Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2018, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "vcs_version.h"
#include <errno.h>
#include <string.h>
#if defined(__linux__) && HAVE_DLSYM
#include <dlfcn.h>
#endif
#include "dav1d/dav1d.h"
#include "dav1d/data.h"
#include "common/validate.h"
#include "src/cpu.h"
#include "src/fg_apply.h"
#include "src/internal.h"
#include "src/log.h"
#include "src/obu.h"
#include "src/qm.h"
#include "src/ref.h"
#include "src/thread_task.h"
#include "src/wedge.h"
static COLD void init_internal(void) {
dav1d_init_cpu();
dav1d_init_ii_wedge_masks();
dav1d_init_intra_edge_tree();
dav1d_init_qm_tables();
dav1d_init_thread();
}
COLD const char *dav1d_version(void) {
return DAV1D_VERSION;
}
COLD unsigned dav1d_version_api(void) {
return (DAV1D_API_VERSION_MAJOR << 16) |
(DAV1D_API_VERSION_MINOR << 8) |
(DAV1D_API_VERSION_PATCH << 0);
}
COLD void dav1d_default_settings(Dav1dSettings *const s) {
s->n_threads = 0;
s->max_frame_delay = 0;
s->apply_grain = 1;
s->allocator.cookie = NULL;
s->allocator.alloc_picture_callback = dav1d_default_picture_alloc;
s->allocator.release_picture_callback = dav1d_default_picture_release;
s->logger.cookie = NULL;
s->logger.callback = dav1d_log_default_callback;
s->operating_point = 0;
s->all_layers = 1; // just until the tests are adjusted
s->frame_size_limit = 0;
s->strict_std_compliance = 0;
s->output_invisible_frames = 0;
s->inloop_filters = DAV1D_INLOOPFILTER_ALL;
s->decode_frame_type = DAV1D_DECODEFRAMETYPE_ALL;
}
static void close_internal(Dav1dContext **const c_out, int flush);
NO_SANITIZE("cfi-icall") // CFI is broken with dlsym()
static COLD size_t get_stack_size_internal(const pthread_attr_t *const thread_attr) {
#if defined(__linux__) && HAVE_DLSYM && defined(__GLIBC__)
/* glibc has an issue where the size of the TLS is subtracted from the stack
* size instead of allocated separately. As a result the specified stack
* size may be insufficient when used in an application with large amounts
* of TLS data. The following is a workaround to compensate for that.
size_t (*const get_minstack)(const pthread_attr_t*) =
dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
if (get_minstack)
return get_minstack(thread_attr) - PTHREAD_STACK_MIN;
#endif
return 0;
}
static COLD void get_num_threads(Dav1dContext *const c, const Dav1dSettings *const s,
unsigned *n_tc, unsigned *n_fc)
{
/* ceil(sqrt(n)) */
static const uint8_t fc_lut[49] = {
1, /* 1 */
2, 2, 2, /* 2- 4 */
3, 3, 3, 3, 3, /* 5- 9 */
4, 4, 4, 4, 4, 4, 4, /* 10-16 */
5, 5, 5, 5, 5, 5, 5, 5, 5, /* 17-25 */
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, /* 26-36 */
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, /* 37-49 */
};
*n_tc = s->n_threads ? s->n_threads :
iclip(dav1d_num_logical_processors(c), 1, DAV1D_MAX_THREADS);
*n_fc = s->max_frame_delay ? umin(s->max_frame_delay, *n_tc) :
*n_tc < 50 ? fc_lut[*n_tc - 1] : 8; // min(8, ceil(sqrt(n)))
}
COLD int dav1d_get_frame_delay(const Dav1dSettings *const s) {
unsigned n_tc, n_fc;
validate_input_or_ret(s != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->n_threads >= 0 &&
s->n_threads <= DAV1D_MAX_THREADS, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->max_frame_delay >= 0 &&
s->max_frame_delay <= DAV1D_MAX_FRAME_DELAY, DAV1D_ERR(EINVAL));
get_num_threads(NULL, s, &n_tc, &n_fc);
return n_fc;
}
COLD int dav1d_open(Dav1dContext **const c_out, const Dav1dSettings *const s) {
static pthread_once_t initted = PTHREAD_ONCE_INIT;
pthread_once(&initted, init_internal);
validate_input_or_ret(c_out != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(s != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->n_threads >= 0 &&
s->n_threads <= DAV1D_MAX_THREADS, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->max_frame_delay >= 0 &&
s->max_frame_delay <= DAV1D_MAX_FRAME_DELAY, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->allocator.alloc_picture_callback != NULL,
DAV1D_ERR(EINVAL));
validate_input_or_ret(s->allocator.release_picture_callback != NULL,
DAV1D_ERR(EINVAL));
validate_input_or_ret(s->operating_point >= 0 &&
s->operating_point <= 31, DAV1D_ERR(EINVAL));
validate_input_or_ret(s->decode_frame_type >= DAV1D_DECODEFRAMETYPE_ALL &&
s->decode_frame_type <= DAV1D_DECODEFRAMETYPE_KEY, DAV1D_ERR(EINVAL));
pthread_attr_t thread_attr;
if (pthread_attr_init(&thread_attr)) return DAV1D_ERR(ENOMEM);
size_t stack_size = 1024 * 1024 + get_stack_size_internal(&thread_attr);
pthread_attr_setstacksize(&thread_attr, stack_size);
Dav1dContext *const c = *c_out = dav1d_alloc_aligned(ALLOC_COMMON_CTX, sizeof(*c), 64);
if (!c) goto error;
memset(c, 0, sizeof(*c));
c->allocator = s->allocator;
c->logger = s->logger;
c->apply_grain = s->apply_grain;
c->operating_point = s->operating_point;
c->all_layers = s->all_layers;
c->frame_size_limit = s->frame_size_limit;
c->strict_std_compliance = s->strict_std_compliance;
c->output_invisible_frames = s->output_invisible_frames;
c->inloop_filters = s->inloop_filters;
c->decode_frame_type = s->decode_frame_type;
dav1d_data_props_set_defaults(&c->cached_error_props);
if (dav1d_mem_pool_init(ALLOC_OBU_HDR, &c->seq_hdr_pool) ||
dav1d_mem_pool_init(ALLOC_OBU_HDR, &c->frame_hdr_pool) ||
dav1d_mem_pool_init(ALLOC_SEGMAP, &c->segmap_pool) ||
dav1d_mem_pool_init(ALLOC_REFMVS, &c->refmvs_pool) ||
dav1d_mem_pool_init(ALLOC_PIC_CTX, &c->pic_ctx_pool) ||
dav1d_mem_pool_init(ALLOC_CDF, &c->cdf_pool))
{
goto error;
}
if (c->allocator.alloc_picture_callback == dav1d_default_picture_alloc &&
c->allocator.release_picture_callback == dav1d_default_picture_release)
{
if (c->allocator.cookie) goto error;
if (dav1d_mem_pool_init(ALLOC_PIC, &c->picture_pool)) goto error;
c->allocator.cookie = c->picture_pool;
} else if (c->allocator.alloc_picture_callback == dav1d_default_picture_alloc ||
c->allocator.release_picture_callback == dav1d_default_picture_release)
{
goto error;
}
/* On 32-bit systems extremely large frame sizes can cause overflows in
* dav1d_decode_frame() malloc size calculations. Prevent that from occuring
* by enforcing a maximum frame size limit, chosen to roughly correspond to
* the largest size possible to decode without exhausting virtual memory. */
if (sizeof(size_t) < 8 && s->frame_size_limit - 1 >= 8192 * 8192) {
c->frame_size_limit = 8192 * 8192;
if (s->frame_size_limit)
dav1d_log(c, "Frame size limit reduced from %u to %u.\n",
s->frame_size_limit, c->frame_size_limit);
}
c->flush = &c->flush_mem;
atomic_init(c->flush, 0);
get_num_threads(c, s, &c->n_tc, &c->n_fc);
c->fc = dav1d_alloc_aligned(ALLOC_THREAD_CTX, sizeof(*c->fc) * c->n_fc, 32);
if (!c->fc) goto error;
memset(c->fc, 0, sizeof(*c->fc) * c->n_fc);
c->tc = dav1d_alloc_aligned(ALLOC_THREAD_CTX, sizeof(*c->tc) * c->n_tc, 64);
if (!c->tc) goto error;
memset(c->tc, 0, sizeof(*c->tc) * c->n_tc);
if (c->n_tc > 1) {
if (pthread_mutex_init(&c->task_thread.lock, NULL)) goto error;
if (pthread_cond_init(&c->task_thread.cond, NULL)) {
pthread_mutex_destroy(&c->task_thread.lock);
goto error;
}
if (pthread_cond_init(&c->task_thread.delayed_fg.cond, NULL)) {
pthread_cond_destroy(&c->task_thread.cond);
pthread_mutex_destroy(&c->task_thread.lock);
goto error;
}
c->task_thread.cur = c->n_fc;
atomic_init(&c->task_thread.reset_task_cur, UINT_MAX);
atomic_init(&c->task_thread.cond_signaled, 0);
c->task_thread.inited = 1;
}
if (c->n_fc > 1) {
const size_t out_delayed_sz = sizeof(*c->frame_thread.out_delayed) * c->n_fc;
c->frame_thread.out_delayed =
dav1d_malloc(ALLOC_THREAD_CTX, out_delayed_sz);
if (!c->frame_thread.out_delayed) goto error;
memset(c->frame_thread.out_delayed, 0, out_delayed_sz);
}
for (unsigned n = 0; n < c->n_fc; n++) {
Dav1dFrameContext *const f = &c->fc[n];
if (c->n_tc > 1) {
if (pthread_mutex_init(&f->task_thread.lock, NULL)) goto error;
if (pthread_cond_init(&f->task_thread.cond, NULL)) {
pthread_mutex_destroy(&f->task_thread.lock);
goto error;
}
if (pthread_mutex_init(&f->task_thread.pending_tasks.lock, NULL)) {
pthread_cond_destroy(&f->task_thread.cond);
pthread_mutex_destroy(&f->task_thread.lock);
goto error;
}
}
f->c = c;
f->task_thread.ttd = &c->task_thread;
f->lf.last_sharpness = -1;
}
for (unsigned m = 0; m < c->n_tc; m++) {
Dav1dTaskContext *const t = &c->tc[m];
t->f = &c->fc[0];
t->task_thread.ttd = &c->task_thread;
t->c = c;
memset(t->cf_16bpc, 0, sizeof(t->cf_16bpc));
if (c->n_tc > 1) {
if (pthread_mutex_init(&t->task_thread.td.lock, NULL)) goto error;
if (pthread_cond_init(&t->task_thread.td.cond, NULL)) {
pthread_mutex_destroy(&t->task_thread.td.lock);
goto error;
}
if (pthread_create(&t->task_thread.td.thread, &thread_attr, dav1d_worker_task, t)) {
pthread_cond_destroy(&t->task_thread.td.cond);
pthread_mutex_destroy(&t->task_thread.td.lock);
goto error;
}
t->task_thread.td.inited = 1;
}
}
dav1d_pal_dsp_init(&c->pal_dsp);
dav1d_refmvs_dsp_init(&c->refmvs_dsp);
pthread_attr_destroy(&thread_attr);
return 0;
error:
if (c) close_internal(c_out, 0);
pthread_attr_destroy(&thread_attr);
return DAV1D_ERR(ENOMEM);
}
static int has_grain(const Dav1dPicture *const pic)
{
const Dav1dFilmGrainData *fgdata = &pic->frame_hdr->film_grain.data;
return fgdata->num_y_points || fgdata->num_uv_points[0] ||
fgdata->num_uv_points[1] || (fgdata->clip_to_restricted_range &&
fgdata->chroma_scaling_from_luma);
}
static int output_image(Dav1dContext *const c, Dav1dPicture *const out)
{
int res = 0;
Dav1dThreadPicture *const in = (c->all_layers || !c->max_spatial_id)
? &c->out : &c->cache;
if (!c->apply_grain || !has_grain(&in->p)) {
dav1d_picture_move_ref(out, &in->p);
dav1d_thread_picture_unref(in);
goto end;
}
res = dav1d_apply_grain(c, out, &in->p);
dav1d_thread_picture_unref(in);
end:
if (!c->all_layers && c->max_spatial_id && c->out.p.data[0]) {
dav1d_thread_picture_move_ref(in, &c->out);
}
return res;
}
static int output_picture_ready(Dav1dContext *const c, const int drain) {
if (c->cached_error) return 1;
if (!c->all_layers && c->max_spatial_id) {
if (c->out.p.data[0] && c->cache.p.data[0]) {
if (c->max_spatial_id == c->cache.p.frame_hdr->spatial_id ||
c->out.flags & PICTURE_FLAG_NEW_TEMPORAL_UNIT)
return 1;
dav1d_thread_picture_unref(&c->cache);
dav1d_thread_picture_move_ref(&c->cache, &c->out);
return 0;
} else if (c->cache.p.data[0] && drain) {
return 1;
} else if (c->out.p.data[0]) {
dav1d_thread_picture_move_ref(&c->cache, &c->out);
return 0;
}
}
return !!c->out.p.data[0];
}
static int drain_picture(Dav1dContext *const c, Dav1dPicture *const out) {
unsigned drain_count = 0;
int drained = 0;
do {
const unsigned next = c->frame_thread.next;
Dav1dFrameContext *const f = &c->fc[next];
pthread_mutex_lock(&c->task_thread.lock);
while (f->n_tile_data > 0)
pthread_cond_wait(&f->task_thread.cond,
&f->task_thread.ttd->lock);
Dav1dThreadPicture *const out_delayed =
&c->frame_thread.out_delayed[next];
if (out_delayed->p.data[0] || atomic_load(&f->task_thread.error)) {
unsigned first = atomic_load(&c->task_thread.first);
if (first + 1U < c->n_fc)
atomic_fetch_add(&c->task_thread.first, 1U);
else
atomic_store(&c->task_thread.first, 0);
atomic_compare_exchange_strong(&c->task_thread.reset_task_cur,
&first, UINT_MAX);
if (c->task_thread.cur && c->task_thread.cur < c->n_fc)
c->task_thread.cur--;
drained = 1;
} else if (drained) {
pthread_mutex_unlock(&c->task_thread.lock);
break;
}
if (++c->frame_thread.next == c->n_fc)
c->frame_thread.next = 0;
pthread_mutex_unlock(&c->task_thread.lock);
const int error = f->task_thread.retval;
if (error) {
f->task_thread.retval = 0;
dav1d_data_props_copy(&c->cached_error_props, &out_delayed->p.m);
dav1d_thread_picture_unref(out_delayed);
return error;
}
if (out_delayed->p.data[0]) {
const unsigned progress =
atomic_load_explicit(&out_delayed->progress[1],
memory_order_relaxed);
if ((out_delayed->visible || c->output_invisible_frames) &&
progress != FRAME_ERROR)
{
dav1d_thread_picture_ref(&c->out, out_delayed);
c->event_flags |= dav1d_picture_get_event_flags(out_delayed);
}
dav1d_thread_picture_unref(out_delayed);
if (output_picture_ready(c, 0))
return output_image(c, out);
}
} while (++drain_count < c->n_fc);
if (output_picture_ready(c, 1))
return output_image(c, out);
return DAV1D_ERR(EAGAIN);
}
static int gen_picture(Dav1dContext *const c)
{
Dav1dData *const in = &c->in;
if (output_picture_ready(c, 0))
return 0;
while (in->sz > 0) {
const ptrdiff_t res = dav1d_parse_obus(c, in);
if (res < 0) {
dav1d_data_unref_internal(in);
} else {
assert((size_t)res <= in->sz);
in->sz -= res;
in->data += res;
if (!in->sz) dav1d_data_unref_internal(in);
}
if (output_picture_ready(c, 0))
break;
if (res < 0)
return (int)res;
}
return 0;
}
int dav1d_send_data(Dav1dContext *const c, Dav1dData *const in)
{
validate_input_or_ret(c != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(in != NULL, DAV1D_ERR(EINVAL));
if (in->data) {
validate_input_or_ret(in->sz > 0 && in->sz <= SIZE_MAX / 2, DAV1D_ERR(EINVAL));
c->drain = 0;
}
if (c->in.data)
return DAV1D_ERR(EAGAIN);
dav1d_data_ref(&c->in, in);
int res = gen_picture(c);
if (!res)
dav1d_data_unref_internal(in);
return res;
}
int dav1d_get_picture(Dav1dContext *const c, Dav1dPicture *const out)
{
validate_input_or_ret(c != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(out != NULL, DAV1D_ERR(EINVAL));
const int drain = c->drain;
c->drain = 1;
int res = gen_picture(c);
if (res < 0)
return res;
if (c->cached_error) {
const int res = c->cached_error;
c->cached_error = 0;
return res;
}
if (output_picture_ready(c, c->n_fc == 1))
return output_image(c, out);
if (c->n_fc > 1 && drain)
return drain_picture(c, out);
return DAV1D_ERR(EAGAIN);
}
int dav1d_apply_grain(Dav1dContext *const c, Dav1dPicture *const out,
const Dav1dPicture *const in)
{
validate_input_or_ret(c != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(out != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(in != NULL, DAV1D_ERR(EINVAL));
if (!has_grain(in)) {
dav1d_picture_ref(out, in);
return 0;
}
int res = dav1d_picture_alloc_copy(c, out, in->p.w, in);
if (res < 0) goto error;
if (c->n_tc > 1) {
dav1d_task_delayed_fg(c, out, in);
} else {
switch (out->p.bpc) {
#if CONFIG_8BPC
case 8:
dav1d_apply_grain_8bpc(&c->dsp[0].fg, out, in);
break;
#endif
#if CONFIG_16BPC
case 10:
case 12:
dav1d_apply_grain_16bpc(&c->dsp[(out->p.bpc >> 1) - 4].fg, out, in);
break;
#endif
default: abort();
}
}
return 0;
error:
dav1d_picture_unref_internal(out);
return res;
}
void dav1d_flush(Dav1dContext *const c) {
dav1d_data_unref_internal(&c->in);
if (c->out.p.frame_hdr)
dav1d_thread_picture_unref(&c->out);
if (c->cache.p.frame_hdr)
dav1d_thread_picture_unref(&c->cache);
c->drain = 0;
c->cached_error = 0;
for (int i = 0; i < 8; i++) {
if (c->refs[i].p.p.frame_hdr)
dav1d_thread_picture_unref(&c->refs[i].p);
dav1d_ref_dec(&c->refs[i].segmap);
dav1d_ref_dec(&c->refs[i].refmvs);
dav1d_cdf_thread_unref(&c->cdf[i]);
}
c->frame_hdr = NULL;
c->seq_hdr = NULL;
dav1d_ref_dec(&c->seq_hdr_ref);
c->mastering_display = NULL;
c->content_light = NULL;
c->itut_t35 = NULL;
c->n_itut_t35 = 0;
dav1d_ref_dec(&c->mastering_display_ref);
dav1d_ref_dec(&c->content_light_ref);
dav1d_ref_dec(&c->itut_t35_ref);
dav1d_data_props_unref_internal(&c->cached_error_props);
if (c->n_fc == 1 && c->n_tc == 1) return;
atomic_store(c->flush, 1);
// stop running tasks in worker threads
if (c->n_tc > 1) {
pthread_mutex_lock(&c->task_thread.lock);
for (unsigned i = 0; i < c->n_tc; i++) {
Dav1dTaskContext *const tc = &c->tc[i];
while (!tc->task_thread.flushed) {
pthread_cond_wait(&tc->task_thread.td.cond, &c->task_thread.lock);
}
}
for (unsigned i = 0; i < c->n_fc; i++) {
c->fc[i].task_thread.task_head = NULL;
c->fc[i].task_thread.task_tail = NULL;
c->fc[i].task_thread.task_cur_prev = NULL;
c->fc[i].task_thread.pending_tasks.head = NULL;
c->fc[i].task_thread.pending_tasks.tail = NULL;
atomic_init(&c->fc[i].task_thread.pending_tasks.merge, 0);
}
atomic_init(&c->task_thread.first, 0);
c->task_thread.cur = c->n_fc;
atomic_store(&c->task_thread.reset_task_cur, UINT_MAX);
atomic_store(&c->task_thread.cond_signaled, 0);
pthread_mutex_unlock(&c->task_thread.lock);
}
// wait for threads to complete flushing
if (c->n_fc > 1) {
for (unsigned n = 0, next = c->frame_thread.next; n < c->n_fc; n++, next++) {
if (next == c->n_fc) next = 0;
Dav1dFrameContext *const f = &c->fc[next];
dav1d_decode_frame_exit(f, -1);
f->n_tile_data = 0;
f->task_thread.retval = 0;
Dav1dThreadPicture *out_delayed = &c->frame_thread.out_delayed[next];
if (out_delayed->p.frame_hdr) {
dav1d_thread_picture_unref(out_delayed);
}
}
c->frame_thread.next = 0;
}
atomic_store(c->flush, 0);
}
COLD void dav1d_close(Dav1dContext **const c_out) {
validate_input(c_out != NULL);
#if TRACK_HEAP_ALLOCATIONS
dav1d_log_alloc_stats(*c_out);
#endif
close_internal(c_out, 1);
}
static COLD void close_internal(Dav1dContext **const c_out, int flush) {
Dav1dContext *const c = *c_out;
if (!c) return;
if (flush) dav1d_flush(c);
if (c->tc) {
struct TaskThreadData *ttd = &c->task_thread;
if (ttd->inited) {
pthread_mutex_lock(&ttd->lock);
for (unsigned n = 0; n < c->n_tc && c->tc[n].task_thread.td.inited; n++)
c->tc[n].task_thread.die = 1;
pthread_cond_broadcast(&ttd->cond);
pthread_mutex_unlock(&ttd->lock);
for (unsigned n = 0; n < c->n_tc; n++) {
Dav1dTaskContext *const pf = &c->tc[n];
if (!pf->task_thread.td.inited) break;
pthread_join(pf->task_thread.td.thread, NULL);
pthread_cond_destroy(&pf->task_thread.td.cond);
pthread_mutex_destroy(&pf->task_thread.td.lock);
}
pthread_cond_destroy(&ttd->delayed_fg.cond);
pthread_cond_destroy(&ttd->cond);
pthread_mutex_destroy(&ttd->lock);
}
dav1d_free_aligned(c->tc);
}
for (unsigned n = 0; c->fc && n < c->n_fc; n++) {
Dav1dFrameContext *const f = &c->fc[n];
// clean-up threading stuff
if (c->n_fc > 1) {
dav1d_free(f->tile_thread.lowest_pixel_mem);
dav1d_free(f->frame_thread.b);
dav1d_free_aligned(f->frame_thread.cbi);
dav1d_free_aligned(f->frame_thread.pal_idx);
dav1d_free_aligned(f->frame_thread.cf);
dav1d_free(f->frame_thread.tile_start_off);
dav1d_free_aligned(f->frame_thread.pal);
}
if (c->n_tc > 1) {
pthread_mutex_destroy(&f->task_thread.pending_tasks.lock);
pthread_cond_destroy(&f->task_thread.cond);
pthread_mutex_destroy(&f->task_thread.lock);
}
dav1d_free(f->frame_thread.frame_progress);
dav1d_free(f->task_thread.tasks);
dav1d_free(f->task_thread.tile_tasks[0]);
dav1d_free_aligned(f->ts);
dav1d_free_aligned(f->ipred_edge[0]);
dav1d_free(f->a);
dav1d_free(f->tile);
dav1d_free(f->lf.mask);
dav1d_free(f->lf.level);
dav1d_free(f->lf.lr_mask);
dav1d_free(f->lf.tx_lpf_right_edge[0]);
dav1d_free(f->lf.start_of_tile_row);
dav1d_free_aligned(f->rf.r);
dav1d_free_aligned(f->lf.cdef_line_buf);
dav1d_free_aligned(f->lf.lr_line_buf);
}
dav1d_free_aligned(c->fc);
if (c->n_fc > 1 && c->frame_thread.out_delayed) {
for (unsigned n = 0; n < c->n_fc; n++)
if (c->frame_thread.out_delayed[n].p.frame_hdr)
dav1d_thread_picture_unref(&c->frame_thread.out_delayed[n]);
dav1d_free(c->frame_thread.out_delayed);
}
for (int n = 0; n < c->n_tile_data; n++)
dav1d_data_unref_internal(&c->tile[n].data);
dav1d_free(c->tile);
for (int n = 0; n < 8; n++) {
dav1d_cdf_thread_unref(&c->cdf[n]);
if (c->refs[n].p.p.frame_hdr)
dav1d_thread_picture_unref(&c->refs[n].p);
dav1d_ref_dec(&c->refs[n].refmvs);
dav1d_ref_dec(&c->refs[n].segmap);
}
dav1d_ref_dec(&c->seq_hdr_ref);
dav1d_ref_dec(&c->frame_hdr_ref);
dav1d_ref_dec(&c->mastering_display_ref);
dav1d_ref_dec(&c->content_light_ref);
dav1d_ref_dec(&c->itut_t35_ref);
dav1d_mem_pool_end(c->seq_hdr_pool);
dav1d_mem_pool_end(c->frame_hdr_pool);
dav1d_mem_pool_end(c->segmap_pool);
dav1d_mem_pool_end(c->refmvs_pool);
dav1d_mem_pool_end(c->cdf_pool);
dav1d_mem_pool_end(c->picture_pool);
dav1d_mem_pool_end(c->pic_ctx_pool);
dav1d_freep_aligned(c_out);
}
int dav1d_get_event_flags(Dav1dContext *const c, enum Dav1dEventFlags *const flags) {
validate_input_or_ret(c != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(flags != NULL, DAV1D_ERR(EINVAL));
*flags = c->event_flags;
c->event_flags = 0;
return 0;
}
int dav1d_get_decode_error_data_props(Dav1dContext *const c, Dav1dDataProps *const out) {
validate_input_or_ret(c != NULL, DAV1D_ERR(EINVAL));
validate_input_or_ret(out != NULL, DAV1D_ERR(EINVAL));
dav1d_data_props_unref_internal(out);
*out = c->cached_error_props;
dav1d_data_props_set_defaults(&c->cached_error_props);
return 0;
}
void dav1d_picture_unref(Dav1dPicture *const p) {
dav1d_picture_unref_internal(p);
}
uint8_t *dav1d_data_create(Dav1dData *const buf, const size_t sz) {
return dav1d_data_create_internal(buf, sz);
}
int dav1d_data_wrap(Dav1dData *const buf, const uint8_t *const ptr,
const size_t sz,
void (*const free_callback)(const uint8_t *data,
void *user_data),
void *const user_data)
{
return dav1d_data_wrap_internal(buf, ptr, sz, free_callback, user_data);
}
int dav1d_data_wrap_user_data(Dav1dData *const buf,
const uint8_t *const user_data,
void (*const free_callback)(const uint8_t *user_data,
void *cookie),
void *const cookie)
{
return dav1d_data_wrap_user_data_internal(buf,
user_data,
free_callback,
cookie);
}
void dav1d_data_unref(Dav1dData *const buf) {
dav1d_data_unref_internal(buf);
}
void dav1d_data_props_unref(Dav1dDataProps *const props) {
dav1d_data_props_unref_internal(props);
}