Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_device/include/test_audio_device.h"
#include <algorithm>
#include <array>
#include <memory>
#include <utility>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/audio/audio_device_defines.h"
#include "api/task_queue/task_queue_factory.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "common_audio/wav_file.h"
#include "common_audio/wav_header.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/synchronization/mutex.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace {
void RunWavTest(const std::vector<int16_t>& input_samples,
const std::vector<int16_t>& expected_samples) {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
const std::string output_filename = test::OutputPathWithRandomDirectory() +
"BoundedWavFileWriterTest_" +
test_info->name() + ".wav";
static const size_t kSamplesPerFrame = 8;
static const int kSampleRate = kSamplesPerFrame * 100;
EXPECT_EQ(TestAudioDeviceModule::SamplesPerFrame(kSampleRate),
kSamplesPerFrame);
// Test through file name API.
{
std::unique_ptr<TestAudioDeviceModule::Renderer> writer =
TestAudioDeviceModule::CreateBoundedWavFileWriter(output_filename, 800);
for (size_t i = 0; i < input_samples.size(); i += kSamplesPerFrame) {
EXPECT_TRUE(writer->Render(rtc::ArrayView<const int16_t>(
&input_samples[i],
std::min(kSamplesPerFrame, input_samples.size() - i))));
}
}
{
WavReader reader(output_filename);
std::vector<int16_t> read_samples(expected_samples.size());
EXPECT_EQ(expected_samples.size(),
reader.ReadSamples(read_samples.size(), read_samples.data()));
EXPECT_EQ(expected_samples, read_samples);
EXPECT_EQ(0u, reader.ReadSamples(read_samples.size(), read_samples.data()));
}
remove(output_filename.c_str());
}
TEST(BoundedWavFileWriterTest, NoSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 3, 88,
1222, -1213, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples = kInputSamples;
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, SomeStartSilence) {
static const std::vector<int16_t> kInputSamples = {
0, 0, 0, 0, 3, 0, 0, 0, 0, 3, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 10,
kInputSamples.end());
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, NegativeStartSilence) {
static const std::vector<int16_t> kInputSamples = {
0, -4, -6, 0, 3, 0, 0, 0, 0, 3, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 2,
kInputSamples.end());
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, SomeEndSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 9);
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, DoubleEndSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 0, 0,
0, -1213, -13222, -7, -3525, 5787, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 2);
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, DoubleSilence) {
static const std::vector<int16_t> kInputSamples = {0, -1213, -13222, -7,
-3525, 5787, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 1,
kInputSamples.end() - 2);
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(BoundedWavFileWriterTest, EndSilenceCutoff) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 1, 0, 0, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 4);
RunWavTest(kInputSamples, kExpectedSamples);
}
TEST(WavFileReaderTest, RepeatedTrueWithSingleFrameFileReadTwice) {
static const std::vector<int16_t> kInputSamples = {75, 1234, 243, -1231,
-22222, 0, 3, 88};
static const rtc::BufferT<int16_t> kExpectedSamples(kInputSamples.data(),
kInputSamples.size());
const std::string output_filename = test::OutputPathWithRandomDirectory() +
"WavFileReaderTest_RepeatedTrue_" +
".wav";
static const size_t kSamplesPerFrame = 8;
static const int kSampleRate = kSamplesPerFrame * 100;
EXPECT_EQ(TestAudioDeviceModule::SamplesPerFrame(kSampleRate),
kSamplesPerFrame);
// Create raw file to read.
{
std::unique_ptr<TestAudioDeviceModule::Renderer> writer =
TestAudioDeviceModule::CreateWavFileWriter(output_filename, 800);
for (size_t i = 0; i < kInputSamples.size(); i += kSamplesPerFrame) {
EXPECT_TRUE(writer->Render(rtc::ArrayView<const int16_t>(
&kInputSamples[i],
std::min(kSamplesPerFrame, kInputSamples.size() - i))));
}
}
{
std::unique_ptr<TestAudioDeviceModule::Capturer> reader =
TestAudioDeviceModule::CreateWavFileReader(output_filename, true);
rtc::BufferT<int16_t> buffer(kExpectedSamples.size());
EXPECT_TRUE(reader->Capture(&buffer));
EXPECT_EQ(kExpectedSamples, buffer);
EXPECT_TRUE(reader->Capture(&buffer));
EXPECT_EQ(kExpectedSamples, buffer);
}
remove(output_filename.c_str());
}
void RunRawTestNoRepeat(const std::vector<int16_t>& input_samples,
const std::vector<int16_t>& expected_samples) {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
const std::string output_filename = test::OutputPathWithRandomDirectory() +
"RawFileTest_" + test_info->name() +
".raw";
static const size_t kSamplesPerFrame = 8;
static const int kSampleRate = kSamplesPerFrame * 100;
EXPECT_EQ(TestAudioDeviceModule::SamplesPerFrame(kSampleRate),
kSamplesPerFrame);
// Test through file name API.
{
std::unique_ptr<TestAudioDeviceModule::Renderer> writer =
TestAudioDeviceModule::CreateRawFileWriter(
output_filename, /*sampling_frequency_in_hz=*/800);
for (size_t i = 0; i < input_samples.size(); i += kSamplesPerFrame) {
EXPECT_TRUE(writer->Render(rtc::ArrayView<const int16_t>(
&input_samples[i],
std::min(kSamplesPerFrame, input_samples.size() - i))));
}
}
{
std::unique_ptr<TestAudioDeviceModule::Capturer> reader =
TestAudioDeviceModule::CreateRawFileReader(
output_filename, /*sampling_frequency_in_hz=*/800,
/*num_channels=*/2, /*repeat=*/false);
rtc::BufferT<int16_t> buffer(expected_samples.size());
rtc::BufferT<int16_t> expected_buffer(expected_samples.size());
expected_buffer.SetData(expected_samples);
EXPECT_TRUE(reader->Capture(&buffer));
EXPECT_EQ(expected_buffer, buffer);
EXPECT_FALSE(reader->Capture(&buffer));
EXPECT_TRUE(buffer.empty());
}
remove(output_filename.c_str());
}
TEST(RawFileWriterTest, NoSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 3, 88,
1222, -1213, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples = kInputSamples;
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, SomeStartSilence) {
static const std::vector<int16_t> kInputSamples = {
0, 0, 0, 0, 3, 0, 0, 0, 0, 3, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 10,
kInputSamples.end());
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, NegativeStartSilence) {
static const std::vector<int16_t> kInputSamples = {
0, -4, -6, 0, 3, 0, 0, 0, 0, 3, -13222, -7, -3525, 5787, -25247, 8};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 2,
kInputSamples.end());
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, SomeEndSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 9);
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, DoubleEndSilence) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 0, 0,
0, -1213, -13222, -7, -3525, 5787, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 2);
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, DoubleSilence) {
static const std::vector<int16_t> kInputSamples = {0, -1213, -13222, -7,
-3525, 5787, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin() + 1,
kInputSamples.end() - 2);
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, EndSilenceCutoff) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 1, 0, 0, 0, 0};
static const std::vector<int16_t> kExpectedSamples(kInputSamples.begin(),
kInputSamples.end() - 4);
RunRawTestNoRepeat(kInputSamples, kExpectedSamples);
}
TEST(RawFileWriterTest, Repeat) {
static const std::vector<int16_t> kInputSamples = {
75, 1234, 243, -1231, -22222, 0, 3, 88,
1222, -1213, -13222, -7, -3525, 5787, -25247, 8};
static const rtc::BufferT<int16_t> kExpectedSamples(kInputSamples.data(),
kInputSamples.size());
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
const std::string output_filename = test::OutputPathWithRandomDirectory() +
"RawFileTest_" + test_info->name() + "_" +
std::to_string(std::rand()) + ".raw";
static const size_t kSamplesPerFrame = 8;
static const int kSampleRate = kSamplesPerFrame * 100;
EXPECT_EQ(TestAudioDeviceModule::SamplesPerFrame(kSampleRate),
kSamplesPerFrame);
// Test through file name API.
{
std::unique_ptr<TestAudioDeviceModule::Renderer> writer =
TestAudioDeviceModule::CreateRawFileWriter(
output_filename, /*sampling_frequency_in_hz=*/800);
for (size_t i = 0; i < kInputSamples.size(); i += kSamplesPerFrame) {
EXPECT_TRUE(writer->Render(rtc::ArrayView<const int16_t>(
&kInputSamples[i],
std::min(kSamplesPerFrame, kInputSamples.size() - i))));
}
}
{
std::unique_ptr<TestAudioDeviceModule::Capturer> reader =
TestAudioDeviceModule::CreateRawFileReader(
output_filename, /*sampling_frequency_in_hz=*/800,
/*num_channels=*/2, /*repeat=*/true);
rtc::BufferT<int16_t> buffer(kExpectedSamples.size());
EXPECT_TRUE(reader->Capture(&buffer));
EXPECT_EQ(kExpectedSamples, buffer);
EXPECT_TRUE(reader->Capture(&buffer));
EXPECT_EQ(kExpectedSamples, buffer);
}
remove(output_filename.c_str());
}
TEST(PulsedNoiseCapturerTest, SetMaxAmplitude) {
const int16_t kAmplitude = 50;
std::unique_ptr<TestAudioDeviceModule::PulsedNoiseCapturer> capturer =
TestAudioDeviceModule::CreatePulsedNoiseCapturer(
kAmplitude, /*sampling_frequency_in_hz=*/8000);
rtc::BufferT<int16_t> recording_buffer;
// Verify that the capturer doesn't create entries louder than than
// kAmplitude. Since the pulse generator alternates between writing
// zeroes and actual entries, we need to do the capturing twice.
capturer->Capture(&recording_buffer);
capturer->Capture(&recording_buffer);
int16_t max_sample =
*std::max_element(recording_buffer.begin(), recording_buffer.end());
EXPECT_LE(max_sample, kAmplitude);
// Increase the amplitude and verify that the samples can now be louder
// than the previous max.
capturer->SetMaxAmplitude(kAmplitude * 2);
capturer->Capture(&recording_buffer);
capturer->Capture(&recording_buffer);
max_sample =
*std::max_element(recording_buffer.begin(), recording_buffer.end());
EXPECT_GT(max_sample, kAmplitude);
}
using ::testing::ElementsAre;
constexpr Timestamp kStartTime = Timestamp::Millis(10000);
class TestAudioTransport : public AudioTransport {
public:
enum class Mode { kPlaying, kRecording };
explicit TestAudioTransport(Mode mode) : mode_(mode) {}
~TestAudioTransport() override = default;
int32_t RecordedDataIsAvailable(
const void* audioSamples,
size_t samples_per_channel,
size_t bytes_per_sample,
size_t number_of_channels,
uint32_t samples_per_second,
uint32_t total_delay_ms,
int32_t clock_drift,
uint32_t current_mic_level,
bool key_pressed,
uint32_t& new_mic_level,
absl::optional<int64_t> estimated_capture_time_ns) override {
new_mic_level = 1;
if (mode_ != Mode::kRecording) {
EXPECT_TRUE(false)
<< "NeedMorePlayData mustn't be called when mode isn't kRecording";
return -1;
}
MutexLock lock(&mutex_);
samples_per_channel_.push_back(samples_per_channel);
number_of_channels_.push_back(number_of_channels);
bytes_per_sample_.push_back(bytes_per_sample);
samples_per_second_.push_back(samples_per_second);
return 0;
}
int32_t NeedMorePlayData(size_t samples_per_channel,
size_t bytes_per_sample,
size_t number_of_channels,
uint32_t samples_per_second,
void* audio_samples,
size_t& samples_out,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) override {
const size_t num_bytes = samples_per_channel * number_of_channels;
std::memset(audio_samples, 1, num_bytes);
samples_out = samples_per_channel * number_of_channels;
*elapsed_time_ms = 0;
*ntp_time_ms = 0;
if (mode_ != Mode::kPlaying) {
EXPECT_TRUE(false)
<< "NeedMorePlayData mustn't be called when mode isn't kPlaying";
return -1;
}
MutexLock lock(&mutex_);
samples_per_channel_.push_back(samples_per_channel);
number_of_channels_.push_back(number_of_channels);
bytes_per_sample_.push_back(bytes_per_sample);
samples_per_second_.push_back(samples_per_second);
return 0;
}
int32_t RecordedDataIsAvailable(const void* audio_samples,
size_t samples_per_channel,
size_t bytes_per_sample,
size_t number_of_channels,
uint32_t samples_per_second,
uint32_t total_delay_ms,
int32_t clockDrift,
uint32_t current_mic_level,
bool key_pressed,
uint32_t& new_mic_level) override {
RTC_CHECK(false) << "This methods should be never executed";
}
void PullRenderData(int bits_per_sample,
int sample_rate,
size_t number_of_channels,
size_t number_of_frames,
void* audio_data,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) override {
RTC_CHECK(false) << "This methods should be never executed";
}
std::vector<size_t> samples_per_channel() const {
MutexLock lock(&mutex_);
return samples_per_channel_;
}
std::vector<size_t> number_of_channels() const {
MutexLock lock(&mutex_);
return number_of_channels_;
}
std::vector<size_t> bytes_per_sample() const {
MutexLock lock(&mutex_);
return bytes_per_sample_;
}
std::vector<size_t> samples_per_second() const {
MutexLock lock(&mutex_);
return samples_per_second_;
}
private:
const Mode mode_;
mutable Mutex mutex_;
std::vector<size_t> samples_per_channel_ RTC_GUARDED_BY(mutex_);
std::vector<size_t> number_of_channels_ RTC_GUARDED_BY(mutex_);
std::vector<size_t> bytes_per_sample_ RTC_GUARDED_BY(mutex_);
std::vector<size_t> samples_per_second_ RTC_GUARDED_BY(mutex_);
};
TEST(TestAudioDeviceModuleTest, CreatedADMCanRecord) {
GlobalSimulatedTimeController time_controller(kStartTime);
TestAudioTransport audio_transport(TestAudioTransport::Mode::kRecording);
std::unique_ptr<TestAudioDeviceModule::PulsedNoiseCapturer> capturer =
TestAudioDeviceModule::CreatePulsedNoiseCapturer(
/*max_amplitude=*/1000,
/*sampling_frequency_in_hz=*/48000, /*num_channels=*/2);
rtc::scoped_refptr<AudioDeviceModule> adm = TestAudioDeviceModule::Create(
time_controller.GetTaskQueueFactory(), std::move(capturer),
/*renderer=*/nullptr);
ASSERT_EQ(adm->RegisterAudioCallback(&audio_transport), 0);
ASSERT_EQ(adm->Init(), 0);
EXPECT_FALSE(adm->RecordingIsInitialized());
ASSERT_EQ(adm->InitRecording(), 0);
EXPECT_TRUE(adm->RecordingIsInitialized());
ASSERT_EQ(adm->StartRecording(), 0);
time_controller.AdvanceTime(TimeDelta::Millis(10));
ASSERT_TRUE(adm->Recording());
time_controller.AdvanceTime(TimeDelta::Millis(10));
ASSERT_EQ(adm->StopRecording(), 0);
EXPECT_THAT(audio_transport.samples_per_channel(),
ElementsAre(480, 480, 480));
EXPECT_THAT(audio_transport.number_of_channels(), ElementsAre(2, 2, 2));
EXPECT_THAT(audio_transport.bytes_per_sample(), ElementsAre(4, 4, 4));
EXPECT_THAT(audio_transport.samples_per_second(),
ElementsAre(48000, 48000, 48000));
}
TEST(TestAudioDeviceModuleTest, CreatedADMCanPlay) {
GlobalSimulatedTimeController time_controller(kStartTime);
TestAudioTransport audio_transport(TestAudioTransport::Mode::kPlaying);
std::unique_ptr<TestAudioDeviceModule::Renderer> renderer =
TestAudioDeviceModule::CreateDiscardRenderer(
/*sampling_frequency_in_hz=*/48000, /*num_channels=*/2);
rtc::scoped_refptr<AudioDeviceModule> adm =
TestAudioDeviceModule::Create(time_controller.GetTaskQueueFactory(),
/*capturer=*/nullptr, std::move(renderer));
ASSERT_EQ(adm->RegisterAudioCallback(&audio_transport), 0);
ASSERT_EQ(adm->Init(), 0);
EXPECT_FALSE(adm->PlayoutIsInitialized());
ASSERT_EQ(adm->InitPlayout(), 0);
EXPECT_TRUE(adm->PlayoutIsInitialized());
ASSERT_EQ(adm->StartPlayout(), 0);
time_controller.AdvanceTime(TimeDelta::Millis(10));
ASSERT_TRUE(adm->Playing());
time_controller.AdvanceTime(TimeDelta::Millis(10));
ASSERT_EQ(adm->StopPlayout(), 0);
EXPECT_THAT(audio_transport.samples_per_channel(),
ElementsAre(480, 480, 480));
EXPECT_THAT(audio_transport.number_of_channels(), ElementsAre(2, 2, 2));
EXPECT_THAT(audio_transport.bytes_per_sample(), ElementsAre(4, 4, 4));
EXPECT_THAT(audio_transport.samples_per_second(),
ElementsAre(48000, 48000, 48000));
}
} // namespace
} // namespace webrtc