Source code

Revision control

Copy as Markdown

Other Tools

// This file is part of ICU4X.
//
// The contents of this file implement algorithms from Calendrical Calculations
// by Reingold & Dershowitz, Cambridge University Press, 4th edition (2018),
// which have been released as Lisp code at <https://github.com/EdReingold/calendar-code2/>
// under the Apache-2.0 license. Accordingly, this file is released under
// the Apache License, Version 2.0 which can be found at the calendrical_calculations
use crate::astronomy::Location;
use crate::rata_die::{Moment, RataDie};
#[allow(unused_imports)]
use core_maths::*;
pub(crate) trait IntegerRoundings {
fn div_ceil(self, rhs: Self) -> Self;
}
impl IntegerRoundings for i64 {
// copied from std
fn div_ceil(self, rhs: Self) -> Self {
let d = self / rhs;
let r = self % rhs;
if (r > 0 && rhs > 0) || (r < 0 && rhs < 0) {
d + 1
} else {
d
}
}
}
#[test]
fn test_div_ceil() {
assert_eq!(IntegerRoundings::div_ceil(i64::MIN, 1), i64::MIN);
assert_eq!(
IntegerRoundings::div_ceil(i64::MIN, 2),
-4611686018427387904
);
assert_eq!(
IntegerRoundings::div_ceil(i64::MIN, 3),
-3074457345618258602
);
assert_eq!(IntegerRoundings::div_ceil(-10, 1), -10);
assert_eq!(IntegerRoundings::div_ceil(-10, 2), -5);
assert_eq!(IntegerRoundings::div_ceil(-10, 3), -3);
assert_eq!(IntegerRoundings::div_ceil(-9, 1), -9);
assert_eq!(IntegerRoundings::div_ceil(-9, 2), -4);
assert_eq!(IntegerRoundings::div_ceil(-9, 3), -3);
assert_eq!(IntegerRoundings::div_ceil(-8, 1), -8);
assert_eq!(IntegerRoundings::div_ceil(-8, 2), -4);
assert_eq!(IntegerRoundings::div_ceil(-8, 3), -2);
assert_eq!(IntegerRoundings::div_ceil(-2, 1), -2);
assert_eq!(IntegerRoundings::div_ceil(-2, 2), -1);
assert_eq!(IntegerRoundings::div_ceil(-2, 3), 0);
assert_eq!(IntegerRoundings::div_ceil(-1, 1), -1);
assert_eq!(IntegerRoundings::div_ceil(-1, 2), 0);
assert_eq!(IntegerRoundings::div_ceil(-1, 3), 0);
assert_eq!(IntegerRoundings::div_ceil(0, 1), 0);
assert_eq!(IntegerRoundings::div_ceil(0, 2), 0);
assert_eq!(IntegerRoundings::div_ceil(0, 3), 0);
assert_eq!(IntegerRoundings::div_ceil(1, 1), 1);
assert_eq!(IntegerRoundings::div_ceil(1, 2), 1);
assert_eq!(IntegerRoundings::div_ceil(1, 3), 1);
assert_eq!(IntegerRoundings::div_ceil(2, 1), 2);
assert_eq!(IntegerRoundings::div_ceil(2, 2), 1);
assert_eq!(IntegerRoundings::div_ceil(2, 3), 1);
assert_eq!(IntegerRoundings::div_ceil(8, 1), 8);
assert_eq!(IntegerRoundings::div_ceil(8, 2), 4);
assert_eq!(IntegerRoundings::div_ceil(8, 3), 3);
assert_eq!(IntegerRoundings::div_ceil(9, 1), 9);
assert_eq!(IntegerRoundings::div_ceil(9, 2), 5);
assert_eq!(IntegerRoundings::div_ceil(9, 3), 3);
assert_eq!(IntegerRoundings::div_ceil(10, 1), 10);
assert_eq!(IntegerRoundings::div_ceil(10, 2), 5);
assert_eq!(IntegerRoundings::div_ceil(10, 3), 4);
assert_eq!(IntegerRoundings::div_ceil(i64::MAX, 1), 9223372036854775807);
assert_eq!(IntegerRoundings::div_ceil(i64::MAX, 2), 4611686018427387904);
assert_eq!(IntegerRoundings::div_ceil(i64::MAX, 3), 3074457345618258603);
for n in -100..100 {
for d in 1..5 {
let x1 = IntegerRoundings::div_ceil(n, d);
let x2 = (n as f64 / d as f64).ceil();
assert_eq!(x1, x2 as i64);
}
}
}
// Highest power is *last*
pub(crate) fn poly(x: f64, coeffs: &[f64]) -> f64 {
coeffs.iter().rev().fold(0.0, |a, c| a * x + c)
}
// A generic function that finds a value within an interval
// where a certain condition is satisfied.
pub(crate) fn binary_search(
mut l: f64,
mut h: f64,
test: impl Fn(f64) -> bool,
epsilon: f64,
) -> f64 {
debug_assert!(l < h);
loop {
let mid = l + (h - l) / 2.0;
// Determine which direction to go. `test` returns true if we need to go left.
(l, h) = if test(mid) { (l, mid) } else { (mid, h) };
// When the interval width reaches `epsilon`, return the current midpoint.
if (h - l) < epsilon {
return mid;
}
}
}
pub(crate) fn next_moment<F>(mut index: Moment, location: Location, condition: F) -> RataDie
where
F: Fn(Moment, Location) -> bool,
{
loop {
if condition(index, location) {
return index.as_rata_die();
}
index += 1.0;
}
}
pub(crate) fn next<F>(mut index: RataDie, condition: F) -> RataDie
where
F: Fn(RataDie) -> bool,
{
loop {
if condition(index) {
return index;
}
index += 1;
}
}
pub(crate) fn next_u8<F>(mut index: u8, condition: F) -> u8
where
F: Fn(u8) -> bool,
{
loop {
if condition(index) {
return index;
}
index += 1;
}
}
// "Final" is a reserved keyword in rust, which explains the naming convention here.
pub(crate) fn final_func<F>(mut index: i32, condition: F) -> i32
where
F: Fn(i32) -> bool,
{
while condition(index) {
index += 1;
}
index - 1
}
#[test]
fn test_binary_search() {
struct TestCase {
test_fn: fn(f64) -> bool,
range: (f64, f64),
expected: f64,
}
let test_cases = [
TestCase {
test_fn: |x: f64| x >= 4.0,
range: (0.0, 10.0),
expected: 4.0,
},
TestCase {
test_fn: |x: f64| x * x >= 2.0,
range: (0.0, 2.0),
expected: 2.0f64.sqrt(),
},
TestCase {
test_fn: |x: f64| x >= -4.0,
range: (-10.0, 0.0),
expected: -4.0,
},
TestCase {
test_fn: |x: f64| x >= 0.0,
range: (0.0, 10.0),
expected: 0.0,
},
TestCase {
test_fn: |x: f64| x > 10.0,
range: (0.0, 10.0),
expected: 10.0,
},
];
for case in test_cases {
let result = binary_search(case.range.0, case.range.1, case.test_fn, 1e-4);
assert!((result - case.expected).abs() < 0.0001);
}
}
pub(crate) fn invert_angular<F: Fn(f64) -> f64>(f: F, y: f64, r: (f64, f64)) -> f64 {
binary_search(r.0, r.1, |x| (f(x) - y).rem_euclid(360.0) < 180.0, 1e-5)
}
#[test]
fn test_invert_angular() {
struct TestCase {
f: fn(f64) -> f64,
y: f64,
r: (f64, f64),
expected: f64,
}
fn f1(x: f64) -> f64 {
(2.0 * x).rem_euclid(360.0)
}
fn f2(x: f64) -> f64 {
(3.0 * x).rem_euclid(360.0)
}
fn f3(x: f64) -> f64 {
(x).rem_euclid(360.0)
}
// tolerance for comparing floating points.
let tolerance = 1e-5;
let test_cases = [
TestCase {
f: f1,
y: 4.0,
r: (0.0, 10.0),
expected: 4.0,
},
TestCase {
f: f2,
y: 6.0,
r: (0.0, 20.0),
expected: 6.0,
},
TestCase {
f: f3,
y: 400.0,
r: (0.0, 10.0),
expected: 10.0,
},
TestCase {
f: f3,
y: 0.0,
r: (0.0, 10.0),
expected: 0.0,
},
TestCase {
f: f3,
y: 10.0,
r: (0.0, 10.0),
expected: 10.0,
},
];
for case in test_cases {
let x = invert_angular(case.f, case.y, case.r);
assert!((((case.f)(x)).rem_euclid(360.0) - case.expected).abs() < tolerance);
}
}
/// Error returned when casting from an i32
#[derive(Copy, Clone, Debug)]
#[allow(clippy::exhaustive_enums)] // enum is specific to function and has a closed set of possible values
pub enum I32CastError {
/// Less than i32::MIN
BelowMin,
/// Greater than i32::MAX
AboveMax,
}
impl I32CastError {
pub(crate) const fn saturate(self) -> i32 {
match self {
I32CastError::BelowMin => i32::MIN,
I32CastError::AboveMax => i32::MAX,
}
}
}
/// Convert an i64 to i32 and with information on which way it was out of bounds if so
#[inline]
pub const fn i64_to_i32(input: i64) -> Result<i32, I32CastError> {
if input < i32::MIN as i64 {
Err(I32CastError::BelowMin)
} else if input > i32::MAX as i64 {
Err(I32CastError::AboveMax)
} else {
Ok(input as i32)
}
}
/// Convert an i64 to i32 but saturate at th ebounds
#[inline]
pub fn i64_to_saturated_i32(input: i64) -> i32 {
i64_to_i32(input).unwrap_or_else(|i| i.saturate())
}
#[test]
fn test_i64_to_saturated_i32() {
assert_eq!(i64_to_saturated_i32(i64::MIN), i32::MIN);
assert_eq!(i64_to_saturated_i32(-2147483649), -2147483648);
assert_eq!(i64_to_saturated_i32(-2147483648), -2147483648);
assert_eq!(i64_to_saturated_i32(-2147483647), -2147483647);
assert_eq!(i64_to_saturated_i32(-2147483646), -2147483646);
assert_eq!(i64_to_saturated_i32(-100), -100);
assert_eq!(i64_to_saturated_i32(0), 0);
assert_eq!(i64_to_saturated_i32(100), 100);
assert_eq!(i64_to_saturated_i32(2147483646), 2147483646);
assert_eq!(i64_to_saturated_i32(2147483647), 2147483647);
assert_eq!(i64_to_saturated_i32(2147483648), 2147483647);
assert_eq!(i64_to_saturated_i32(2147483649), 2147483647);
assert_eq!(i64_to_saturated_i32(i64::MAX), i32::MAX);
}