bind_ip_v6) {
(Some(v4), Some(v6)) => connector.set_local_addresses(v4, v6),
(Some(v4), None) => connector.set_local_address(Some(v4.into())),
(None, Some(v6)) => connector.set_local_address(Some(v6.into())),
_ => unreachable!(),
}
connect(connector, dst.parse().unwrap()).await.unwrap();
let (_, client_addr) = server.accept().unwrap();
assert_eq!(client_addr.ip(), expected_ip);
};
if let Some(ip) = bind_ip_v4 {
assert_client_ip(format!("http://127.0.0.1:{}", port), server4, ip.into()).await;
}
if let Some(ip) = bind_ip_v6 {
assert_client_ip(format!("http://[::1]:{}", port), server6, ip.into()).await;
}
}
#[test]
#[cfg_attr(not(feature = "__internal_happy_eyeballs_tests"), ignore)]
fn client_happy_eyeballs() {
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, TcpListener};
use std::time::{Duration, Instant};
use super::dns;
use super::ConnectingTcp;
let _ = pretty_env_logger::try_init();
let server4 = TcpListener::bind("127.0.0.1:0").unwrap();
let addr = server4.local_addr().unwrap();
let _server6 = TcpListener::bind(&format!("[::1]:{}", addr.port())).unwrap();
let rt = tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap();
let local_timeout = Duration::default();
let unreachable_v4_timeout = measure_connect(unreachable_ipv4_addr()).1;
let unreachable_v6_timeout = measure_connect(unreachable_ipv6_addr()).1;
let fallback_timeout = std::cmp::max(unreachable_v4_timeout, unreachable_v6_timeout)
+ Duration::from_millis(250);
let scenarios = &[
// Fast primary, without fallback.
(&[local_ipv4_addr()][..], 4, local_timeout, false),
(&[local_ipv6_addr()][..], 6, local_timeout, false),
// Fast primary, with (unused) fallback.
(
&[local_ipv4_addr(), local_ipv6_addr()][..],
4,
local_timeout,
false,
),
(
&[local_ipv6_addr(), local_ipv4_addr()][..],
6,
local_timeout,
false,
),
// Unreachable + fast primary, without fallback.
(
&[unreachable_ipv4_addr(), local_ipv4_addr()][..],
4,
unreachable_v4_timeout,
false,
),
(
&[unreachable_ipv6_addr(), local_ipv6_addr()][..],
6,
unreachable_v6_timeout,
false,
),
// Unreachable + fast primary, with (unused) fallback.
(
&[
unreachable_ipv4_addr(),
local_ipv4_addr(),
local_ipv6_addr(),
][..],
4,
unreachable_v4_timeout,
false,
),
(
&[
unreachable_ipv6_addr(),
local_ipv6_addr(),
local_ipv4_addr(),
][..],
6,
unreachable_v6_timeout,
true,
),
// Slow primary, with (used) fallback.
(
&[slow_ipv4_addr(), local_ipv4_addr(), local_ipv6_addr()][..],
6,
fallback_timeout,
false,
),
(
&[slow_ipv6_addr(), local_ipv6_addr(), local_ipv4_addr()][..],
4,
fallback_timeout,
true,
),
// Slow primary, with (used) unreachable + fast fallback.
(
&[slow_ipv4_addr(), unreachable_ipv6_addr(), local_ipv6_addr()][..],
6,
fallback_timeout + unreachable_v6_timeout,
false,
),
(
&[slow_ipv6_addr(), unreachable_ipv4_addr(), local_ipv4_addr()][..],
4,
fallback_timeout + unreachable_v4_timeout,
true,
),
];
// Scenarios for IPv6 -> IPv4 fallback require that host can access IPv6 network.
// Otherwise, connection to "slow" IPv6 address will error-out immediately.
let ipv6_accessible = measure_connect(slow_ipv6_addr()).0;
for &(hosts, family, timeout, needs_ipv6_access) in scenarios {
if needs_ipv6_access && !ipv6_accessible {
continue;
}
let (start, stream) = rt
.block_on(async move {
let addrs = hosts
.iter()
.map(|host| (host.clone(), addr.port()).into())
.collect();
let cfg = Config {
local_address_ipv4: None,
local_address_ipv6: None,
connect_timeout: None,
keep_alive_timeout: None,
happy_eyeballs_timeout: Some(fallback_timeout),
nodelay: false,
reuse_address: false,
enforce_http: false,
send_buffer_size: None,
recv_buffer_size: None,
};
let connecting_tcp = ConnectingTcp::new(dns::SocketAddrs::new(addrs), &cfg);
let start = Instant::now();
Ok::<_, ConnectError>((start, ConnectingTcp::connect(connecting_tcp).await?))
})
.unwrap();
let res = if stream.peer_addr().unwrap().is_ipv4() {
4
} else {
6
};
let duration = start.elapsed();
// Allow actual duration to be +/- 150ms off.
let min_duration = if timeout >= Duration::from_millis(150) {
timeout - Duration::from_millis(150)
} else {
Duration::default()
};
let max_duration = timeout + Duration::from_millis(150);
assert_eq!(res, family);
assert!(duration >= min_duration);
assert!(duration <= max_duration);
}
fn local_ipv4_addr() -> IpAddr {
Ipv4Addr::new(127, 0, 0, 1).into()
}
fn local_ipv6_addr() -> IpAddr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).into()
}
fn unreachable_ipv4_addr() -> IpAddr {
Ipv4Addr::new(127, 0, 0, 2).into()
}
fn unreachable_ipv6_addr() -> IpAddr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 2).into()
}
fn slow_ipv4_addr() -> IpAddr {
// RFC 6890 reserved IPv4 address.
Ipv4Addr::new(198, 18, 0, 25).into()
}
fn slow_ipv6_addr() -> IpAddr {
// RFC 6890 reserved IPv6 address.
Ipv6Addr::new(2001, 2, 0, 0, 0, 0, 0, 254).into()
}
fn measure_connect(addr: IpAddr) -> (bool, Duration) {
let start = Instant::now();
let result =
std::net::TcpStream::connect_timeout(&(addr, 80).into(), Duration::from_secs(1));
let reachable = result.is_ok() || result.unwrap_err().kind() == io::ErrorKind::TimedOut;
let duration = start.elapsed();
(reachable, duration)
}
}
}