Source code

Revision control

Copy as Markdown

Other Tools

#!/usr/bin/env python3
# Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
"""Displays statistics and plots graphs from RTC protobuf dump."""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import collections
import optparse
import os
import sys
from six.moves import range
from six.moves import zip
import matplotlib.pyplot as plt
import numpy
import misc
import pb_parse
class RTPStatistics:
"""Has methods for calculating and plotting RTP stream statistics."""
BANDWIDTH_SMOOTHING_WINDOW_SIZE = 10
PLOT_RESOLUTION_MS = 50
def __init__(self, data_points):
"""Initializes object with data_points and computes simple statistics.
Computes percentages of number of packets and packet sizes by
SSRC.
Args:
data_points: list of pb_parse.DataPoints on which statistics are
calculated.
"""
self.data_points = data_points
self.ssrc_frequencies = misc.NormalizeCounter(
collections.Counter([pt.ssrc for pt in self.data_points]))
self.ssrc_size_table = misc.SsrcNormalizedSizeTable(self.data_points)
self.bandwidth_kbps = None
self.smooth_bw_kbps = None
def PrintHeaderStatistics(self):
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
"SeqNo", "TimeStamp", "SendTime", "Size", "PT", "M", "SSRC"))
for point in self.data_points:
print("{:>6}{:>14}{:>14}{:>6}{:>6}{:>3}{:>11}".format(
point.sequence_number, point.timestamp,
int(point.arrival_timestamp_ms), point.size, point.payload_type,
point.marker_bit, "0x{:x}".format(point.ssrc)))
def PrintSsrcInfo(self, ssrc_id, ssrc):
"""Prints packet and size statistics for a given SSRC.
Args:
ssrc_id: textual identifier of SSRC printed beside statistics for it.
ssrc: SSRC by which to filter data and display statistics
"""
filtered_ssrc = [point for point in self.data_points if point.ssrc == ssrc]
payloads = misc.NormalizeCounter(
collections.Counter([point.payload_type for point in filtered_ssrc]))
payload_info = "payload type(s): {}".format(", ".join(
str(payload) for payload in payloads))
print("{} 0x{:x} {}, {:.2f}% packets, {:.2f}% data".format(
ssrc_id, ssrc, payload_info, self.ssrc_frequencies[ssrc] * 100,
self.ssrc_size_table[ssrc] * 100))
print(" packet sizes:")
(bin_counts,
bin_bounds) = numpy.histogram([point.size for point in filtered_ssrc],
bins=5,
density=False)
bin_proportions = bin_counts / sum(bin_counts)
print("\n".join([
" {:.1f} - {:.1f}: {:.2f}%".format(bin_bounds[i], bin_bounds[i + 1],
bin_proportions[i] * 100)
for i in range(len(bin_proportions))
]))
def ChooseSsrc(self):
"""Queries user for SSRC."""
if len(self.ssrc_frequencies) == 1:
chosen_ssrc = list(self.ssrc_frequencies.keys())[0]
self.PrintSsrcInfo("", chosen_ssrc)
return chosen_ssrc
ssrc_is_incoming = misc.SsrcDirections(self.data_points)
incoming = [ssrc for ssrc in ssrc_is_incoming if ssrc_is_incoming[ssrc]]
outgoing = [ssrc for ssrc in ssrc_is_incoming if not ssrc_is_incoming[ssrc]]
print("\nIncoming:\n")
for (i, ssrc) in enumerate(incoming):
self.PrintSsrcInfo(i, ssrc)
print("\nOutgoing:\n")
for (i, ssrc) in enumerate(outgoing):
self.PrintSsrcInfo(i + len(incoming), ssrc)
while True:
chosen_index = int(misc.get_input("choose one> "))
if 0 <= chosen_index < len(self.ssrc_frequencies):
return (incoming + outgoing)[chosen_index]
print("Invalid index!")
def FilterSsrc(self, chosen_ssrc):
"""Filters and wraps data points.
Removes data points with `ssrc != chosen_ssrc`. Unwraps sequence
numbers and timestamps for the chosen selection.
"""
self.data_points = [
point for point in self.data_points if point.ssrc == chosen_ssrc
]
unwrapped_sequence_numbers = misc.Unwrap(
[point.sequence_number for point in self.data_points], 2**16 - 1)
for (data_point, sequence_number) in zip(self.data_points,
unwrapped_sequence_numbers):
data_point.sequence_number = sequence_number
unwrapped_timestamps = misc.Unwrap(
[point.timestamp for point in self.data_points], 2**32 - 1)
for (data_point, timestamp) in zip(self.data_points, unwrapped_timestamps):
data_point.timestamp = timestamp
def PrintSequenceNumberStatistics(self):
seq_no_set = set(point.sequence_number for point in self.data_points)
missing_sequence_numbers = max(seq_no_set) - min(seq_no_set) + (
1 - len(seq_no_set))
print("Missing sequence numbers: {} out of {} ({:.2f}%)".format(
missing_sequence_numbers, len(seq_no_set),
100 * missing_sequence_numbers / len(seq_no_set)))
print("Duplicated packets: {}".format(
len(self.data_points) - len(seq_no_set)))
print("Reordered packets: {}".format(
misc.CountReordered(
[point.sequence_number for point in self.data_points])))
def EstimateFrequency(self, always_query_sample_rate):
"""Estimates frequency and updates data.
Guesses the most probable frequency by looking at changes in
timestamps (RFC 3550 section 5.1), calculates clock drifts and
sending time of packets. Updates `self.data_points` with changes
in delay and send time.
"""
delta_timestamp = (self.data_points[-1].timestamp -
self.data_points[0].timestamp)
delta_arr_timestamp = float((self.data_points[-1].arrival_timestamp_ms -
self.data_points[0].arrival_timestamp_ms))
freq_est = delta_timestamp / delta_arr_timestamp
freq_vec = [8, 16, 32, 48, 90]
freq = None
for f in freq_vec:
if abs((freq_est - f) / f) < 0.05:
freq = f
print("Estimated frequency: {:.3f}kHz".format(freq_est))
if freq is None or always_query_sample_rate:
if not always_query_sample_rate:
print("Frequency could not be guessed.", end=" ")
freq = int(misc.get_input("Input frequency (in kHz)> "))
else:
print("Guessed frequency: {}kHz".format(freq))
for point in self.data_points:
point.real_send_time_ms = (point.timestamp -
self.data_points[0].timestamp) / freq
point.delay = point.arrival_timestamp_ms - point.real_send_time_ms
def PrintDurationStatistics(self):
"""Prints delay, clock drift and bitrate statistics."""
min_delay = min(point.delay for point in self.data_points)
for point in self.data_points:
point.absdelay = point.delay - min_delay
stream_duration_sender = self.data_points[-1].real_send_time_ms / 1000
print("Stream duration at sender: {:.1f} seconds".format(
stream_duration_sender))
arrival_timestamps_ms = [
point.arrival_timestamp_ms for point in self.data_points
]
stream_duration_receiver = (max(arrival_timestamps_ms) -
min(arrival_timestamps_ms)) / 1000
print("Stream duration at receiver: {:.1f} seconds".format(
stream_duration_receiver))
print("Clock drift: {:.2f}%".format(
100 * (stream_duration_receiver / stream_duration_sender - 1)))
total_size = sum(point.size for point in self.data_points) * 8 / 1000
print("Send average bitrate: {:.2f} kbps".format(total_size /
stream_duration_sender))
print("Receive average bitrate: {:.2f} kbps".format(
total_size / stream_duration_receiver))
def RemoveReordered(self):
last = self.data_points[0]
data_points_ordered = [last]
for point in self.data_points[1:]:
if point.sequence_number > last.sequence_number and (
point.real_send_time_ms > last.real_send_time_ms):
data_points_ordered.append(point)
last = point
self.data_points = data_points_ordered
def ComputeBandwidth(self):
"""Computes bandwidth averaged over several consecutive packets.
The number of consecutive packets used in the average is
BANDWIDTH_SMOOTHING_WINDOW_SIZE. Averaging is done with
numpy.correlate.
"""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
(self.bandwidth_kbps, _) = numpy.histogram(
[point.real_send_time_ms for point in self.data_points],
bins=numpy.arange(start_ms, stop_ms, RTPStatistics.PLOT_RESOLUTION_MS),
weights=[
point.size * 8 / RTPStatistics.PLOT_RESOLUTION_MS
for point in self.data_points
])
correlate_filter = (
numpy.ones(RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE) /
RTPStatistics.BANDWIDTH_SMOOTHING_WINDOW_SIZE)
self.smooth_bw_kbps = numpy.correlate(self.bandwidth_kbps, correlate_filter)
def PlotStatistics(self):
"""Plots changes in delay and average bandwidth."""
start_ms = self.data_points[0].real_send_time_ms
stop_ms = self.data_points[-1].real_send_time_ms
time_axis = numpy.arange(start_ms / 1000, stop_ms / 1000,
RTPStatistics.PLOT_RESOLUTION_MS / 1000)
delay = CalculateDelay(start_ms, stop_ms, RTPStatistics.PLOT_RESOLUTION_MS,
self.data_points)
plt.figure(1)
plt.plot(time_axis, delay[:len(time_axis)])
plt.xlabel("Send time [s]")
plt.ylabel("Relative transport delay [ms]")
plt.figure(2)
plt.plot(time_axis[:len(self.smooth_bw_kbps)], self.smooth_bw_kbps)
plt.xlabel("Send time [s]")
plt.ylabel("Bandwidth [kbps]")
plt.show()
def CalculateDelay(start, stop, step, points):
"""Quantizes the time coordinates for the delay.
Quantizes points by rounding the timestamps downwards to the nearest
point in the time sequence start, start+step, start+2*step... Takes
the average of the delays of points rounded to the same. Returns
masked array, in which time points with no value are masked.
"""
grouped_delays = [[] for _ in numpy.arange(start, stop + step, step)]
rounded_value_index = lambda x: int((x - start) / step)
for point in points:
grouped_delays[rounded_value_index(point.real_send_time_ms)].append(
point.absdelay)
regularized_delays = [
numpy.average(arr) if arr else -1 for arr in grouped_delays
]
return numpy.ma.masked_values(regularized_delays, -1)
def main():
usage = "Usage: %prog [options] <filename of rtc event log>"
parser = optparse.OptionParser(usage=usage)
parser.add_option("--dump_header_to_stdout",
default=False,
action="store_true",
help="print header info to stdout; similar to rtp_analyze")
parser.add_option("--query_sample_rate",
default=False,
action="store_true",
help="always query user for real sample rate")
parser.add_option("--working_directory",
default=None,
action="store",
help="directory in which to search for relative paths")
(options, args) = parser.parse_args()
if len(args) < 1:
parser.print_help()
sys.exit(0)
input_file = args[0]
if options.working_directory and not os.path.isabs(input_file):
input_file = os.path.join(options.working_directory, input_file)
data_points = pb_parse.ParseProtobuf(input_file)
rtp_stats = RTPStatistics(data_points)
if options.dump_header_to_stdout:
print("Printing header info to stdout.", file=sys.stderr)
rtp_stats.PrintHeaderStatistics()
sys.exit(0)
chosen_ssrc = rtp_stats.ChooseSsrc()
print("Chosen SSRC: 0X{:X}".format(chosen_ssrc))
rtp_stats.FilterSsrc(chosen_ssrc)
print("Statistics:")
rtp_stats.PrintSequenceNumberStatistics()
rtp_stats.EstimateFrequency(options.query_sample_rate)
rtp_stats.PrintDurationStatistics()
rtp_stats.RemoveReordered()
rtp_stats.ComputeBandwidth()
rtp_stats.PlotStatistics()
if __name__ == "__main__":
main()