Source code

Revision control

Copy as Markdown

Other Tools

[Chrono][docsrs]: Date and Time for Rust
========================================
[![Chrono GitHub Actions][gh-image]][gh-checks]
[![Chrono on crates.io][cratesio-image]][cratesio]
[![Chrono on docs.rs][docsrs-image]][docsrs]
[![Join the chat at https://gitter.im/chrono-rs/chrono][gitter-image]][gitter]
It aims to be a feature-complete superset of
In particular,
* Chrono strictly adheres to ISO 8601.
* Chrono is timezone-aware by default, with separate timezone-naive types.
* Chrono is space-optimal and (while not being the primary goal) reasonably efficient.
There were several previous attempts to bring a good date and time library to Rust,
which Chrono builds upon and should acknowledge:
* [Initial research on
* Dietrich Epp's [datetime-rs](https://github.com/depp/datetime-rs)
* Luis de Bethencourt's [rust-datetime](https://github.com/luisbg/rust-datetime)
Any significant changes to Chrono are documented in
## Usage
Put this in your `Cargo.toml`:
```toml
[dependencies]
chrono = "0.4"
```
### Features
Chrono supports various runtime environments and operating systems, and has
several features that may be enabled or disabled.
Default features:
- `alloc`: Enable features that depend on allocation (primarily string formatting)
- `std`: Enables functionality that depends on the standard library. This
is a superset of `alloc` and adds interoperation with standard library types
and traits.
- `clock`: enables reading the system time (`now`), independent of whether
`std::time::SystemTime` is present, depends on having a libc.
Optional features:
- `wasmbind`: Enable integration with [wasm-bindgen][] and its `js-sys` project
- [`serde`][]: Enable serialization/deserialization via serde.
- `unstable-locales`: Enable localization. This adds various methods with a
`_localized` suffix. The implementation and API may change or even be
removed in a patch release. Feedback welcome.
See the [cargo docs][] for examples of specifying features.
## Overview
### Duration
Chrono currently uses its own [`Duration`] type to represent the magnitude
of a time span. Since this has the same name as the newer, standard type for
duration, the reference will refer this type as `OldDuration`.
Note that this is an "accurate" duration represented as seconds and
nanoseconds and does not represent "nominal" components such as days or
months.
When the `oldtime` feature is enabled, [`Duration`] is an alias for the
type from v0.1 of the time crate. time v0.1 is deprecated, so new code
should disable the `oldtime` feature and use the `chrono::Duration` type
instead. The `oldtime` feature is enabled by default for backwards
compatibility, but future versions of Chrono are likely to remove the
feature entirely.
Chrono does not yet natively support
but it will be supported in the future.
Meanwhile you can convert between two types with
and
methods.
### Date and Time
Chrono provides a
type to represent a date and a time in a timezone.
For more abstract moment-in-time tracking such as internal timekeeping
that is unconcerned with timezones, consider
which tracks your system clock, or
is an opaque but monotonically-increasing representation of a moment in time.
`DateTime` is timezone-aware and must be constructed from
which defines how the local date is converted to and back from the UTC date.
There are three well-known `TimeZone` implementations:
* [**`Utc`**](https://docs.rs/chrono/0.4/chrono/offset/struct.Utc.html) specifies the UTC time zone. It is most efficient.
* [**`Local`**](https://docs.rs/chrono/0.4/chrono/offset/struct.Local.html) specifies the system local time zone.
an arbitrary, fixed time zone such as UTC+09:00 or UTC-10:30.
This often results from the parsed textual date and time.
Since it stores the most information and does not depend on the system environment,
you would want to normalize other `TimeZone`s into this type.
`DateTime`s with different `TimeZone` types are distinct and do not mix,
but can be converted to each other using
You can get the current date and time in the UTC time zone
or in the local time zone
```rust
use chrono::prelude::*;
let utc: DateTime<Utc> = Utc::now(); // e.g. `2014-11-28T12:45:59.324310806Z`
let local: DateTime<Local> = Local::now(); // e.g. `2014-11-28T21:45:59.324310806+09:00`
```
Alternatively, you can create your own date and time.
This is a bit verbose due to Rust's lack of function and method overloading,
but in turn we get a rich combination of initialization methods.
```rust
use chrono::prelude::*;
use chrono::offset::LocalResult;
let dt = Utc.ymd(2014, 7, 8).and_hms(9, 10, 11); // `2014-07-08T09:10:11Z`
// July 8 is 188th day of the year 2014 (`o` for "ordinal")
assert_eq!(dt, Utc.yo(2014, 189).and_hms(9, 10, 11));
// July 8 is Tuesday in ISO week 28 of the year 2014.
assert_eq!(dt, Utc.isoywd(2014, 28, Weekday::Tue).and_hms(9, 10, 11));
let dt = Utc.ymd(2014, 7, 8).and_hms_milli(9, 10, 11, 12); // `2014-07-08T09:10:11.012Z`
assert_eq!(dt, Utc.ymd(2014, 7, 8).and_hms_micro(9, 10, 11, 12_000));
assert_eq!(dt, Utc.ymd(2014, 7, 8).and_hms_nano(9, 10, 11, 12_000_000));
// dynamic verification
assert_eq!(Utc.ymd_opt(2014, 7, 8).and_hms_opt(21, 15, 33),
LocalResult::Single(Utc.ymd(2014, 7, 8).and_hms(21, 15, 33)));
assert_eq!(Utc.ymd_opt(2014, 7, 8).and_hms_opt(80, 15, 33), LocalResult::None);
assert_eq!(Utc.ymd_opt(2014, 7, 38).and_hms_opt(21, 15, 33), LocalResult::None);
// other time zone objects can be used to construct a local datetime.
// obviously, `local_dt` is normally different from `dt`, but `fixed_dt` should be identical.
let local_dt = Local.ymd(2014, 7, 8).and_hms_milli(9, 10, 11, 12);
let fixed_dt = FixedOffset::east(9 * 3600).ymd(2014, 7, 8).and_hms_milli(18, 10, 11, 12);
assert_eq!(dt, fixed_dt);
```
Various properties are available to the date and time, and can be altered individually.
Most of them are defined in the traits [`Datelike`](https://docs.rs/chrono/0.4/chrono/trait.Datelike.html) and
[`Timelike`](https://docs.rs/chrono/0.4/chrono/trait.Timelike.html) which you should `use` before.
Addition and subtraction is also supported.
The following illustrates most supported operations to the date and time:
```rust
use chrono::prelude::*;
use chrono::Duration;
// assume this returned `2014-11-28T21:45:59.324310806+09:00`:
let dt = FixedOffset::east(9*3600).ymd(2014, 11, 28).and_hms_nano(21, 45, 59, 324310806);
// property accessors
assert_eq!((dt.year(), dt.month(), dt.day()), (2014, 11, 28));
assert_eq!((dt.month0(), dt.day0()), (10, 27)); // for unfortunate souls
assert_eq!((dt.hour(), dt.minute(), dt.second()), (21, 45, 59));
assert_eq!(dt.weekday(), Weekday::Fri);
assert_eq!(dt.weekday().number_from_monday(), 5); // Mon=1, ..., Sun=7
assert_eq!(dt.ordinal(), 332); // the day of year
assert_eq!(dt.num_days_from_ce(), 735565); // the number of days from and including Jan 1, 1
// time zone accessor and manipulation
assert_eq!(dt.offset().fix().local_minus_utc(), 9 * 3600);
assert_eq!(dt.timezone(), FixedOffset::east(9 * 3600));
assert_eq!(dt.with_timezone(&Utc), Utc.ymd(2014, 11, 28).and_hms_nano(12, 45, 59, 324310806));
// a sample of property manipulations (validates dynamically)
assert_eq!(dt.with_day(29).unwrap().weekday(), Weekday::Sat); // 2014-11-29 is Saturday
assert_eq!(dt.with_day(32), None);
assert_eq!(dt.with_year(-300).unwrap().num_days_from_ce(), -109606); // November 29, 301 BCE
// arithmetic operations
let dt1 = Utc.ymd(2014, 11, 14).and_hms(8, 9, 10);
let dt2 = Utc.ymd(2014, 11, 14).and_hms(10, 9, 8);
assert_eq!(dt1.signed_duration_since(dt2), Duration::seconds(-2 * 3600 + 2));
assert_eq!(dt2.signed_duration_since(dt1), Duration::seconds(2 * 3600 - 2));
assert_eq!(Utc.ymd(1970, 1, 1).and_hms(0, 0, 0) + Duration::seconds(1_000_000_000),
Utc.ymd(2001, 9, 9).and_hms(1, 46, 40));
assert_eq!(Utc.ymd(1970, 1, 1).and_hms(0, 0, 0) - Duration::seconds(1_000_000_000),
Utc.ymd(1938, 4, 24).and_hms(22, 13, 20));
```
### Formatting and Parsing
Formatting is done via the [`format`](https://docs.rs/chrono/0.4/chrono/struct.DateTime.html#method.format) method,
which format is equivalent to the familiar `strftime` format.
documentation for full syntax and list of specifiers.
The default `to_string` method and `{:?}` specifier also give a reasonable representation.
for well-known formats.
Chrono now also provides date formatting in almost any language without the
help of an additional C library. This functionality is under the feature
`unstable-locales`:
```text
chrono { version = "0.4", features = ["unstable-locales"]
```
The `unstable-locales` feature requires and implies at least the `alloc` feature.
```rust
use chrono::prelude::*;
let dt = Utc.ymd(2014, 11, 28).and_hms(12, 0, 9);
assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2014-11-28 12:00:09");
assert_eq!(dt.format("%a %b %e %T %Y").to_string(), "Fri Nov 28 12:00:09 2014");
assert_eq!(dt.format_localized("%A %e %B %Y, %T", Locale::fr_BE).to_string(), "vendredi 28 novembre 2014, 12:00:09");
assert_eq!(dt.format("%a %b %e %T %Y").to_string(), dt.format("%c").to_string());
assert_eq!(dt.to_string(), "2014-11-28 12:00:09 UTC");
assert_eq!(dt.to_rfc2822(), "Fri, 28 Nov 2014 12:00:09 +0000");
assert_eq!(dt.to_rfc3339(), "2014-11-28T12:00:09+00:00");
assert_eq!(format!("{:?}", dt), "2014-11-28T12:00:09Z");
// Note that milli/nanoseconds are only printed if they are non-zero
let dt_nano = Utc.ymd(2014, 11, 28).and_hms_nano(12, 0, 9, 1);
assert_eq!(format!("{:?}", dt_nano), "2014-11-28T12:00:09.000000001Z");
```
Parsing can be done with three methods:
1. The standard [`FromStr`](https://doc.rust-lang.org/std/str/trait.FromStr.html) trait
on a string) can be used for parsing `DateTime<FixedOffset>`, `DateTime<Utc>` and
`DateTime<Local>` values. This parses what the `{:?}`
format specifier prints, and requires the offset to be present.
a date and time with offsets and returns `DateTime<FixedOffset>`.
This should be used when the offset is a part of input and the caller cannot guess that.
It *cannot* be used when the offset can be missing.
and
are similar but for well-known formats.
similar but returns `DateTime` of given offset.
When the explicit offset is missing from the input, it simply uses given offset.
It issues an error when the input contains an explicit offset different
from the current offset.
More detailed control over the parsing process is available via
```rust
use chrono::prelude::*;
let dt = Utc.ymd(2014, 11, 28).and_hms(12, 0, 9);
let fixed_dt = dt.with_timezone(&FixedOffset::east(9*3600));
// method 1
assert_eq!("2014-11-28T12:00:09Z".parse::<DateTime<Utc>>(), Ok(dt.clone()));
assert_eq!("2014-11-28T21:00:09+09:00".parse::<DateTime<Utc>>(), Ok(dt.clone()));
assert_eq!("2014-11-28T21:00:09+09:00".parse::<DateTime<FixedOffset>>(), Ok(fixed_dt.clone()));
// method 2
assert_eq!(DateTime::parse_from_str("2014-11-28 21:00:09 +09:00", "%Y-%m-%d %H:%M:%S %z"),
Ok(fixed_dt.clone()));
assert_eq!(DateTime::parse_from_rfc2822("Fri, 28 Nov 2014 21:00:09 +0900"),
Ok(fixed_dt.clone()));
assert_eq!(DateTime::parse_from_rfc3339("2014-11-28T21:00:09+09:00"), Ok(fixed_dt.clone()));
// method 3
assert_eq!(Utc.datetime_from_str("2014-11-28 12:00:09", "%Y-%m-%d %H:%M:%S"), Ok(dt.clone()));
assert_eq!(Utc.datetime_from_str("Fri Nov 28 12:00:09 2014", "%a %b %e %T %Y"), Ok(dt.clone()));
// oops, the year is missing!
assert!(Utc.datetime_from_str("Fri Nov 28 12:00:09", "%a %b %e %T %Y").is_err());
// oops, the format string does not include the year at all!
assert!(Utc.datetime_from_str("Fri Nov 28 12:00:09", "%a %b %e %T").is_err());
// oops, the weekday is incorrect!
assert!(Utc.datetime_from_str("Sat Nov 28 12:00:09 2014", "%a %b %e %T %Y").is_err());
```
documentation for full syntax and list of specifiers.
### Conversion from and to EPOCH timestamps
to construct a [`DateTime<Utc>`](https://docs.rs/chrono/0.4/chrono/struct.DateTime.html) from a UNIX timestamp
(seconds, nanoseconds that passed since January 1st 1970).
Use [`DateTime.timestamp`](https://docs.rs/chrono/0.4/chrono/struct.DateTime.html#method.timestamp) to get the timestamp (in seconds)
from a [`DateTime`](https://docs.rs/chrono/0.4/chrono/struct.DateTime.html). Additionally, you can use
to get the number of additional number of nanoseconds.
```rust
// We need the trait in scope to use Utc::timestamp().
use chrono::{DateTime, TimeZone, Utc};
// Construct a datetime from epoch:
let dt = Utc.timestamp(1_500_000_000, 0);
assert_eq!(dt.to_rfc2822(), "Fri, 14 Jul 2017 02:40:00 +0000");
// Get epoch value from a datetime:
let dt = DateTime::parse_from_rfc2822("Fri, 14 Jul 2017 02:40:00 +0000").unwrap();
assert_eq!(dt.timestamp(), 1_500_000_000);
```
### Individual date
Chrono also provides an individual date type ([**`Date`**](https://docs.rs/chrono/0.4/chrono/struct.Date.html)).
It also has time zones attached, and have to be constructed via time zones.
Most operations available to `DateTime` are also available to `Date` whenever appropriate.
```rust
use chrono::prelude::*;
use chrono::offset::LocalResult;
assert_eq!(Utc::today(), Utc::now().date());
assert_eq!(Local::today(), Local::now().date());
assert_eq!(Utc.ymd(2014, 11, 28).weekday(), Weekday::Fri);
assert_eq!(Utc.ymd_opt(2014, 11, 31), LocalResult::None);
assert_eq!(Utc.ymd(2014, 11, 28).and_hms_milli(7, 8, 9, 10).format("%H%M%S").to_string(),
"070809");
```
There is no timezone-aware `Time` due to the lack of usefulness and also the complexity.
which returns a `Date` which represents its date component.
which simply returns a naive local time described below.
### Naive date and time
Chrono provides naive counterparts to `Date`, (non-existent) `Time` and `DateTime`
They have almost equivalent interfaces as their timezone-aware twins,
but are not associated to time zones obviously and can be quite low-level.
They are mostly useful for building blocks for higher-level types.
Timezone-aware `DateTime` and `Date` types have two methods returning naive versions:
a view to the naive local time,
a view to the naive UTC time.
## Limitations
Only proleptic Gregorian calendar (i.e. extended to support older dates) is supported.
Be very careful if you really have to deal with pre-20C dates, they can be in Julian or others.
Date types are limited in about +/- 262,000 years from the common epoch.
Time types are limited in the nanosecond accuracy.
[Leap seconds are supported in the representation but
(The main reason is that leap seconds are not really predictable.)
Almost *every* operation over the possible leap seconds will ignore them.
Consider using `NaiveDateTime` with the implicit TAI (International Atomic Time) scale
if you want.
Chrono inherently does not support an inaccurate or partial date and time representation.
Any operation that can be ambiguous will return `None` in such cases.
For example, "a month later" of 2014-01-30 is not well-defined
and consequently `Utc.ymd(2014, 1, 30).with_month(2)` returns `None`.
Non ISO week handling is not yet supported.
For now you can use the [chrono_ext](https://crates.io/crates/chrono_ext)
Advanced time zone handling is not yet supported.
For now you can try the [Chrono-tz](https://github.com/chronotope/chrono-tz/) crate instead.