Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/rtp_file_reader.h"
#include <map>
#include <string>
#include <vector>
#include "absl/strings/string_view.h"
#include "modules/rtp_rtcp/source/rtp_util.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/system/arch.h"
#include "rtc_base/time_utils.h"
namespace {
constexpr size_t kRtpDumpFirstLineLength = 80;
constexpr uint16_t kRtpDumpPacketHeaderSize = 8;
enum {
kResultFail = -1,
kResultSuccess = 0,
kResultSkip = 1,
};
enum {
kPcapVersionMajor = 2,
kPcapVersionMinor = 4,
kLinktypeNull = 0,
kLinktypeEthernet = 1,
kBsdNullLoopback1 = 0x00000002,
kBsdNullLoopback2 = 0x02000000,
kEthernetIIHeaderMacSkip = 12,
kEthertypeIp = 0x0800,
kIpVersion4 = 4,
kMinIpHeaderLength = 20,
kFragmentOffsetClear = 0x0000,
kFragmentOffsetDoNotFragment = 0x4000,
kProtocolTcp = 0x06,
kProtocolUdp = 0x11,
kUdpHeaderLength = 8,
};
constexpr size_t kMaxReadBufferSize = 4096;
constexpr uint32_t kPcapBOMSwapOrder = 0xd4c3b2a1UL;
constexpr uint32_t kPcapBOMNoSwapOrder = 0xa1b2c3d4UL;
constexpr uint32_t kPcapNgBOMLittleEndian = 0x4d3c2b1aUL;
constexpr uint32_t kPcapNgSectionHeaderBlock = 0x0a0d0d0aUL;
constexpr uint32_t kPcapNgInterfaceDescriptionBlock = 0x00000001LU;
constexpr uint32_t kPcapNgPacketBlock = 0x00000006LU;
#define TRY(expr) \
do { \
if (!(expr)) { \
RTC_LOG(LS_INFO) << "Failed to read"; \
return false; \
} \
} while (0)
#define TRY_PCAP(expr) \
do { \
int r = (expr); \
if (r == kResultFail) { \
RTC_LOG(LS_INFO) << "FAIL at " << __FILE__ << ":" << __LINE__; \
return kResultFail; \
} else if (r == kResultSkip) { \
return kResultSkip; \
} \
} while (0)
bool ReadUint32(uint32_t* out, FILE* file) {
*out = 0;
for (size_t i = 0; i < 4; ++i) {
*out <<= 8;
uint8_t tmp;
if (fread(&tmp, 1, sizeof(uint8_t), file) != sizeof(uint8_t))
return false;
*out |= tmp;
}
return true;
}
bool ReadUint16(uint16_t* out, FILE* file) {
*out = 0;
for (size_t i = 0; i < 2; ++i) {
*out <<= 8;
uint8_t tmp;
if (fread(&tmp, 1, sizeof(uint8_t), file) != sizeof(uint8_t))
return false;
*out |= tmp;
}
return true;
}
} // namespace
namespace webrtc {
namespace test {
class RtpFileReaderImpl : public RtpFileReader {
public:
virtual bool Init(FILE* file, const std::set<uint32_t>& ssrc_filter) = 0;
};
class InterleavedRtpFileReader : public RtpFileReaderImpl {
public:
~InterleavedRtpFileReader() override {
if (file_ != nullptr) {
fclose(file_);
file_ = nullptr;
}
}
bool Init(FILE* file, const std::set<uint32_t>& ssrc_filter) override {
file_ = file;
return true;
}
bool NextPacket(RtpPacket* packet) override {
RTC_DCHECK(file_);
packet->length = RtpPacket::kMaxPacketBufferSize;
uint32_t len = 0;
TRY(ReadUint32(&len, file_));
if (packet->length < len) {
RTC_FATAL() << "Packet is too large to fit: " << len << " bytes vs "
<< packet->length
<< " bytes allocated. Consider increasing the buffer "
<< "size";
}
if (fread(packet->data, 1, len, file_) != len)
return false;
packet->length = len;
packet->original_length = len;
packet->time_ms = time_ms_;
time_ms_ += 5;
return true;
}
private:
FILE* file_ = nullptr;
int64_t time_ms_ = 0;
};
// Read RTP packets from file in rtpdump format, as documented at:
class RtpDumpReader : public RtpFileReaderImpl {
public:
RtpDumpReader() : file_(nullptr) {}
~RtpDumpReader() override {
if (file_ != nullptr) {
fclose(file_);
file_ = nullptr;
}
}
RtpDumpReader(const RtpDumpReader&) = delete;
RtpDumpReader& operator=(const RtpDumpReader&) = delete;
bool Init(FILE* file, const std::set<uint32_t>& ssrc_filter) override {
file_ = file;
char firstline[kRtpDumpFirstLineLength + 1] = {0};
if (fgets(firstline, kRtpDumpFirstLineLength, file_) == nullptr) {
RTC_LOG(LS_INFO) << "Can't read from file";
return false;
}
if (strncmp(firstline, "#!rtpplay", 9) == 0) {
if (strncmp(firstline, "#!rtpplay1.0", 12) != 0) {
RTC_LOG(LS_INFO) << "Wrong rtpplay version, must be 1.0";
return false;
}
} else if (strncmp(firstline, "#!RTPencode", 11) == 0) {
if (strncmp(firstline, "#!RTPencode1.0", 14) != 0) {
RTC_LOG(LS_INFO) << "Wrong RTPencode version, must be 1.0";
return false;
}
} else {
RTC_LOG(LS_INFO)
<< "Input file is neither in rtpplay nor RTPencode format";
return false;
}
uint32_t start_sec;
uint32_t start_usec;
uint32_t source;
uint16_t port;
uint16_t padding;
TRY(ReadUint32(&start_sec, file_));
TRY(ReadUint32(&start_usec, file_));
TRY(ReadUint32(&source, file_));
TRY(ReadUint16(&port, file_));
TRY(ReadUint16(&padding, file_));
return true;
}
bool NextPacket(RtpPacket* packet) override {
uint8_t* rtp_data = packet->data;
packet->length = RtpPacket::kMaxPacketBufferSize;
uint16_t len;
uint16_t plen;
uint32_t offset;
TRY(ReadUint16(&len, file_));
TRY(ReadUint16(&plen, file_));
TRY(ReadUint32(&offset, file_));
// Use 'len' here because a 'plen' of 0 specifies rtcp.
len -= kRtpDumpPacketHeaderSize;
if (packet->length < len) {
RTC_LOG(LS_ERROR) << "Packet is too large to fit: " << len << " bytes vs "
<< packet->length
<< " bytes allocated. Consider increasing the buffer "
"size";
return false;
}
if (fread(rtp_data, 1, len, file_) != len) {
return false;
}
packet->length = len;
packet->original_length = plen;
packet->time_ms = offset;
return true;
}
private:
FILE* file_;
};
// Read RTP packets from file in tcpdump/libpcap format, as documented at:
// Transparently supports PCAPNG as described at
class PcapReader : public RtpFileReaderImpl {
public:
PcapReader()
: file_(nullptr),
swap_pcap_byte_order_(false),
#ifdef WEBRTC_ARCH_BIG_ENDIAN
swap_network_byte_order_(false),
#else
swap_network_byte_order_(true),
#endif
pcapng_(false),
read_buffer_(),
packets_by_ssrc_(),
packets_(),
next_packet_it_() {
}
~PcapReader() override {
if (file_ != nullptr) {
fclose(file_);
file_ = nullptr;
}
}
PcapReader(const PcapReader&) = delete;
PcapReader& operator=(const PcapReader&) = delete;
bool Init(FILE* file, const std::set<uint32_t>& ssrc_filter) override {
return Initialize(file, ssrc_filter) == kResultSuccess;
}
int Initialize(FILE* file, const std::set<uint32_t>& ssrc_filter) {
file_ = file;
size_t total_packet_count = 0;
if (ReadGlobalHeader() < 0) {
return kResultFail;
}
int result;
if (!pcapng_) {
result = ReadPcap(ssrc_filter, total_packet_count);
} else {
result = ReadPcapNg(ssrc_filter, total_packet_count);
}
if (result == kResultFail) {
return kResultFail;
}
RTC_LOG(LS_INFO) << "Total packets in file: " << total_packet_count;
RTC_LOG(LS_INFO) << "Total RTP/RTCP packets: " << packets_.size();
for (SsrcMapIterator mit = packets_by_ssrc_.begin();
mit != packets_by_ssrc_.end(); ++mit) {
uint32_t ssrc = mit->first;
const std::vector<uint32_t>& packet_indices = mit->second;
int pt = packets_[packet_indices[0]].payload_type;
RTC_LOG(LS_INFO) << "SSRC: " << ssrc << ", " << packet_indices.size()
<< " packets, pt=" << pt << ".";
}
// TODO(solenberg): Better validation of identified SSRC streams.
//
// Since we're dealing with raw network data here, we will wrongly identify
// some packets as RTP. When these packets are consumed by RtpPlayer, they
// are unlikely to cause issues as they will ultimately be filtered out by
// the RtpRtcp module. However, we should really do better filtering here,
// which we can accomplish in a number of ways, e.g.:
//
// - Verify that the time stamps and sequence numbers for RTP packets are
// both increasing/decreasing. If they move in different directions, the
// SSRC is likely bogus and can be dropped. (Normally they should be inc-
// reasing but we must allow packet reordering).
// - If RTP sequence number is not changing, drop the stream.
// - Can also use srcip:port->dstip:port pairs, assuming few SSRC collisions
// for up/down streams.
next_packet_it_ = packets_.begin();
return kResultSuccess;
}
int ReadPcap(const std::set<uint32_t>& ssrc_filter,
size_t& total_packet_count) {
uint32_t stream_start_ms = 0;
int32_t next_packet_pos = ftell(file_);
for (;;) {
TRY_PCAP(fseek(file_, next_packet_pos, SEEK_SET));
int result = ReadPacket(&next_packet_pos, stream_start_ms, ssrc_filter);
if (result == kResultFail) {
break;
} else if (result == kResultSuccess && packets_.size() == 1) {
RTC_DCHECK_EQ(stream_start_ms, 0);
PacketIterator it = packets_.begin();
stream_start_ms = it->time_offset_ms;
it->time_offset_ms = 0;
}
total_packet_count++;
}
if (feof(file_) == 0) {
RTC_LOG(LS_ERROR) << "Failed reading file!";
return kResultFail;
}
return kResultSuccess;
}
int ReadPcapNg(const std::set<uint32_t>& ssrc_filter,
size_t& total_packet_count) {
uint32_t stream_start_ms = 0;
int next_packet_pos = 0;
for (;;) {
TRY_PCAP(fseek(file_, next_packet_pos, SEEK_SET));
int result = ReadPacketNg(&next_packet_pos, stream_start_ms, ssrc_filter);
if (result == kResultFail) {
break;
} else if (result == kResultSuccess && packets_.size() == 1) {
RTC_DCHECK_EQ(stream_start_ms, 0);
PacketIterator it = packets_.begin();
stream_start_ms = it->time_offset_ms;
it->time_offset_ms = 0;
}
total_packet_count++;
}
if (feof(file_) == 0) {
RTC_LOG(LS_ERROR) << "Failed reading file!";
return kResultFail;
}
return kResultSuccess;
}
bool NextPacket(RtpPacket* packet) override {
uint32_t length = RtpPacket::kMaxPacketBufferSize;
if (NextPcap(packet->data, &length, &packet->time_ms) != kResultSuccess)
return false;
packet->length = static_cast<size_t>(length);
packet->original_length = packet->length;
return true;
}
virtual int NextPcap(uint8_t* data, uint32_t* length, uint32_t* time_ms) {
RTC_DCHECK(data);
RTC_DCHECK(length);
RTC_DCHECK(time_ms);
if (next_packet_it_ == packets_.end()) {
return -1;
}
if (*length < next_packet_it_->payload_length) {
return -1;
}
TRY_PCAP(fseek(file_, next_packet_it_->pos_in_file, SEEK_SET));
TRY_PCAP(Read(data, next_packet_it_->payload_length));
*length = next_packet_it_->payload_length;
*time_ms = next_packet_it_->time_offset_ms;
next_packet_it_++;
return 0;
}
private:
// A marker of an RTP packet within the file.
struct RtpPacketMarker {
uint32_t time_offset_ms;
uint32_t source_ip;
uint32_t dest_ip;
uint16_t source_port;
uint16_t dest_port;
// Payload type of the RTP packet,
// or RTCP packet type of the first RTCP packet in a compound RTCP packet.
int payload_type;
int32_t pos_in_file; // Byte offset of payload from start of file.
uint32_t payload_length;
};
typedef std::vector<RtpPacketMarker>::iterator PacketIterator;
typedef std::map<uint32_t, std::vector<uint32_t> > SsrcMap;
typedef std::map<uint32_t, std::vector<uint32_t> >::iterator SsrcMapIterator;
int ReadGlobalHeader() {
uint32_t magic;
TRY_PCAP(Read(&magic, false));
if (magic == kPcapBOMSwapOrder) {
swap_pcap_byte_order_ = true;
} else if (magic == kPcapBOMNoSwapOrder) {
swap_pcap_byte_order_ = false;
} else if (magic == kPcapNgSectionHeaderBlock) {
pcapng_ = true;
RTC_LOG(LS_INFO) << "PCAPNG detected, support is experimental";
return kResultSuccess;
} else {
return kResultFail;
}
uint16_t version_major;
uint16_t version_minor;
TRY_PCAP(Read(&version_major, false));
TRY_PCAP(Read(&version_minor, false));
if (version_major != kPcapVersionMajor ||
version_minor != kPcapVersionMinor) {
return kResultFail;
}
int32_t this_zone; // GMT to local correction.
uint32_t sigfigs; // Accuracy of timestamps.
uint32_t snaplen; // Max length of captured packets, in octets.
uint32_t network; // Data link type.
TRY_PCAP(Read(&this_zone, false));
TRY_PCAP(Read(&sigfigs, false));
TRY_PCAP(Read(&snaplen, false));
TRY_PCAP(Read(&network, false));
// Accept only LINKTYPE_NULL and LINKTYPE_ETHERNET.
if (network != kLinktypeNull && network != kLinktypeEthernet) {
return kResultFail;
}
return kResultSuccess;
}
int ProcessPacket(RtpPacketMarker& marker,
const std::set<uint32_t>& ssrc_filter,
rtc::ArrayView<const uint8_t> packet) {
if (IsRtcpPacket(packet)) {
marker.payload_type = packet[1];
packets_.push_back(marker);
} else if (IsRtpPacket(packet)) {
uint32_t ssrc = ParseRtpSsrc(packet);
marker.payload_type = ParseRtpPayloadType(packet);
if (ssrc_filter.empty() || ssrc_filter.find(ssrc) != ssrc_filter.end()) {
packets_by_ssrc_[ssrc].push_back(
static_cast<uint32_t>(packets_.size()));
packets_.push_back(marker);
} else {
return kResultSkip;
}
} else {
RTC_LOG(LS_INFO) << "Not recognized as RTP/RTCP";
return kResultSkip;
}
return kResultSuccess;
}
int ReadPacket(int32_t* next_packet_pos,
uint32_t stream_start_ms,
const std::set<uint32_t>& ssrc_filter) {
RTC_DCHECK(next_packet_pos);
uint32_t ts_sec; // Timestamp seconds.
uint32_t ts_usec; // Timestamp microseconds.
uint32_t incl_len; // Number of octets of packet saved in file.
uint32_t orig_len; // Actual length of packet.
TRY_PCAP(Read(&ts_sec, false));
TRY_PCAP(Read(&ts_usec, false));
TRY_PCAP(Read(&incl_len, false));
TRY_PCAP(Read(&orig_len, false));
*next_packet_pos = ftell(file_) + incl_len;
RtpPacketMarker marker = {0};
marker.time_offset_ms = CalcTimeDelta(ts_sec, ts_usec, stream_start_ms);
TRY_PCAP(ReadPacketHeader(&marker));
marker.pos_in_file = ftell(file_);
if (marker.payload_length > sizeof(read_buffer_)) {
RTC_LOG(LS_ERROR) << "Packet too large!";
return kResultFail;
}
TRY_PCAP(Read(read_buffer_, marker.payload_length));
return ProcessPacket(marker, ssrc_filter,
{read_buffer_, marker.payload_length});
}
int ReadPacketNg(int32_t* next_packet_pos,
uint32_t stream_start_ms,
const std::set<uint32_t>& ssrc_filter) {
uint32_t block_type;
uint32_t block_length;
TRY_PCAP(Read(&block_type, false));
TRY_PCAP(Read(&block_length, false));
if (block_length == 0) {
RTC_LOG(LS_ERROR) << "Empty PCAPNG block";
return kResultFail;
}
*next_packet_pos += block_length;
switch (block_type) {
case kPcapNgSectionHeaderBlock: {
// TODO: https://issues.webrtc.org/issues/351327754 - interpret more of
// this block, in particular the if_tsresol option.
uint32_t byte_order_magic;
TRY_PCAP(Read(&byte_order_magic, false));
swap_pcap_byte_order_ = (byte_order_magic == kPcapNgBOMLittleEndian);
} break;
case kPcapNgInterfaceDescriptionBlock:
break;
case kPcapNgPacketBlock: {
uint32_t interface; // Interface ID. Unused.
uint32_t ts_upper; // Upper 32 bits of timestamp.
uint32_t ts_lower; // Lower 32 bits of timestamp.
uint32_t incl_len; // Number of octets of packet saved in file.
uint32_t orig_len; // Actual length of packet.
TRY_PCAP(Read(&interface, false));
TRY_PCAP(Read(&ts_upper, false));
TRY_PCAP(Read(&ts_lower, false));
TRY_PCAP(Read(&incl_len, false));
TRY_PCAP(Read(&orig_len, false));
RtpPacketMarker marker = {0};
// Note: Wireshark writes nanoseconds most of the time, see comments in
// it's pcapio.c. We are only interesting in the time difference so
// truncating to uint32_t is ok.
uint64_t timestamp_ms =
((static_cast<uint64_t>(ts_upper) << 32) | ts_lower) /
rtc::kNumMicrosecsPerSec;
marker.time_offset_ms =
static_cast<uint32_t>(timestamp_ms) - stream_start_ms;
TRY_PCAP(ReadPacketHeader(&marker));
marker.pos_in_file = ftell(file_);
if (marker.payload_length > sizeof(read_buffer_)) {
RTC_LOG(LS_ERROR) << "Packet too large!";
return kResultFail;
}
TRY_PCAP(Read(read_buffer_, marker.payload_length));
if (ProcessPacket(marker, ssrc_filter,
{read_buffer_, marker.payload_length}) !=
kResultSuccess) {
return kResultFail;
}
return kResultSuccess;
}
}
return kResultSkip;
}
int ReadPacketHeader(RtpPacketMarker* marker) {
int32_t file_pos = ftell(file_);
// Check for BSD null/loopback frame header. The header is just 4 bytes in
// native byte order, so we check for both versions as we don't care about
// the header as such and will likely fail reading the IP header if this is
// something else than null/loopback.
uint32_t protocol;
TRY_PCAP(Read(&protocol, true));
if (protocol == kBsdNullLoopback1 || protocol == kBsdNullLoopback2) {
int result = ReadXxpIpHeader(marker);
if (result != kResultSkip) {
return result;
}
}
TRY_PCAP(fseek(file_, file_pos, SEEK_SET));
// Check for Ethernet II, IP frame header.
uint16_t type;
TRY_PCAP(Skip(kEthernetIIHeaderMacSkip)); // Source+destination MAC.
TRY_PCAP(Read(&type, true));
if (type == kEthertypeIp) {
int result = ReadXxpIpHeader(marker);
if (result != kResultSkip) {
return result;
}
}
return kResultSkip;
}
uint32_t CalcTimeDelta(uint32_t ts_sec, uint32_t ts_usec, uint32_t start_ms) {
// Round to nearest ms.
uint64_t t2_ms =
((static_cast<uint64_t>(ts_sec) * 1000000) + ts_usec + 500) / 1000;
uint64_t t1_ms = static_cast<uint64_t>(start_ms);
if (t2_ms < t1_ms) {
return 0;
} else {
return t2_ms - t1_ms;
}
}
int ReadXxpIpHeader(RtpPacketMarker* marker) {
RTC_DCHECK(marker);
uint16_t version;
uint16_t length;
uint16_t id;
uint16_t fragment;
uint16_t protocol;
uint16_t checksum;
TRY_PCAP(Read(&version, true));
TRY_PCAP(Read(&length, true));
TRY_PCAP(Read(&id, true));
TRY_PCAP(Read(&fragment, true));
TRY_PCAP(Read(&protocol, true));
TRY_PCAP(Read(&checksum, true));
TRY_PCAP(Read(&marker->source_ip, true));
TRY_PCAP(Read(&marker->dest_ip, true));
if (((version >> 12) & 0x000f) != kIpVersion4) {
RTC_LOG(LS_INFO) << "IP header is not IPv4";
return kResultSkip;
}
if (fragment != kFragmentOffsetClear &&
fragment != kFragmentOffsetDoNotFragment) {
RTC_LOG(LS_INFO) << "IP fragments cannot be handled";
return kResultSkip;
}
// Skip remaining fields of IP header.
uint16_t header_length = (version & 0x0f00) >> (8 - 2);
RTC_DCHECK_GE(header_length, kMinIpHeaderLength);
TRY_PCAP(Skip(header_length - kMinIpHeaderLength));
protocol = protocol & 0x00ff;
if (protocol == kProtocolTcp) {
RTC_LOG(LS_INFO) << "TCP packets are not handled";
return kResultSkip;
} else if (protocol == kProtocolUdp) {
uint16_t length;
uint16_t checksum;
TRY_PCAP(Read(&marker->source_port, true));
TRY_PCAP(Read(&marker->dest_port, true));
TRY_PCAP(Read(&length, true));
TRY_PCAP(Read(&checksum, true));
marker->payload_length = length - kUdpHeaderLength;
} else {
RTC_LOG(LS_INFO) << "Unknown transport (expected UDP or TCP)";
return kResultSkip;
}
return kResultSuccess;
}
int Read(uint32_t* out, bool expect_network_order) {
uint32_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint32_t), file_) != sizeof(uint32_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 24) & 0x000000ff) | (tmp << 24) |
((tmp >> 8) & 0x0000ff00) | ((tmp << 8) & 0x00ff0000);
}
*out = tmp;
return kResultSuccess;
}
int Read(uint16_t* out, bool expect_network_order) {
uint16_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint16_t), file_) != sizeof(uint16_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 8) & 0x00ff) | (tmp << 8);
}
*out = tmp;
return kResultSuccess;
}
int Read(uint8_t* out, uint32_t count) {
if (fread(out, 1, count, file_) != count) {
return kResultFail;
}
return kResultSuccess;
}
int Read(int32_t* out, bool expect_network_order) {
int32_t tmp = 0;
if (fread(&tmp, 1, sizeof(uint32_t), file_) != sizeof(uint32_t)) {
return kResultFail;
}
if ((!expect_network_order && swap_pcap_byte_order_) ||
(expect_network_order && swap_network_byte_order_)) {
tmp = ((tmp >> 24) & 0x000000ff) | (tmp << 24) |
((tmp >> 8) & 0x0000ff00) | ((tmp << 8) & 0x00ff0000);
}
*out = tmp;
return kResultSuccess;
}
int Skip(uint32_t length) {
if (fseek(file_, length, SEEK_CUR) != 0) {
return kResultFail;
}
return kResultSuccess;
}
FILE* file_;
bool swap_pcap_byte_order_;
const bool swap_network_byte_order_;
bool pcapng_;
uint8_t read_buffer_[kMaxReadBufferSize];
SsrcMap packets_by_ssrc_;
std::vector<RtpPacketMarker> packets_;
PacketIterator next_packet_it_;
};
RtpFileReaderImpl* CreateReaderForFormat(RtpFileReader::FileFormat format) {
RtpFileReaderImpl* reader = nullptr;
switch (format) {
case RtpFileReader::kPcap:
reader = new PcapReader();
break;
case RtpFileReader::kRtpDump:
reader = new RtpDumpReader();
break;
case RtpFileReader::kLengthPacketInterleaved:
reader = new InterleavedRtpFileReader();
break;
}
return reader;
}
RtpFileReader* RtpFileReader::Create(FileFormat format,
const uint8_t* data,
size_t size,
const std::set<uint32_t>& ssrc_filter) {
std::unique_ptr<RtpFileReaderImpl> reader(CreateReaderForFormat(format));
FILE* file = tmpfile();
if (file == nullptr) {
RTC_LOG(LS_ERROR) << "ERROR: Can't open file from memory buffer.";
return nullptr;
}
if (fwrite(reinterpret_cast<const void*>(data), sizeof(uint8_t), size,
file) != size) {
return nullptr;
}
rewind(file);
if (!reader->Init(file, ssrc_filter)) {
return nullptr;
}
return reader.release();
}
RtpFileReader* RtpFileReader::Create(FileFormat format,
absl::string_view filename,
const std::set<uint32_t>& ssrc_filter) {
RtpFileReaderImpl* reader = CreateReaderForFormat(format);
std::string filename_str = std::string(filename);
FILE* file = fopen(filename_str.c_str(), "rb");
if (file == nullptr) {
RTC_LOG(LS_ERROR) << "ERROR: Can't open file: '" << filename_str << "'.";
return nullptr;
}
if (!reader->Init(file, ssrc_filter)) {
delete reader;
return nullptr;
}
return reader;
}
RtpFileReader* RtpFileReader::Create(FileFormat format,
absl::string_view filename) {
return RtpFileReader::Create(format, filename, std::set<uint32_t>());
}
} // namespace test
} // namespace webrtc