Source code
Revision control
Copy as Markdown
Other Tools
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef LIB_JXL_MODULAR_ENCODING_ENC_MA_H_
#define LIB_JXL_MODULAR_ENCODING_ENC_MA_H_
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <vector>
#include "lib/jxl/base/status.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/modular/encoding/dec_ma.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/options.h"
namespace jxl {
// Struct to collect all the data needed to build a tree.
struct TreeSamples {
bool HasSamples() const {
return !residuals.empty() && !residuals[0].empty();
}
size_t NumDistinctSamples() const { return sample_counts.size(); }
size_t NumSamples() const { return num_samples; }
// Set the predictor to use. Must be called before adding any samples.
Status SetPredictor(Predictor predictor,
ModularOptions::TreeMode wp_tree_mode);
// Set the properties to use. Must be called before adding any samples.
Status SetProperties(const std::vector<uint32_t> &properties,
ModularOptions::TreeMode wp_tree_mode);
size_t Token(size_t pred, size_t i) const { return residuals[pred][i].tok; }
size_t NBits(size_t pred, size_t i) const { return residuals[pred][i].nbits; }
size_t Count(size_t i) const { return sample_counts[i]; }
size_t PredictorIndex(Predictor predictor) const {
const auto predictor_elem =
std::find(predictors.begin(), predictors.end(), predictor);
JXL_DASSERT(predictor_elem != predictors.end());
return predictor_elem - predictors.begin();
}
size_t PropertyIndex(size_t property) const {
const auto property_elem =
std::find(props_to_use.begin(), props_to_use.end(), property);
JXL_DASSERT(property_elem != props_to_use.end());
return property_elem - props_to_use.begin();
}
size_t NumPropertyValues(size_t property_index) const {
return compact_properties[property_index].size() + 1;
}
// Returns the *quantized* property value.
size_t Property(size_t property_index, size_t i) const {
return props[property_index][i];
}
int UnquantizeProperty(size_t property_index, uint32_t quant) const {
JXL_DASSERT(quant < compact_properties[property_index].size());
return compact_properties[property_index][quant];
}
Predictor PredictorFromIndex(size_t index) const {
JXL_DASSERT(index < predictors.size());
return predictors[index];
}
size_t PropertyFromIndex(size_t index) const {
JXL_DASSERT(index < props_to_use.size());
return props_to_use[index];
}
size_t NumPredictors() const { return predictors.size(); }
size_t NumProperties() const { return props_to_use.size(); }
// Preallocate data for a given number of samples. MUST be called before
// adding any sample.
void PrepareForSamples(size_t num_samples);
// Add a sample.
void AddSample(pixel_type_w pixel, const Properties &properties,
const pixel_type_w *predictions);
// Pre-cluster property values.
void PreQuantizeProperties(
const StaticPropRange &range,
const std::vector<ModularMultiplierInfo> &multiplier_info,
const std::vector<uint32_t> &group_pixel_count,
const std::vector<uint32_t> &channel_pixel_count,
std::vector<pixel_type> &pixel_samples,
std::vector<pixel_type> &diff_samples, size_t max_property_values);
void AllSamplesDone() { dedup_table_ = std::vector<uint32_t>(); }
uint32_t QuantizeProperty(uint32_t prop, pixel_type v) const {
v = std::min(std::max(v, -kPropertyRange), kPropertyRange) + kPropertyRange;
return property_mapping[prop][v];
}
// Swaps samples in position a and b. Does nothing if a == b.
void Swap(size_t a, size_t b);
// Cycles samples: a -> b -> c -> a. We assume a <= b <= c, so that we can
// just call Swap(a, b) if b==c.
void ThreeShuffle(size_t a, size_t b, size_t c);
private:
// TODO(veluca): as the total number of properties and predictors are known
// before adding any samples, it might be better to interleave predictors,
// properties and counts in a single vector to improve locality.
// A first attempt at doing this actually results in much slower encoding,
// possibly because of the more complex addressing.
struct ResidualToken {
uint8_t tok;
uint8_t nbits;
};
// Residual information: token and number of extra bits, per predictor.
std::vector<std::vector<ResidualToken>> residuals;
// Number of occurrences of each sample.
std::vector<uint16_t> sample_counts;
// Property values, quantized to at most 256 distinct values.
std::vector<std::vector<uint8_t>> props;
// Decompactification info for `props`.
std::vector<std::vector<int32_t>> compact_properties;
// List of properties to use.
std::vector<uint32_t> props_to_use;
// List of predictors to use.
std::vector<Predictor> predictors;
// Mapping property value -> quantized property value.
static constexpr int32_t kPropertyRange = 511;
std::vector<std::vector<uint8_t>> property_mapping;
// Number of samples seen.
size_t num_samples = 0;
// Table for deduplication.
static constexpr uint32_t kDedupEntryUnused{static_cast<uint32_t>(-1)};
std::vector<uint32_t> dedup_table_;
// Functions for sample deduplication.
bool IsSameSample(size_t a, size_t b) const;
size_t Hash1(size_t a) const;
size_t Hash2(size_t a) const;
void InitTable(size_t log_size);
// Returns true if `a` was already present in the table.
bool AddToTableAndMerge(size_t a);
void AddToTable(size_t a);
};
Status TokenizeTree(const Tree &tree, std::vector<Token> *tokens,
Tree *decoder_tree);
void CollectPixelSamples(const Image &image, const ModularOptions &options,
uint32_t group_id,
std::vector<uint32_t> &group_pixel_count,
std::vector<uint32_t> &channel_pixel_count,
std::vector<pixel_type> &pixel_samples,
std::vector<pixel_type> &diff_samples);
Status ComputeBestTree(TreeSamples &tree_samples, float threshold,
const std::vector<ModularMultiplierInfo> &mul_info,
StaticPropRange static_prop_range,
float fast_decode_multiplier, Tree *tree);
} // namespace jxl
#endif // LIB_JXL_MODULAR_ENCODING_ENC_MA_H_