Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/common.h"
#include "av1/common/filter.h"
#include "av1/common/mvref_common.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
static inline void init_mv_cost_params(MV_COST_PARAMS *mv_cost_params,
const MvCosts *mv_costs,
const MV *ref_mv, int errorperbit,
int sadperbit) {
mv_cost_params->ref_mv = ref_mv;
mv_cost_params->full_ref_mv = get_fullmv_from_mv(ref_mv);
mv_cost_params->mv_cost_type = MV_COST_ENTROPY;
mv_cost_params->error_per_bit = errorperbit;
mv_cost_params->sad_per_bit = sadperbit;
// For allintra encoding mode, 'mv_costs' is not allocated. Hence, the
// population of mvjcost and mvcost are avoided. In case of IntraBC, these
// values are populated from 'dv_costs' in av1_set_ms_to_intra_mode().
if (mv_costs != NULL) {
mv_cost_params->mvjcost = mv_costs->nmv_joint_cost;
mv_cost_params->mvcost[0] = mv_costs->mv_cost_stack[0];
mv_cost_params->mvcost[1] = mv_costs->mv_cost_stack[1];
}
}
static inline void init_ms_buffers(MSBuffers *ms_buffers, const MACROBLOCK *x) {
ms_buffers->ref = &x->e_mbd.plane[0].pre[0];
ms_buffers->src = &x->plane[0].src;
av1_set_ms_compound_refs(ms_buffers, NULL, NULL, 0, 0);
ms_buffers->wsrc = x->obmc_buffer.wsrc;
ms_buffers->obmc_mask = x->obmc_buffer.mask;
}
void av1_init_obmc_buffer(OBMCBuffer *obmc_buffer) {
obmc_buffer->wsrc = NULL;
obmc_buffer->mask = NULL;
obmc_buffer->above_pred = NULL;
obmc_buffer->left_pred = NULL;
}
void av1_make_default_fullpel_ms_params(
FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct AV1_COMP *cpi,
MACROBLOCK *x, BLOCK_SIZE bsize, const MV *ref_mv, FULLPEL_MV start_mv,
const search_site_config search_sites[NUM_DISTINCT_SEARCH_METHODS],
SEARCH_METHODS search_method, int fine_search_interval) {
const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf;
const int is_key_frame =
cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == KF_UPDATE;
// High level params
ms_params->bsize = bsize;
ms_params->vfp = &cpi->ppi->fn_ptr[bsize];
init_ms_buffers(&ms_params->ms_buffers, x);
av1_set_mv_search_method(ms_params, search_sites, search_method);
ms_params->mesh_patterns[0] = mv_sf->mesh_patterns;
ms_params->mesh_patterns[1] = mv_sf->intrabc_mesh_patterns;
ms_params->force_mesh_thresh = mv_sf->exhaustive_searches_thresh;
ms_params->prune_mesh_search =
(cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_2) ? 1 : 0;
ms_params->mesh_search_mv_diff_threshold = 4;
ms_params->run_mesh_search = 0;
ms_params->fine_search_interval = fine_search_interval;
ms_params->is_intra_mode = 0;
ms_params->fast_obmc_search = mv_sf->obmc_full_pixel_search_level;
ms_params->mv_limits = x->mv_limits;
av1_set_mv_search_range(&ms_params->mv_limits, ref_mv);
// Mvcost params
init_mv_cost_params(&ms_params->mv_cost_params, x->mv_costs, ref_mv,
x->errorperbit, x->sadperbit);
ms_params->sdf = ms_params->vfp->sdf;
ms_params->sdx4df = ms_params->vfp->sdx4df;
ms_params->sdx3df = ms_params->vfp->sdx3df;
if (mv_sf->use_downsampled_sad == 2 && block_size_high[bsize] >= 16) {
assert(ms_params->vfp->sdsf != NULL);
ms_params->sdf = ms_params->vfp->sdsf;
assert(ms_params->vfp->sdsx4df != NULL);
ms_params->sdx4df = ms_params->vfp->sdsx4df;
// Skip version of sadx3 is not available yet
ms_params->sdx3df = ms_params->vfp->sdsx4df;
} else if (mv_sf->use_downsampled_sad == 1 && block_size_high[bsize] >= 16 &&
!is_key_frame) {
FULLPEL_MV start_mv_clamped = start_mv;
// adjust start_mv to make sure it is within MV range
clamp_fullmv(&start_mv_clamped, &ms_params->mv_limits);
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv_clamped);
const struct buf_2d *const src = ms_params->ms_buffers.src;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
unsigned int start_mv_sad_even_rows, start_mv_sad_odd_rows;
assert(ms_params->vfp->sdsf != NULL);
start_mv_sad_even_rows =
ms_params->vfp->sdsf(src_buf, src_stride, best_address, ref_stride);
start_mv_sad_odd_rows =
ms_params->vfp->sdsf(src_buf + src_stride, src_stride,
best_address + ref_stride, ref_stride);
// If the absolute SAD difference computed between the pred-to-src of even
// and odd rows is small, skip every other row in sad computation.
const int odd_to_even_diff_sad =
abs((int)start_mv_sad_even_rows - (int)start_mv_sad_odd_rows);
const int mult_thresh = 4;
if (odd_to_even_diff_sad * mult_thresh < (int)start_mv_sad_even_rows) {
ms_params->sdf = ms_params->vfp->sdsf;
assert(ms_params->vfp->sdsx4df != NULL);
ms_params->sdx4df = ms_params->vfp->sdsx4df;
ms_params->sdx3df = ms_params->vfp->sdsx4df;
}
}
}
void av1_set_ms_to_intra_mode(FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const IntraBCMVCosts *dv_costs) {
ms_params->is_intra_mode = 1;
MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
mv_cost_params->mvjcost = dv_costs->joint_mv;
mv_cost_params->mvcost[0] = dv_costs->dv_costs[0];
mv_cost_params->mvcost[1] = dv_costs->dv_costs[1];
}
void av1_make_default_subpel_ms_params(SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct AV1_COMP *cpi,
const MACROBLOCK *x, BLOCK_SIZE bsize,
const MV *ref_mv, const int *cost_list) {
const AV1_COMMON *cm = &cpi->common;
// High level params
ms_params->allow_hp = cm->features.allow_high_precision_mv;
ms_params->forced_stop = cpi->sf.mv_sf.subpel_force_stop;
ms_params->iters_per_step = cpi->sf.mv_sf.subpel_iters_per_step;
ms_params->cost_list = cond_cost_list_const(cpi, cost_list);
av1_set_subpel_mv_search_range(&ms_params->mv_limits, &x->mv_limits, ref_mv);
// Mvcost params
init_mv_cost_params(&ms_params->mv_cost_params, x->mv_costs, ref_mv,
x->errorperbit, x->sadperbit);
// Subpel variance params
ms_params->var_params.vfp = &cpi->ppi->fn_ptr[bsize];
ms_params->var_params.subpel_search_type =
cpi->sf.mv_sf.use_accurate_subpel_search;
ms_params->var_params.w = block_size_wide[bsize];
ms_params->var_params.h = block_size_high[bsize];
// Ref and src buffers
MSBuffers *ms_buffers = &ms_params->var_params.ms_buffers;
init_ms_buffers(ms_buffers, x);
}
void av1_set_mv_search_range(FullMvLimits *mv_limits, const MV *mv) {
// Calculate the outermost full-pixel MVs which are inside the limits set by
// av1_set_subpel_mv_search_range().
//
// The subpel limits are simply mv->col +/- 8*MAX_FULL_PEL_VAL, and similar
// for mv->row. We can then divide by 8 to find the fullpel MV limits. But
// we have to be careful about the rounding. We want these bounds to be
// at least as tight as the subpel limits, which means that we must round
// the minimum values up and the maximum values down when dividing.
int col_min = ((mv->col + 7) >> 3) - MAX_FULL_PEL_VAL;
int row_min = ((mv->row + 7) >> 3) - MAX_FULL_PEL_VAL;
int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
col_min = AOMMAX(col_min, (MV_LOW >> 3) + 1);
row_min = AOMMAX(row_min, (MV_LOW >> 3) + 1);
col_max = AOMMIN(col_max, (MV_UPP >> 3) - 1);
row_max = AOMMIN(row_max, (MV_UPP >> 3) - 1);
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
if (mv_limits->col_min < col_min) mv_limits->col_min = col_min;
if (mv_limits->col_max > col_max) mv_limits->col_max = col_max;
if (mv_limits->row_min < row_min) mv_limits->row_min = row_min;
if (mv_limits->row_max > row_max) mv_limits->row_max = row_max;
mv_limits->col_max = AOMMAX(mv_limits->col_min, mv_limits->col_max);
mv_limits->row_max = AOMMAX(mv_limits->row_min, mv_limits->row_max);
}
int av1_init_search_range(int size) {
int sr = 0;
// Minimum search size no matter what the passed in value.
size = AOMMAX(16, size);
while ((size << sr) < MAX_FULL_PEL_VAL) sr++;
sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2);
return sr;
}
// ============================================================================
// Cost of motion vectors
// ============================================================================
// TODO(any): Adaptively adjust the regularization strength based on image size
// and motion activity instead of using hard-coded values. It seems like we
// roughly half the lambda for each increase in resolution
// These are multiplier used to perform regularization in motion compensation
// when x->mv_cost_type is set to MV_COST_L1.
// LOWRES
#define SSE_LAMBDA_LOWRES 2 // Used by mv_cost_err_fn
#define SAD_LAMBDA_LOWRES 32 // Used by mvsad_err_cost during full pixel search
// MIDRES
#define SSE_LAMBDA_MIDRES 0 // Used by mv_cost_err_fn
#define SAD_LAMBDA_MIDRES 15 // Used by mvsad_err_cost during full pixel search
// HDRES
#define SSE_LAMBDA_HDRES 1 // Used by mv_cost_err_fn
#define SAD_LAMBDA_HDRES 8 // Used by mvsad_err_cost during full pixel search
// Returns the rate of encoding the current motion vector based on the
// joint_cost and comp_cost. joint_costs covers the cost of transmitting
// JOINT_MV, and comp_cost covers the cost of transmitting the actual motion
// vector.
static inline int mv_cost(const MV *mv, const int *joint_cost,
const int *const comp_cost[2]) {
return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] +
comp_cost[1][mv->col];
}
#define CONVERT_TO_CONST_MVCOST(ptr) ((const int *const *)(ptr))
// Returns the cost of encoding the motion vector diff := *mv - *ref. The cost
// is defined as the rate required to encode diff * weight, rounded to the
// nearest 2 ** 7.
// This is NOT used during motion compensation.
int av1_mv_bit_cost(const MV *mv, const MV *ref_mv, const int *mvjcost,
int *const mvcost[2], int weight) {
const MV diff = { mv->row - ref_mv->row, mv->col - ref_mv->col };
return ROUND_POWER_OF_TWO(
mv_cost(&diff, mvjcost, CONVERT_TO_CONST_MVCOST(mvcost)) * weight, 7);
}
// Returns the cost of using the current mv during the motion search. This is
// used when var is used as the error metric.
#define PIXEL_TRANSFORM_ERROR_SCALE 4
static inline int mv_err_cost(const MV *mv, const MV *ref_mv,
const int *mvjcost, const int *const mvcost[2],
int error_per_bit, MV_COST_TYPE mv_cost_type) {
const MV diff = { mv->row - ref_mv->row, mv->col - ref_mv->col };
const MV abs_diff = { abs(diff.row), abs(diff.col) };
switch (mv_cost_type) {
case MV_COST_ENTROPY:
if (mvcost) {
return (int)ROUND_POWER_OF_TWO_64(
(int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit,
RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
}
return 0;
case MV_COST_L1_LOWRES:
return (SSE_LAMBDA_LOWRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_MIDRES:
return (SSE_LAMBDA_MIDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_L1_HDRES:
return (SSE_LAMBDA_HDRES * (abs_diff.row + abs_diff.col)) >> 3;
case MV_COST_NONE: return 0;
default: assert(0 && "Invalid rd_cost_type"); return 0;
}
}
static inline int mv_err_cost_(const MV *mv,
const MV_COST_PARAMS *mv_cost_params) {
if (mv_cost_params->mv_cost_type == MV_COST_NONE) {
return 0;
}
return mv_err_cost(mv, mv_cost_params->ref_mv, mv_cost_params->mvjcost,
mv_cost_params->mvcost, mv_cost_params->error_per_bit,
mv_cost_params->mv_cost_type);
}
// Returns the cost of using the current mv during the motion search. This is
// only used during full pixel motion search when sad is used as the error
// metric
static inline int mvsad_err_cost(const FULLPEL_MV *mv, const FULLPEL_MV *ref_mv,
const int *mvjcost, const int *const mvcost[2],
int sad_per_bit, MV_COST_TYPE mv_cost_type) {
const MV diff = { GET_MV_SUBPEL(mv->row - ref_mv->row),
GET_MV_SUBPEL(mv->col - ref_mv->col) };
switch (mv_cost_type) {
case MV_COST_ENTROPY:
return ROUND_POWER_OF_TWO(
(unsigned)mv_cost(&diff, mvjcost, CONVERT_TO_CONST_MVCOST(mvcost)) *
sad_per_bit,
AV1_PROB_COST_SHIFT);
case MV_COST_L1_LOWRES:
return (SAD_LAMBDA_LOWRES * (abs(diff.row) + abs(diff.col))) >> 3;
case MV_COST_L1_MIDRES:
return (SAD_LAMBDA_MIDRES * (abs(diff.row) + abs(diff.col))) >> 3;
case MV_COST_L1_HDRES:
return (SAD_LAMBDA_HDRES * (abs(diff.row) + abs(diff.col))) >> 3;
case MV_COST_NONE: return 0;
default: assert(0 && "Invalid rd_cost_type"); return 0;
}
}
static inline int mvsad_err_cost_(const FULLPEL_MV *mv,
const MV_COST_PARAMS *mv_cost_params) {
return mvsad_err_cost(mv, &mv_cost_params->full_ref_mv,
mv_cost_params->mvjcost, mv_cost_params->mvcost,
mv_cost_params->sad_per_bit,
mv_cost_params->mv_cost_type);
}
// =============================================================================
// Fullpixel Motion Search: Translational
// =============================================================================
#define MAX_PATTERN_SCALES 11
#define MAX_PATTERN_CANDIDATES 8 // max number of candidates per scale
#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
// Search site initialization for DIAMOND / CLAMPED_DIAMOND search methods.
// level = 0: DIAMOND, level = 1: CLAMPED_DIAMOND.
static void init_dsmotion_compensation(search_site_config *cfg, int stride,
int level) {
int num_search_steps = 0;
int stage_index = MAX_MVSEARCH_STEPS - 1;
cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0;
cfg->site[stage_index][0].offset = 0;
cfg->stride = stride;
// Choose the initial step size depending on level.
const int first_step = (level > 0) ? (MAX_FIRST_STEP / 4) : MAX_FIRST_STEP;
for (int radius = first_step; radius > 0;) {
int num_search_pts = 8;
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 }, { -radius, 0 }, { radius, 0 },
{ 0, -radius }, { 0, radius }, { -radius, -radius },
{ radius, radius }, { -radius, radius }, { radius, -radius },
};
int i;
for (i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
// Update the search radius based on level.
if (!level || ((stage_index < 9) && level)) radius /= 2;
--stage_index;
++num_search_steps;
}
cfg->num_search_steps = num_search_steps;
}
void av1_init_motion_fpf(search_site_config *cfg, int stride) {
int num_search_steps = 0;
int stage_index = MAX_MVSEARCH_STEPS - 1;
cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0;
cfg->site[stage_index][0].offset = 0;
cfg->stride = stride;
for (int radius = MAX_FIRST_STEP; radius > 0; radius /= 2) {
// Generate offsets for 8 search sites per step.
int tan_radius = AOMMAX((int)(0.41 * radius), 1);
int num_search_pts = 12;
if (radius == 1) num_search_pts = 8;
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 },
{ -radius, 0 },
{ radius, 0 },
{ 0, -radius },
{ 0, radius },
{ -radius, -tan_radius },
{ radius, tan_radius },
{ -tan_radius, radius },
{ tan_radius, -radius },
{ -radius, tan_radius },
{ radius, -tan_radius },
{ tan_radius, radius },
{ -tan_radius, -radius },
};
int i;
for (i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
--stage_index;
++num_search_steps;
}
cfg->num_search_steps = num_search_steps;
}
// Search site initialization for NSTEP / NSTEP_8PT search methods.
// level = 0: NSTEP, level = 1: NSTEP_8PT.
static void init_motion_compensation_nstep(search_site_config *cfg, int stride,
int level) {
int num_search_steps = 0;
int stage_index = 0;
cfg->stride = stride;
int radius = 1;
const int num_stages = (level > 0) ? 16 : 15;
for (stage_index = 0; stage_index < num_stages; ++stage_index) {
int tan_radius = AOMMAX((int)(0.41 * radius), 1);
int num_search_pts = 12;
if ((radius <= 5) || (level > 0)) {
tan_radius = radius;
num_search_pts = 8;
}
const FULLPEL_MV search_site_mvs[13] = {
{ 0, 0 },
{ -radius, 0 },
{ radius, 0 },
{ 0, -radius },
{ 0, radius },
{ -radius, -tan_radius },
{ radius, tan_radius },
{ -tan_radius, radius },
{ tan_radius, -radius },
{ -radius, tan_radius },
{ radius, -tan_radius },
{ tan_radius, radius },
{ -tan_radius, -radius },
};
for (int i = 0; i <= num_search_pts; ++i) {
search_site *const site = &cfg->site[stage_index][i];
site->mv = search_site_mvs[i];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
cfg->searches_per_step[stage_index] = num_search_pts;
cfg->radius[stage_index] = radius;
++num_search_steps;
if (stage_index < 12)
radius = (int)AOMMAX((radius * 1.5 + 0.5), radius + 1);
}
cfg->num_search_steps = num_search_steps;
}
// Search site initialization for BIGDIA / FAST_BIGDIA / FAST_DIAMOND
// search methods.
static void init_motion_compensation_bigdia(search_site_config *cfg, int stride,
int level) {
(void)level;
cfg->stride = stride;
// First scale has 4-closest points, the rest have 8 points in diamond
// shape at increasing scales
static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// BIGDIA search method candidates.
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const FULLPEL_MV
site_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 } },
{ { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 },
{ -1, 1 }, { -2, 0 } },
{ { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 },
{ -2, 2 }, { -4, 0 } },
{ { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 },
{ -4, 4 }, { -8, 0 } },
{ { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 },
{ -8, 8 }, { -16, 0 } },
{ { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 },
{ 0, 32 }, { -16, 16 }, { -32, 0 } },
{ { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 },
{ 0, 64 }, { -32, 32 }, { -64, 0 } },
{ { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 },
{ 0, 128 }, { -64, 64 }, { -128, 0 } },
{ { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 },
{ 128, 128 }, { 0, 256 }, { -128, 128 }, { -256, 0 } },
{ { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 },
{ 256, 256 }, { 0, 512 }, { -256, 256 }, { -512, 0 } },
{ { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 },
{ 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = bigdia_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = site_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
// Search site initialization for SQUARE search method.
static void init_motion_compensation_square(search_site_config *cfg, int stride,
int level) {
(void)level;
cfg->stride = stride;
// All scales have 8 closest points in square shape.
static const int square_num_candidates[MAX_PATTERN_SCALES] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Square search method candidates.
// Note that the largest candidate step at each scale is 2^scale.
/* clang-format off */
static const FULLPEL_MV
square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 },
{ -2, 2 }, { -2, 0 } },
{ { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 },
{ -4, 4 }, { -4, 0 } },
{ { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 },
{ -8, 8 }, { -8, 0 } },
{ { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 },
{ 0, 16 }, { -16, 16 }, { -16, 0 } },
{ { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 },
{ 0, 32 }, { -32, 32 }, { -32, 0 } },
{ { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 },
{ 0, 64 }, { -64, 64 }, { -64, 0 } },
{ { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 },
{ 128, 128 }, { 0, 128 }, { -128, 128 }, { -128, 0 } },
{ { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 },
{ 256, 256 }, { 0, 256 }, { -256, 256 }, { -256, 0 } },
{ { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 },
{ 512, 512 }, { 0, 512 }, { -512, 512 }, { -512, 0 } },
{ { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 },
{ 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = square_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = square_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
// Search site initialization for HEX / FAST_HEX search methods.
static void init_motion_compensation_hex(search_site_config *cfg, int stride,
int level) {
(void)level;
cfg->stride = stride;
// First scale has 8-closest points, the rest have 6 points in hex shape
// at increasing scales.
static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6 };
// Note that the largest candidate step at each scale is 2^scale.
/* clang-format off */
static const FULLPEL_MV
hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } },
{ { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } },
{ { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } },
{ { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 },
{ -8, 16 }, { -16, 0 } },
{ { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 },
{ -32, 0 } },
{ { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 },
{ -64, 0 } },
{ { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 },
{ -64, 128 }, { -128, 0 } },
{ { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 },
{ -128, 256 }, { -256, 0 } },
{ { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 },
{ -256, 512 }, { -512, 0 } },
{ { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 },
{ -512, 1024 }, { -1024, 0 } },
};
/* clang-format on */
int radius = 1;
for (int i = 0; i < MAX_PATTERN_SCALES; ++i) {
cfg->searches_per_step[i] = hex_num_candidates[i];
cfg->radius[i] = radius;
for (int j = 0; j < hex_num_candidates[i]; ++j) {
search_site *const site = &cfg->site[i][j];
site->mv = hex_candidates[i][j];
site->offset = get_offset_from_fullmv(&site->mv, stride);
}
radius *= 2;
}
cfg->num_search_steps = MAX_PATTERN_SCALES;
}
const av1_init_search_site_config
av1_init_motion_compensation[NUM_DISTINCT_SEARCH_METHODS] = {
init_dsmotion_compensation, init_motion_compensation_nstep,
init_motion_compensation_nstep, init_dsmotion_compensation,
init_motion_compensation_hex, init_motion_compensation_bigdia,
init_motion_compensation_square
};
// Checks whether the mv is within range of the mv_limits
static inline int check_bounds(const FullMvLimits *mv_limits, int row, int col,
int range) {
return ((row - range) >= mv_limits->row_min) &
((row + range) <= mv_limits->row_max) &
((col - range) >= mv_limits->col_min) &
((col + range) <= mv_limits->col_max);
}
static inline int get_mvpred_var_cost(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv,
FULLPEL_MV_STATS *mv_stats) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const MV sub_this_mv = get_mv_from_fullmv(this_mv);
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
int bestsme;
bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv),
ref_stride, &mv_stats->sse);
mv_stats->distortion = bestsme;
mv_stats->err_cost = mv_err_cost_(&sub_this_mv, &ms_params->mv_cost_params);
bestsme += mv_stats->err_cost;
return bestsme;
}
static inline int get_mvpred_sad(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct buf_2d *const src,
const uint8_t *const ref_address,
const int ref_stride) {
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride);
}
static inline int get_mvpred_compound_var_cost(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv,
FULLPEL_MV_STATS *mv_stats) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
const uint8_t *mask = ms_params->ms_buffers.mask;
const uint8_t *second_pred = ms_params->ms_buffers.second_pred;
const int mask_stride = ms_params->ms_buffers.mask_stride;
const int invert_mask = ms_params->ms_buffers.inv_mask;
int bestsme;
if (mask) {
bestsme = vfp->msvf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0,
src_buf, src_stride, second_pred, mask, mask_stride,
invert_mask, &mv_stats->sse);
} else if (second_pred) {
bestsme = vfp->svaf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0,
src_buf, src_stride, &mv_stats->sse, second_pred);
} else {
bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv),
ref_stride, &mv_stats->sse);
}
mv_stats->distortion = bestsme;
const MV sub_this_mv = get_mv_from_fullmv(this_mv);
mv_stats->err_cost = mv_err_cost_(&sub_this_mv, &ms_params->mv_cost_params);
bestsme += mv_stats->err_cost;
return bestsme;
}
static inline int get_mvpred_compound_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct buf_2d *const src, const uint8_t *const ref_address,
const int ref_stride) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
const uint8_t *mask = ms_params->ms_buffers.mask;
const uint8_t *second_pred = ms_params->ms_buffers.second_pred;
const int mask_stride = ms_params->ms_buffers.mask_stride;
const int invert_mask = ms_params->ms_buffers.inv_mask;
if (mask) {
return vfp->msdf(src_buf, src_stride, ref_address, ref_stride, second_pred,
mask, mask_stride, invert_mask);
} else if (second_pred) {
assert(vfp->sdaf != NULL);
return vfp->sdaf(src_buf, src_stride, ref_address, ref_stride, second_pred);
} else {
return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride);
}
}
// Calculates and returns a sad+mvcost list around an integer best pel during
// fullpixel motion search. The resulting list can be used to speed up subpel
// motion search later.
#define USE_SAD_COSTLIST 1
// calc_int_cost_list uses var to populate the costlist, which is more accurate
// than sad but slightly slower.
static AOM_FORCE_INLINE void calc_int_cost_list(
const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int *cost_list) {
static const FULLPEL_MV neighbors[4] = {
{ 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }
};
const int br = best_mv.row;
const int bc = best_mv.col;
FULLPEL_MV_STATS mv_stats;
cost_list[0] = get_mvpred_var_cost(ms_params, &best_mv, &mv_stats);
if (check_bounds(&ms_params->mv_limits, br, bc, 1)) {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV neighbor_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
cost_list[i + 1] =
get_mvpred_var_cost(ms_params, &neighbor_mv, &mv_stats);
}
} else {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV neighbor_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, neighbor_mv)) {
cost_list[i + 1] = INT_MAX;
} else {
cost_list[i + 1] =
get_mvpred_var_cost(ms_params, &neighbor_mv, &mv_stats);
}
}
}
}
// calc_int_sad_list uses sad to populate the costlist, which is less accurate
// than var but faster.
static AOM_FORCE_INLINE void calc_int_sad_list(
const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int *cost_list, int costlist_has_sad) {
static const FULLPEL_MV neighbors[4] = {
{ 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }
};
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
const int br = best_mv.row;
const int bc = best_mv.col;
assert(av1_is_fullmv_in_range(&ms_params->mv_limits, best_mv));
// Refresh the costlist it does not contain valid sad
if (!costlist_has_sad) {
cost_list[0] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &best_mv), ref_stride);
if (check_bounds(&ms_params->mv_limits, br, bc, 1)) {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV this_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
}
} else {
for (int i = 0; i < 4; i++) {
const FULLPEL_MV this_mv = { br + neighbors[i].row,
bc + neighbors[i].col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) {
cost_list[i + 1] = INT_MAX;
} else {
cost_list[i + 1] = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride);
}
}
}
}
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
cost_list[0] += mvsad_err_cost_(&best_mv, mv_cost_params);
for (int idx = 0; idx < 4; idx++) {
if (cost_list[idx + 1] != INT_MAX) {
const FULLPEL_MV this_mv = { br + neighbors[idx].row,
bc + neighbors[idx].col };
cost_list[idx + 1] += mvsad_err_cost_(&this_mv, mv_cost_params);
}
}
}
// Computes motion vector cost and adds to the sad cost.
// Then updates the best sad and motion vectors.
// Inputs:
// this_sad: the sad to be evaluated.
// mv: the current motion vector.
// mv_cost_params: a structure containing information to compute mv cost.
// best_sad: the current best sad.
// raw_best_sad (optional): the current best sad without calculating mv cost.
// best_mv: the current best motion vector.
// second_best_mv (optional): the second best motion vector up to now.
// Modifies:
// best_sad, raw_best_sad, best_mv, second_best_mv
// If the current sad is lower than the current best sad.
// Returns:
// Whether the input sad (mv) is better than the current best.
static inline int update_mvs_and_sad(const unsigned int this_sad,
const FULLPEL_MV *mv,
const MV_COST_PARAMS *mv_cost_params,
unsigned int *best_sad,
unsigned int *raw_best_sad,
FULLPEL_MV *best_mv,
FULLPEL_MV *second_best_mv) {
if (this_sad >= *best_sad) return 0;
// Add the motion vector cost.
const unsigned int sad = this_sad + mvsad_err_cost_(mv, mv_cost_params);
if (sad < *best_sad) {
if (raw_best_sad) *raw_best_sad = this_sad;
*best_sad = sad;
if (second_best_mv) *second_best_mv = *best_mv;
*best_mv = *mv;
return 1;
}
return 0;
}
// Calculate sad4 and update the bestmv information
// in FAST_DIAMOND search method.
static inline void calc_sad4_update_bestmv(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
const FULLPEL_MV center_mv, const uint8_t *center_address,
unsigned int *bestsad, unsigned int *raw_bestsad, int search_step,
int *best_site, int cand_start, int *cost_list) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
unsigned char const *block_offset[4];
unsigned int sads_buf[4];
unsigned int *sads;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
if (cost_list) {
sads = (unsigned int *)(cost_list + 1);
} else {
sads = sads_buf;
}
// Loop over number of candidates.
for (int j = 0; j < 4; j++)
block_offset[j] = site[cand_start + j].offset + center_address;
// 4-point sad calculation.
ms_params->sdx4df(src_buf, src_stride, block_offset, ref->stride, sads);
for (int j = 0; j < 4; j++) {
const FULLPEL_MV this_mv = { center_mv.row + site[cand_start + j].mv.row,
center_mv.col + site[cand_start + j].mv.col };
const int found_better_mv = update_mvs_and_sad(
sads[j], &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = cand_start + j;
}
}
static inline void calc_sad3_update_bestmv(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
FULLPEL_MV center_mv, const uint8_t *center_address, unsigned int *bestsad,
unsigned int *raw_bestsad, int search_step, int *best_site,
const int *chkpts_indices, int *cost_list) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
unsigned char const *block_offset[4] = {
center_address + site[chkpts_indices[0]].offset,
center_address + site[chkpts_indices[1]].offset,
center_address + site[chkpts_indices[2]].offset,
center_address,
};
unsigned int sads[4];
ms_params->sdx3df(src->buf, src->stride, block_offset, ref->stride, sads);
for (int j = 0; j < 3; j++) {
const int index = chkpts_indices[j];
const FULLPEL_MV this_mv = { center_mv.row + site[index].mv.row,
center_mv.col + site[index].mv.col };
const int found_better_mv = update_mvs_and_sad(
sads[j], &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = j;
}
if (cost_list) {
for (int j = 0; j < 3; j++) {
int index = chkpts_indices[j];
cost_list[index + 1] = sads[j];
}
}
}
// Calculate sad and update the bestmv information
// in FAST_DIAMOND search method.
static inline void calc_sad_update_bestmv(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
const FULLPEL_MV center_mv, const uint8_t *center_address,
unsigned int *bestsad, unsigned int *raw_bestsad, int search_step,
int *best_site, const int num_candidates, int cand_start, int *cost_list) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
// Loop over number of candidates.
for (int i = cand_start; i < num_candidates; i++) {
const FULLPEL_MV this_mv = { center_mv.row + site[i].mv.row,
center_mv.col + site[i].mv.col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) continue;
int thissad = get_mvpred_sad(ms_params, src,
center_address + site[i].offset, ref->stride);
if (cost_list) {
cost_list[i + 1] = thissad;
}
const int found_better_mv = update_mvs_and_sad(
thissad, &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = i;
}
}
static inline void calc_sad_update_bestmv_with_indices(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv,
const FULLPEL_MV center_mv, const uint8_t *center_address,
unsigned int *bestsad, unsigned int *raw_bestsad, int search_step,
int *best_site, const int num_candidates, const int *chkpts_indices,
int *cost_list) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site *site = ms_params->search_sites->site[search_step];
// Loop over number of candidates.
for (int i = 0; i < num_candidates; i++) {
int index = chkpts_indices[i];
const FULLPEL_MV this_mv = { center_mv.row + site[index].mv.row,
center_mv.col + site[index].mv.col };
if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) {
if (cost_list) {
cost_list[index + 1] = INT_MAX;
}
continue;
}
const int thissad = get_mvpred_sad(
ms_params, src, center_address + site[index].offset, ref->stride);
if (cost_list) {
cost_list[index + 1] = thissad;
}
const int found_better_mv = update_mvs_and_sad(
thissad, &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv,
/*second_best_mv=*/NULL);
if (found_better_mv) *best_site = i;
}
}
// Generic pattern search function that searches over multiple scales.
// Each scale can have a different number of candidates and shape of
// candidates as indicated in the num_candidates and candidates arrays
// passed into this function
static int pattern_search(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
static const int search_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, s, t;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const search_site_config *search_sites = ms_params->search_sites;
const int *num_candidates = search_sites->searches_per_step;
const int ref_stride = ref->stride;
const int last_is_4 = num_candidates[0] == 4;
int br, bc;
unsigned int bestsad = UINT_MAX, raw_bestsad = UINT_MAX;
int k = -1;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
search_step = AOMMIN(search_step, MAX_MVSEARCH_STEPS - 1);
assert(search_step >= 0);
int best_init_s = search_steps[search_step];
// adjust ref_mv to make sure it is within MV range
clamp_fullmv(&start_mv, &ms_params->mv_limits);
br = start_mv.row;
bc = start_mv.col;
if (cost_list != NULL) {
cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
INT_MAX;
}
int costlist_has_sad = 0;
// Work out the start point for the search
raw_bestsad = get_mvpred_sad(ms_params, src,
get_buf_from_fullmv(ref, &start_mv), ref_stride);
bestsad = raw_bestsad + mvsad_err_cost_(&start_mv, mv_cost_params);
// Search all possible scales up to the search param around the center point
// pick the scale of the point that is best as the starting scale of
// further steps around it.
const uint8_t *center_address = get_buf_from_fullmv(ref, &start_mv);
if (do_init_search) {
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
int best_site = -1;
FULLPEL_MV center_mv = { br, bc };
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << t)) {
// Call 4-point sad for multiples of 4 candidates.
const int no_of_4_cand_loops = num_candidates[t] >> 2;
for (i = 0; i < no_of_4_cand_loops; i++) {
calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, t,
&best_site, i * 4, /*cost_list=*/NULL);
}
// Rest of the candidates
const int remaining_cand = num_candidates[t] % 4;
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, t,
&best_site, remaining_cand,
no_of_4_cand_loops * 4, NULL);
} else {
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, t,
&best_site, num_candidates[t], 0, NULL);
}
if (best_site == -1) {
continue;
} else {
best_init_s = t;
k = best_site;
}
}
if (best_init_s != -1) {
br += search_sites->site[best_init_s][k].mv.row;
bc += search_sites->site[best_init_s][k].mv.col;
center_address += search_sites->site[best_init_s][k].offset;
}
}
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
const int last_s = (last_is_4 && cost_list != NULL);
int best_site = -1;
s = best_init_s;
for (; s >= last_s; s--) {
// No need to search all points the 1st time if initial search was used
if (!do_init_search || s != best_init_s) {
FULLPEL_MV center_mv = { br, bc };
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
// Call 4-point sad for multiples of 4 candidates.
const int no_of_4_cand_loops = num_candidates[s] >> 2;
for (i = 0; i < no_of_4_cand_loops; i++) {
calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv,
center_mv, center_address, &bestsad,
&raw_bestsad, s, &best_site, i * 4,
/*cost_list=*/NULL);
}
// Rest of the candidates
const int remaining_cand = num_candidates[s] % 4;
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, remaining_cand,
no_of_4_cand_loops * 4, NULL);
} else {
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, num_candidates[s], 0, NULL);
}
if (best_site == -1) {
continue;
} else {
br += search_sites->site[s][best_site].mv.row;
bc += search_sites->site[s][best_site].mv.col;
center_address += search_sites->site[s][best_site].offset;
k = best_site;
}
}
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
FULLPEL_MV center_mv = { br, bc };
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
calc_sad3_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, next_chkpts_indices, NULL);
} else {
calc_sad_update_bestmv_with_indices(
ms_params, mv_cost_params, best_mv, center_mv, center_address,
&bestsad, &raw_bestsad, s, &best_site, PATTERN_CANDIDATES_REF,
next_chkpts_indices, NULL);
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += search_sites->site[s][k].mv.row;
bc += search_sites->site[s][k].mv.col;
center_address += search_sites->site[s][k].offset;
}
} while (best_site != -1);
}
// Note: If we enter the if below, then cost_list must be non-NULL.
if (s == 0) {
cost_list[0] = raw_bestsad;
costlist_has_sad = 1;
assert(num_candidates[s] == 4);
if (!do_init_search || s != best_init_s) {
FULLPEL_MV center_mv = { br, bc };
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, 0, cost_list);
} else {
calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, /*num_candidates=*/4,
/*cand_start=*/0, cost_list);
}
if (best_site != -1) {
br += search_sites->site[s][best_site].mv.row;
bc += search_sites->site[s][best_site].mv.col;
center_address += search_sites->site[s][best_site].offset;
k = best_site;
}
}
while (best_site != -1) {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
cost_list[((k + 2) % 4) + 1] = cost_list[0];
cost_list[0] = raw_bestsad;
FULLPEL_MV center_mv = { br, bc };
if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) {
assert(PATTERN_CANDIDATES_REF == 3);
calc_sad3_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv,
center_address, &bestsad, &raw_bestsad, s,
&best_site, next_chkpts_indices, cost_list);
} else {
calc_sad_update_bestmv_with_indices(
ms_params, mv_cost_params, best_mv, center_mv, center_address,
&bestsad, &raw_bestsad, s, &best_site, PATTERN_CANDIDATES_REF,
next_chkpts_indices, cost_list);
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += search_sites->site[s][k].mv.row;
bc += search_sites->site[s][k].mv.col;
center_address += search_sites->site[s][k].offset;
}
}
}
}
best_mv->row = br;
best_mv->col = bc;
assert(center_address == get_buf_from_fullmv(ref, best_mv) &&
"center address is out of sync with best_mv!\n");
// Returns the one-away integer pel cost/sad around the best as follows:
// cost_list[0]: cost/sad at the best integer pel
// cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel
// cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel
// cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel
// cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel
if (cost_list) {
if (USE_SAD_COSTLIST) {
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
const int var_cost = get_mvpred_var_cost(ms_params, best_mv, best_mv_stats);
return var_cost;
}
// For the following foo_search, the input arguments are:
// start_mv: where we are starting our motion search
// ms_params: a collection of motion search parameters
// search_step: how many steps to skip in our motion search. For example,
// a value 3 suggests that 3 search steps have already taken place prior to
// this function call, so we jump directly to step 4 of the search process
// do_init_search: if on, do an initial search of all possible scales around the
// start_mv, and then pick the best scale.
// cond_list: used to hold the cost around the best full mv so we can use it to
// speed up subpel search later.
// best_mv: the best mv found in the motion search
static int hex_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv, best_mv_stats);
}
static int bigdia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv, best_mv_stats);
}
static int square_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return pattern_search(start_mv, ms_params, search_step, do_init_search,
cost_list, best_mv, best_mv_stats);
}
static int fast_hex_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return hex_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step), do_init_search,
cost_list, best_mv, best_mv_stats);
}
static int vfast_dia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return bigdia_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 1, search_step),
do_init_search, cost_list, best_mv, best_mv_stats);
}
static int fast_dia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return bigdia_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step),
do_init_search, cost_list, best_mv, best_mv_stats);
}
static int fast_bigdia_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, const int do_init_search,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats) {
return bigdia_search(start_mv, ms_params,
AOMMAX(MAX_MVSEARCH_STEPS - 3, search_step),
do_init_search, cost_list, best_mv, best_mv_stats);
}
static int diamond_search_sad(FULLPEL_MV start_mv, unsigned int start_mv_sad,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int search_step, int *num00,
FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) {
#define UPDATE_SEARCH_STEP \
do { \
if (best_site != 0) { \
tmp_second_best_mv = *best_mv; \
best_mv->row += site[best_site].mv.row; \
best_mv->col += site[best_site].mv.col; \
best_address += site[best_site].offset; \
is_off_center = 1; \
} \
\
if (is_off_center == 0) num_center_steps++; \
\
if (best_site == 0 && step > 2) { \
int next_step_size = cfg->radius[step - 1]; \
while (next_step_size == cfg->radius[step] && step > 2) { \
num_center_steps++; \
--step; \
next_step_size = cfg->radius[step - 1]; \
} \
} \
} while (0)
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint8_t *src_buf = src->buf;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const search_site_config *cfg = ms_params->search_sites;
int is_off_center = 0;
// Number of times that we have stayed in the middle. This is used to skip
// search steps in the future if diamond_search_sad is called again.
int num_center_steps = 0;
// search_step determines the length of the initial step and hence the number
// of iterations.
const int tot_steps = cfg->num_search_steps - search_step;
FULLPEL_MV tmp_second_best_mv;
if (second_best_mv) {
tmp_second_best_mv = *second_best_mv;
}
*best_mv = start_mv;
// Check the starting position
const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv);
unsigned int bestsad = start_mv_sad;
// TODO(chiyotsai@google.com): Implement 4 points search for msdf&sdaf
if (ms_params->ms_buffers.second_pred) {
for (int step = tot_steps - 1; step >= 0; --step) {
const search_site *site = cfg->site[step];
const int num_searches = cfg->searches_per_step[step];
int best_site = 0;
for (int idx = 1; idx <= num_searches; idx++) {
const FULLPEL_MV this_mv = { best_mv->row + site[idx].mv.row,
best_mv->col + site[idx].mv.col };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) {
const uint8_t *const check_here = site[idx].offset + best_address;
unsigned int thissad =
get_mvpred_compound_sad(ms_params, src, check_here, ref_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost_(&this_mv, mv_cost_params);
if (thissad < bestsad) {
bestsad = thissad;
best_site = idx;
}
}
}
}
UPDATE_SEARCH_STEP;
}
} else {
for (int step = tot_steps - 1; step >= 0; --step) {
const search_site *site = cfg->site[step];
const int num_searches = cfg->searches_per_step[step];
int best_site = 0;
int all_in = 1;
// Trap illegal vectors
all_in &= best_mv->row + site[1].mv.row >= ms_params->mv_limits.row_min;
all_in &= best_mv->row + site[2].mv.row <= ms_params->mv_limits.row_max;
all_in &= best_mv->col + site[3].mv.col >= ms_params->mv_limits.col_min;
all_in &= best_mv->col + site[4].mv.col <= ms_params->mv_limits.col_max;
if (all_in) {
for (int idx = 1; idx <= num_searches; idx += 4) {
unsigned char const *block_offset[4];
unsigned int sads[4];
for (int j = 0; j < 4; j++)
block_offset[j] = site[idx + j].offset + best_address;
ms_params->sdx4df(src_buf, src_stride, block_offset, ref_stride,
sads);
for (int j = 0; j < 4; j++) {
if (sads[j] < bestsad) {
const FULLPEL_MV this_mv = { best_mv->row + site[idx + j].mv.row,
best_mv->col +
site[idx + j].mv.col };
unsigned int thissad =
sads[j] + mvsad_err_cost_(&this_mv, mv_cost_params);
if (thissad < bestsad) {
bestsad = thissad;
best_site = idx + j;
}
}
}
}
} else {
for (int idx = 1; idx <= num_searches; idx++) {
const FULLPEL_MV this_mv = { best_mv->row + site[idx].mv.row,
best_mv->col + site[idx].mv.col };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) {
const uint8_t *const check_here = site[idx].offset + best_address;
unsigned int thissad =
get_mvpred_sad(ms_params, src, check_here, ref_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost_(&this_mv, mv_cost_params);
if (thissad < bestsad) {
bestsad = thissad;
best_site = idx;
}
}
}
}
}
UPDATE_SEARCH_STEP;
}
}
*num00 = num_center_steps;
if (second_best_mv) {
*second_best_mv = tmp_second_best_mv;
}
return bestsad;
#undef UPDATE_SEARCH_STEP
}
static inline unsigned int get_start_mvpred_sad_cost(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV start_mv) {
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv);
unsigned int start_mv_sad =
mvsad_err_cost_(&start_mv, &ms_params->mv_cost_params);
if (ms_params->ms_buffers.second_pred)
start_mv_sad +=
get_mvpred_compound_sad(ms_params, src, best_address, ref->stride);
else
start_mv_sad += get_mvpred_sad(ms_params, src, best_address, ref->stride);
return start_mv_sad;
}
static int full_pixel_diamond(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, int *cost_list,
FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *best_mv_stats,
FULLPEL_MV *second_best_mv) {
const search_site_config *cfg = ms_params->search_sites;
int thissme, n, num00 = 0;
// Clamp start mv and calculate the cost
clamp_fullmv(&start_mv, &ms_params->mv_limits);
unsigned int start_mv_sad = get_start_mvpred_sad_cost(ms_params, start_mv);
diamond_search_sad(start_mv, start_mv_sad, ms_params, step_param, &n, best_mv,
second_best_mv);
int bestsme = get_mvpred_compound_var_cost(ms_params, best_mv, best_mv_stats);
// If there won't be more n-step search, check to see if refining search is
// needed.
const int further_steps = cfg->num_search_steps - 1 - step_param;
while (n < further_steps) {
++n;
// TODO(chiyotsai@google.com): There is another bug here where the second
// best mv gets incorrectly overwritten. Fix it later.
FULLPEL_MV tmp_best_mv;
FULLPEL_MV_STATS tmp_best_mv_stats;
diamond_search_sad(start_mv, start_mv_sad, ms_params, step_param + n,
&num00, &tmp_best_mv, second_best_mv);
thissme = get_mvpred_compound_var_cost(ms_params, &tmp_best_mv,
&tmp_best_mv_stats);
if (thissme < bestsme) {
bestsme = thissme;
*best_mv = tmp_best_mv;
*best_mv_stats = tmp_best_mv_stats;
}
if (num00) {
// Advance the loop by num00 steps
n += num00;
num00 = 0;
}
}
// Return cost list.
if (cost_list) {
if (USE_SAD_COSTLIST) {
const int costlist_has_sad = 0;
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
return bestsme;
}
// Exhaustive motion search around a given centre position with a given
// step size.
static int exhaustive_mesh_search(FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int range, const int step,
FULLPEL_MV *best_mv,
FULLPEL_MV *second_best_mv) {
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const struct buf_2d *const src = ms_params->ms_buffers.src;
const struct buf_2d *const ref = ms_params->ms_buffers.ref;
const int ref_stride = ref->stride;
unsigned int best_sad = INT_MAX;
int r, c, i;
int start_col, end_col, start_row, end_row;
const int col_step = (step > 1) ? step : 4;
assert(step >= 1);
clamp_fullmv(&start_mv, &ms_params->mv_limits);
*best_mv = start_mv;
best_sad = get_mvpred_sad(ms_params, src, get_buf_from_fullmv(ref, &start_mv),
ref_stride);
best_sad += mvsad_err_cost_(&start_mv, mv_cost_params);
start_row = AOMMAX(-range, ms_params->mv_limits.row_min - start_mv.row);
start_col = AOMMAX(-range, ms_params->mv_limits.col_min - start_mv.col);
end_row = AOMMIN(range, ms_params->mv_limits.row_max - start_mv.row);
end_col = AOMMIN(range, ms_params->mv_limits.col_max - start_mv.col);
for (r = start_row; r <= end_row; r += step) {
for (c = start_col; c <= end_col; c += col_step) {
// Step > 1 means we are not checking every location in this pass.
if (step > 1) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c };
unsigned int sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv, second_best_mv);
} else {
// 4 sads in a single call if we are checking every location
if (c + 3 <= end_col) {
unsigned int sads[4];
const uint8_t *addrs[4];
for (i = 0; i < 4; ++i) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
addrs[i] = get_buf_from_fullmv(ref, &mv);
}
ms_params->sdx4df(src->buf, src->stride, addrs, ref_stride, sads);
for (i = 0; i < 4; ++i) {
if (sads[i] < best_sad) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
update_mvs_and_sad(sads[i], &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv,
second_best_mv);
}
}
} else {
for (i = 0; i < end_col - c; ++i) {
const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i };
unsigned int sad = get_mvpred_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad,
/*raw_best_sad=*/NULL, best_mv, second_best_mv);
}
}
}
}
}
return best_sad;
}
// Runs an limited range exhaustive mesh search using a pattern set
// according to the encode speed profile.
static int full_pixel_exhaustive(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const struct MESH_PATTERN *const mesh_patterns,
int *cost_list, FULLPEL_MV *best_mv,
FULLPEL_MV_STATS *mv_stats,
FULLPEL_MV *second_best_mv) {
const int kMinRange = 7;
const int kMaxRange = 256;
const int kMinInterval = 1;
int bestsme;
int i;
int interval = mesh_patterns[0].interval;
int range = mesh_patterns[0].range;
int baseline_interval_divisor;
// TODO(chiyotsai@google.com): Currently exhaustive search calls single ref
// version of sad and variance function. We still need to check the
// performance when compound ref exhaustive search is enabled.
assert(!ms_params->ms_buffers.second_pred &&
"Mesh search does not support compound mode!");
*best_mv = start_mv;
// Trap illegal values for interval and range for this function.
if ((range < kMinRange) || (range > kMaxRange) || (interval < kMinInterval) ||
(interval > range))
return INT_MAX;
baseline_interval_divisor = range / interval;
// Check size of proposed first range against magnitude of the centre
// value used as a starting point.
range = AOMMAX(range, (5 * AOMMAX(abs(best_mv->row), abs(best_mv->col))) / 4);
range = AOMMIN(range, kMaxRange);
interval = AOMMAX(interval, range / baseline_interval_divisor);
// Use a small search step/interval for certain kind of clips.
// For example, screen content clips with a lot of texts.
// Large interval could lead to a false matching position, and it can't find
// the best global candidate in following iterations due to reduced search
// range. The solution here is to use a small search iterval in the beginning
// and thus reduces the chance of missing the best candidate.
if (ms_params->fine_search_interval) {
interval = AOMMIN(interval, 4);
}
// initial search
bestsme = exhaustive_mesh_search(*best_mv, ms_params, range, interval,
best_mv, second_best_mv);
if ((interval > kMinInterval) && (range > kMinRange)) {
// Progressive searches with range and step size decreasing each time
// till we reach a step size of 1. Then break out.
for (i = 1; i < MAX_MESH_STEP; ++i) {
// First pass with coarser step and longer range
bestsme = exhaustive_mesh_search(
*best_mv, ms_params, mesh_patterns[i].range,
mesh_patterns[i].interval, best_mv, second_best_mv);
if (mesh_patterns[i].interval == 1) break;
}
}
if (bestsme < INT_MAX) {
bestsme = get_mvpred_var_cost(ms_params, best_mv, mv_stats);
}
// Return cost list.
if (cost_list) {
if (USE_SAD_COSTLIST) {
const int costlist_has_sad = 0;
calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad);
} else {
calc_int_cost_list(*best_mv, ms_params, cost_list);
}
}
return bestsme;
}
// This function is called when we do joint motion search in comp_inter_inter
// mode, or when searching for one component of an ext-inter compound mode.
int av1_refining_search_8p_c(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const FULLPEL_MV start_mv, FULLPEL_MV *best_mv) {
static const search_neighbors neighbors[8] = {
{ { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 },
{ { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 },
{ { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 },
{ { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 }
};
uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P *
SEARCH_GRID_STRIDE_8P] = { 0 };
int grid_center = SEARCH_GRID_CENTER_8P;
int grid_coord = grid_center;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const struct buf_2d *src = ms_buffers->src;
const struct buf_2d *ref = ms_buffers->ref;
const int ref_stride = ref->stride;
*best_mv = start_mv;
clamp_fullmv(best_mv, mv_limits);
unsigned int best_sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, best_mv), ref_stride);
best_sad += mvsad_err_cost_(best_mv, mv_cost_params);
do_refine_search_grid[grid_coord] = 1;
for (int i = 0; i < SEARCH_RANGE_8P; ++i) {
int best_site = -1;
for (int j = 0; j < 8; ++j) {
grid_coord = grid_center + neighbors[j].coord_offset;
if (do_refine_search_grid[grid_coord] == 1) {
continue;
}
const FULLPEL_MV mv = { best_mv->row + neighbors[j].coord.row,
best_mv->col + neighbors[j].coord.col };
do_refine_search_grid[grid_coord] = 1;
if (av1_is_fullmv_in_range(mv_limits, mv)) {
unsigned int sad;
sad = get_mvpred_compound_sad(
ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride);
if (sad < best_sad) {
sad += mvsad_err_cost_(&mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
best_mv->row += neighbors[best_site].coord.row;
best_mv->col += neighbors[best_site].coord.col;
grid_center += neighbors[best_site].coord_offset;
}
}
return best_sad;
}
int av1_full_pixel_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, int *cost_list,
FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats,
FULLPEL_MV *second_best_mv) {
const BLOCK_SIZE bsize = ms_params->bsize;
const SEARCH_METHODS search_method = ms_params->search_method;
const int is_intra_mode = ms_params->is_intra_mode;
int run_mesh_search = ms_params->run_mesh_search;
int var = 0;
MARK_MV_INVALID(best_mv);
if (second_best_mv) {
MARK_MV_INVALID(second_best_mv);
}
if (cost_list) {
cost_list[0] = INT_MAX;
cost_list[1] = INT_MAX;
cost_list[2] = INT_MAX;
cost_list[3] = INT_MAX;
cost_list[4] = INT_MAX;
}
assert(ms_params->ms_buffers.ref->stride == ms_params->search_sites->stride);
switch (search_method) {
case FAST_BIGDIA:
var = fast_bigdia_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv, best_mv_stats);
break;
case VFAST_DIAMOND:
var = vfast_dia_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv, best_mv_stats);
break;
case FAST_DIAMOND:
var = fast_dia_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv, best_mv_stats);
break;
case FAST_HEX:
var = fast_hex_search(start_mv, ms_params, step_param, 0, cost_list,
best_mv, best_mv_stats);
break;
case HEX:
var = hex_search(start_mv, ms_params, step_param, 1, cost_list, best_mv,
best_mv_stats);
break;
case SQUARE:
var = square_search(start_mv, ms_params, step_param, 1, cost_list,
best_mv, best_mv_stats);
break;
case BIGDIA:
var = bigdia_search(start_mv, ms_params, step_param, 1, cost_list,
best_mv, best_mv_stats);
break;
case NSTEP:
case NSTEP_8PT:
case DIAMOND:
case CLAMPED_DIAMOND:
var = full_pixel_diamond(start_mv, ms_params, step_param, cost_list,
best_mv, best_mv_stats, second_best_mv);
break;
default: assert(0 && "Invalid search method.");
}
// Should we allow a follow on exhaustive search?
if (!run_mesh_search &&
((search_method == NSTEP) || (search_method == NSTEP_8PT)) &&
!ms_params->ms_buffers.second_pred) {
int exhaustive_thr = ms_params->force_mesh_thresh;
exhaustive_thr >>=
10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]);
// Threshold variance for an exhaustive full search.
if (var > exhaustive_thr) run_mesh_search = 1;
}
// TODO(yunqing): the following is used to reduce mesh search in temporal
// filtering. Can extend it to intrabc.
if (!is_intra_mode && ms_params->prune_mesh_search) {
const int full_pel_mv_diff = AOMMAX(abs(start_mv.row - best_mv->row),
abs(start_mv.col - best_mv->col));
if (full_pel_mv_diff <= ms_params->mesh_search_mv_diff_threshold) {
run_mesh_search = 0;
}
}
if (ms_params->sdf != ms_params->vfp->sdf) {
// If we are skipping rows when we perform the motion search, we need to
// check the quality of skipping. If it's bad, then we run mesh search with
// skip row features off.
// TODO(chiyotsai@google.com): Handle the case where we have a vertical
// offset of 1 before we hit this statement to avoid having to redo
// motion search.
const struct buf_2d *src = ms_params->ms_buffers.src;
const struct buf_2d *ref = ms_params->ms_buffers.ref;
const int src_stride = src->stride;
const int ref_stride = ref->stride;
const uint8_t *src_address = src->buf;
const uint8_t *best_address = get_buf_from_fullmv(ref, best_mv);
const int sad =
ms_params->vfp->sdf(src_address, src_stride, best_address, ref_stride);
const int skip_sad =
ms_params->vfp->sdsf(src_address, src_stride, best_address, ref_stride);
// We will keep the result of skipping rows if it's good enough. Here, good
// enough means the error is less than 1 per pixel.
const int kSADThresh =
1 << (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]);
if (sad > kSADThresh && abs(skip_sad - sad) * 10 >= AOMMAX(sad, 1) * 9) {
// There is a large discrepancy between skipping and not skipping, so we
// need to redo the motion search.
FULLPEL_MOTION_SEARCH_PARAMS new_ms_params = *ms_params;
new_ms_params.sdf = new_ms_params.vfp->sdf;
new_ms_params.sdx4df = new_ms_params.vfp->sdx4df;
new_ms_params.sdx3df = new_ms_params.vfp->sdx3df;
return av1_full_pixel_search(start_mv, &new_ms_params, step_param,
cost_list, best_mv, best_mv_stats,
second_best_mv);
}
}
if (run_mesh_search) {
int var_ex;
FULLPEL_MV tmp_mv_ex;
FULLPEL_MV_STATS tmp_mv_stats;
// Pick the mesh pattern for exhaustive search based on the toolset (intraBC
// or non-intraBC)
// TODO(chiyotsai@google.com): There is a bug here where the second best mv
// gets overwritten without actually comparing the rdcost.
const MESH_PATTERN *const mesh_patterns =
ms_params->mesh_patterns[is_intra_mode];
// TODO(chiyotsai@google.com): the second best mv is not set correctly by
// full_pixel_exhaustive, which can incorrectly override it.
var_ex =
full_pixel_exhaustive(*best_mv, ms_params, mesh_patterns, cost_list,
&tmp_mv_ex, &tmp_mv_stats, second_best_mv);
if (var_ex < var) {
var = var_ex;
*best_mv_stats = tmp_mv_stats;
*best_mv = tmp_mv_ex;
}
}
return var;
}
int av1_intrabc_hash_search(const AV1_COMP *cpi, const MACROBLOCKD *xd,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
IntraBCHashInfo *intrabc_hash_info,
FULLPEL_MV *best_mv) {
if (!av1_use_hash_me(cpi)) return INT_MAX;
const BLOCK_SIZE bsize = ms_params->bsize;
const int block_width = block_size_wide[bsize];
const int block_height = block_size_high[bsize];
if (block_width != block_height) return INT_MAX;
const FullMvLimits *mv_limits = &ms_params->mv_limits;
const MSBuffers *ms_buffer = &ms_params->ms_buffers;
const uint8_t *src = ms_buffer->src->buf;
const int src_stride = ms_buffer->src->stride;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int x_pos = mi_col * MI_SIZE;
const int y_pos = mi_row * MI_SIZE;
uint32_t hash_value1, hash_value2;
int best_hash_cost = INT_MAX;
// for the hashMap
hash_table *ref_frame_hash = &intrabc_hash_info->intrabc_hash_table;
av1_get_block_hash_value(intrabc_hash_info, src, src_stride, block_width,
&hash_value1, &hash_value2, is_cur_buf_hbd(xd));
const int count = av1_hash_table_count(ref_frame_hash, hash_value1);
if (count <= 1) {
return INT_MAX;
}
Iterator iterator = av1_hash_get_first_iterator(ref_frame_hash, hash_value1);
for (int i = 0; i < count; i++, aom_iterator_increment(&iterator)) {
block_hash ref_block_hash = *(block_hash *)(aom_iterator_get(&iterator));
if (hash_value2 == ref_block_hash.hash_value2) {
// Make sure the prediction is from valid area.
const MV dv = { GET_MV_SUBPEL(ref_block_hash.y - y_pos),
GET_MV_SUBPEL(ref_block_hash.x - x_pos) };
if (!av1_is_dv_valid(dv, &cpi->common, xd, mi_row, mi_col, bsize,
cpi->common.seq_params->mib_size_log2))
continue;
FULLPEL_MV hash_mv;
hash_mv.col = ref_block_hash.x - x_pos;
hash_mv.row = ref_block_hash.y - y_pos;
if (!av1_is_fullmv_in_range(mv_limits, hash_mv)) continue;
FULLPEL_MV_STATS mv_stats;
const int refCost = get_mvpred_var_cost(ms_params, &hash_mv, &mv_stats);
if (refCost < best_hash_cost) {
best_hash_cost = refCost;
*best_mv = hash_mv;
}
}
}
return best_hash_cost;
}
int av1_vector_match(const int16_t *ref, const int16_t *src, int bwl,
int search_size, int full_search, int *sad) {
int best_sad = INT_MAX;
int this_sad;
int d;
int center, offset = 0;
int bw = search_size << 1;
if (full_search) {
for (d = 0; d <= bw; d++) {
this_sad = aom_vector_var(&ref[d], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
offset = d;
}
}
center = offset;
*sad = best_sad;
return (center - (bw >> 1));
}
for (d = 0; d <= bw; d += 16) {
this_sad = aom_vector_var(&ref[d], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
offset = d;
}
}
center = offset;
for (d = -8; d <= 8; d += 16) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = aom_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -4; d <= 4; d += 8) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = aom_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -2; d <= 2; d += 4) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = aom_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -1; d <= 1; d += 2) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = aom_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
*sad = best_sad;
return (center - (bw >> 1));
}
// A special fast version of motion search used in rt mode.
// The search window along columns and row is given by:
// +/- me_search_size_col/row.
unsigned int av1_int_pro_motion_estimation(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row,
int mi_col, const MV *ref_mv,
unsigned int *y_sad_zero,
int me_search_size_col,
int me_search_size_row) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int idx;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
const int full_search = is_screen;
const bool screen_scroll_superblock =
is_screen && bsize == cm->seq_params->sb_size;
// Keep border a multiple of 16.
const int border = (cpi->oxcf.border_in_pixels >> 4) << 4;
int search_size_width = me_search_size_col;
int search_size_height = me_search_size_row;
// Adjust based on boundary.
if (((mi_col << 2) - search_size_width < -border) ||
((mi_col << 2) + search_size_width > cm->width + border))
search_size_width = border;
if (((mi_row << 2) - search_size_height < -border) ||
((mi_row << 2) + search_size_height > cm->height + border))
search_size_height = border;
const int src_stride = x->plane[0].src.stride;
const int ref_stride = xd->plane[0].pre[0].stride;
uint8_t const *ref_buf, *src_buf;
int_mv *best_int_mv = &xd->mi[0]->mv[0];
unsigned int best_sad, tmp_sad, this_sad[4];
int best_sad_col, best_sad_row;
const int row_norm_factor = mi_size_high_log2[bsize] + 1;
const int col_norm_factor = 3 + (bw >> 5);
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, mi->ref_frame[0]);
static const MV search_pos[4] = {
{ -1, 0 },
{ 0, -1 },
{ 0, 1 },
{ 1, 0 },
};
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
MAX_MB_PLANE);
}
if (xd->bd != 8) {
best_int_mv->as_fullmv = kZeroFullMv;
best_sad = cpi->ppi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride,
xd->plane[0].pre[0].buf, ref_stride);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
return best_sad;
}
const int width_ref_buf = (search_size_width << 1) + bw;
const int height_ref_buf = (search_size_height << 1) + bh;
int16_t *hbuf = (int16_t *)aom_malloc(width_ref_buf * sizeof(*hbuf));
int16_t *vbuf = (int16_t *)aom_malloc(height_ref_buf * sizeof(*vbuf));
int16_t *src_hbuf = (int16_t *)aom_malloc(bw * sizeof(*src_hbuf));
int16_t *src_vbuf = (int16_t *)aom_malloc(bh * sizeof(*src_vbuf));
if (!hbuf || !vbuf || !src_hbuf || !src_vbuf) {
aom_free(hbuf);
aom_free(vbuf);
aom_free(src_hbuf);
aom_free(src_vbuf);
aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate hbuf, vbuf, src_hbuf, or src_vbuf");
}
// Set up prediction 1-D reference set for rows.
ref_buf = xd->plane[0].pre[0].buf - search_size_width;
aom_int_pro_row(hbuf, ref_buf, ref_stride, width_ref_buf, bh,
row_norm_factor);
// Set up prediction 1-D reference set for cols
ref_buf = xd->plane[0].pre[0].buf - search_size_height * ref_stride;
aom_int_pro_col(vbuf, ref_buf, ref_stride, bw, height_ref_buf,
col_norm_factor);
// Set up src 1-D reference set
src_buf = x->plane[0].src.buf;
aom_int_pro_row(src_hbuf, src_buf, src_stride, bw, bh, row_norm_factor);
aom_int_pro_col(src_vbuf, src_buf, src_stride, bw, bh, col_norm_factor);
// Find the best match per 1-D search
best_int_mv->as_fullmv.col =
av1_vector_match(hbuf, src_hbuf, mi_size_wide_log2[bsize],
search_size_width, full_search, &best_sad_col);
best_int_mv->as_fullmv.row =
av1_vector_match(vbuf, src_vbuf, mi_size_high_log2[bsize],
search_size_height, full_search, &best_sad_row);
// For screen: select between horiz or vert motion.
if (is_screen) {
if (best_sad_col < best_sad_row)
best_int_mv->as_fullmv.row = 0;
else
best_int_mv->as_fullmv.col = 0;
}
FULLPEL_MV this_mv = best_int_mv->as_fullmv;
src_buf = x->plane[0].src.buf;
ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &this_mv);
best_sad =
cpi->ppi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
// Evaluate zero MV if found MV is non-zero.
if (best_int_mv->as_int != 0) {
tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride,
xd->plane[0].pre[0].buf, ref_stride);
*y_sad_zero = tmp_sad;
if (tmp_sad < best_sad) {
best_int_mv->as_fullmv = kZeroFullMv;
this_mv = best_int_mv->as_fullmv;
ref_buf = xd->plane[0].pre[0].buf;
best_sad = tmp_sad;
}
} else {
*y_sad_zero = best_sad;
}
if (!screen_scroll_superblock) {
const uint8_t *const pos[4] = {
ref_buf - ref_stride,
ref_buf - 1,
ref_buf + 1,
ref_buf + ref_stride,
};
cpi->ppi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride,
this_sad);
for (idx = 0; idx < 4; ++idx) {
if (this_sad[idx] < best_sad) {
best_sad = this_sad[idx];
best_int_mv->as_fullmv.row = search_pos[idx].row + this_mv.row;
best_int_mv->as_fullmv.col = search_pos[idx].col + this_mv.col;
}
}
if (this_sad[0] < this_sad[3])
this_mv.row -= 1;
else
this_mv.row += 1;
if (this_sad[1] < this_sad[2])
this_mv.col -= 1;
else
this_mv.col += 1;
ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &this_mv);
tmp_sad =
cpi->ppi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
if (best_sad > tmp_sad) {
best_int_mv->as_fullmv = this_mv;
best_sad = tmp_sad;
}
}
FullMvLimits mv_limits = x->mv_limits;
av1_set_mv_search_range(&mv_limits, ref_mv);
clamp_fullmv(&best_int_mv->as_fullmv, &mv_limits);
convert_fullmv_to_mv(best_int_mv);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
aom_free(hbuf);
aom_free(vbuf);
aom_free(src_hbuf);
aom_free(src_vbuf);
return best_sad;
}
// =============================================================================
// Fullpixel Motion Search: OBMC
// =============================================================================
static inline int get_obmc_mvpred_var(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv) {
const aom_variance_fn_ptr_t *vfp = ms_params->vfp;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *ref_buf = ms_buffers->ref;
const MV mv = get_mv_from_fullmv(this_mv);
unsigned int unused;
return vfp->ovf(get_buf_from_fullmv(ref_buf, this_mv), ref_buf->stride, wsrc,
mask, &unused) +
mv_err_cost_(&mv, mv_cost_params);
}
static int obmc_refining_search_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV *best_mv) {
const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *ref_buf = ms_buffers->ref;
const FULLPEL_MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } };
const int kSearchRange = 8;
unsigned int best_sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, best_mv),
ref_buf->stride, wsrc, mask) +
mvsad_err_cost_(best_mv, mv_cost_params);
for (int i = 0; i < kSearchRange; i++) {
int best_site = -1;
for (int j = 0; j < 4; j++) {
const FULLPEL_MV mv = { best_mv->row + neighbors[j].row,
best_mv->col + neighbors[j].col };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv)) {
unsigned int sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, &mv),
ref_buf->stride, wsrc, mask);
if (sad < best_sad) {
sad += mvsad_err_cost_(&mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
best_mv->row += neighbors[best_site].row;
best_mv->col += neighbors[best_site].col;
}
}
return best_sad;
}
static int obmc_diamond_search_sad(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV start_mv,
FULLPEL_MV *best_mv, int search_step, int *num00) {
const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp;
const search_site_config *cfg = ms_params->search_sites;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const MSBuffers *ms_buffers = &ms_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const struct buf_2d *const ref_buf = ms_buffers->ref;
// search_step determines the length of the initial step and hence the number
// of iterations.
const int tot_steps = cfg->num_search_steps - search_step;
const uint8_t *best_address, *init_ref;
int best_sad = INT_MAX;
int best_site = 0;
clamp_fullmv(&start_mv, &ms_params->mv_limits);
best_address = init_ref = get_buf_from_fullmv(ref_buf, &start_mv);
*num00 = 0;
*best_mv = start_mv;
// Check the starting position
best_sad = fn_ptr->osdf(best_address, ref_buf->stride, wsrc, mask) +
mvsad_err_cost_(best_mv, mv_cost_params);
for (int step = tot_steps - 1; step >= 0; --step) {
const search_site *const site = cfg->site[step];
best_site = 0;
for (int idx = 1; idx <= cfg->searches_per_step[step]; ++idx) {
const FULLPEL_MV mv = { best_mv->row + site[idx].mv.row,
best_mv->col + site[idx].mv.col };
if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv)) {
int sad = fn_ptr->osdf(best_address + site[idx].offset, ref_buf->stride,
wsrc, mask);
if (sad < best_sad) {
sad += mvsad_err_cost_(&mv, mv_cost_params);
if (sad < best_sad) {
best_sad = sad;
best_site = idx;
}
}
}
}
if (best_site != 0) {
best_mv->row += site[best_site].mv.row;
best_mv->col += site[best_site].mv.col;
best_address += site[best_site].offset;
} else if (best_address == init_ref) {
(*num00)++;
}
}
return best_sad;
}
static int obmc_full_pixel_diamond(
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV start_mv,
int step_param, FULLPEL_MV *best_mv) {
const search_site_config *cfg = ms_params->search_sites;
FULLPEL_MV tmp_mv;
int thissme, n, num00 = 0;
int bestsme =
obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv, step_param, &n);
if (bestsme < INT_MAX) bestsme = get_obmc_mvpred_var(ms_params, &tmp_mv);
*best_mv = tmp_mv;
// If there won't be more n-step search, check to see if refining search is
// needed.
const int further_steps = cfg->num_search_steps - 1 - step_param;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
thissme = obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv,
step_param + n, &num00);
if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, &tmp_mv);
if (thissme < bestsme) {
bestsme = thissme;
*best_mv = tmp_mv;
}
}
}
return bestsme;
}
int av1_obmc_full_pixel_search(const FULLPEL_MV start_mv,
const FULLPEL_MOTION_SEARCH_PARAMS *ms_params,
const int step_param, FULLPEL_MV *best_mv) {
if (!ms_params->fast_obmc_search) {
const int bestsme =
obmc_full_pixel_diamond(ms_params, start_mv, step_param, best_mv);
return bestsme;
} else {
*best_mv = start_mv;
clamp_fullmv(best_mv, &ms_params->mv_limits);
int thissme = obmc_refining_search_sad(ms_params, best_mv);
if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, best_mv);
return thissme;
}
}
// =============================================================================
// Subpixel Motion Search: Translational
// =============================================================================
#define INIT_SUBPEL_STEP_SIZE (4)
/*
* To avoid the penalty for crossing cache-line read, preload the reference
* area in a small buffer, which is aligned to make sure there won't be crossing
* cache-line read while reading from this buffer. This reduced the cpu
* cycles spent on reading ref data in sub-pixel filter functions.
* TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x
* 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we
* could reduce the area.
*/
// Returns the subpel offset used by various subpel variance functions [m]sv[a]f
static inline int get_subpel_part(int x) { return x & 7; }
// Gets the address of the ref buffer at subpel location (r, c), rounded to the
// nearest fullpel precision toward - \infty
static inline const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
const MV mv) {
const int offset = (mv.row >> 3) * buf->stride + (mv.col >> 3);
return &buf->buf[offset];
}
// Estimates the variance of prediction residue using bilinear filter for fast
// search.
static inline int estimated_pref_error(
const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint8_t *src = ms_buffers->src->buf;
const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int src_stride = ms_buffers->src->stride;
const int ref_stride = ms_buffers->ref->stride;
const uint8_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
if (second_pred == NULL) {
return vfp->svf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse);
} else if (mask) {
return vfp->msvf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
second_pred, mask, mask_stride, invert_mask, sse);
} else {
return vfp->svaf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride,
sse, second_pred);
}
}
// Calculates the variance of prediction residue.
static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm,
const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint8_t *src = ms_buffers->src->buf;
const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int src_stride = ms_buffers->src->stride;
const int ref_stride = ms_buffers->ref->stride;
const uint8_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
const int w = var_params->w;
const int h = var_params->h;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
unsigned int besterr;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]);
uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred16);
if (second_pred != NULL) {
if (mask) {
aom_highbd_comp_mask_upsampled_pred(
xd, cm, mi_row, mi_col, this_mv, pred8, second_pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, mask, mask_stride,
invert_mask, xd->bd, subpel_search_type);
} else {
aom_highbd_comp_avg_upsampled_pred(
xd, cm, mi_row, mi_col, this_mv, pred8, second_pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd,
subpel_search_type);
}
} else {
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred8, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride,
xd->bd, subpel_search_type);
}
besterr = vfp->vf(pred8, w, src, src_stride, sse);
} else {
DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]);
if (second_pred != NULL) {
if (mask) {
aom_comp_mask_upsampled_pred(
xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, mask, mask_stride,
invert_mask, subpel_search_type);
} else {
aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred,
second_pred, w, h, subpel_x_q3, subpel_y_q3,
ref, ref_stride, subpel_search_type);
}
} else {
aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride,
subpel_search_type);
}
besterr = vfp->vf(pred, w, src, src_stride, sse);
}
#else
DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]);
if (second_pred != NULL) {
if (mask) {
aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred,
second_pred, w, h, subpel_x_q3, subpel_y_q3,
ref, ref_stride, mask, mask_stride,
invert_mask, subpel_search_type);
} else {
aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred,
second_pred, w, h, subpel_x_q3, subpel_y_q3,
ref, ref_stride, subpel_search_type);
}
} else {
aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3,
subpel_y_q3, ref, ref_stride, subpel_search_type);
}
besterr = vfp->vf(pred, w, src, src_stride, sse);
#endif
return besterr;
}
// Estimates whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account. It is suffixed "fast" because
// it uses bilinear filter to estimate the prediction.
static inline unsigned int check_better_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *has_better_mv, int is_scaled) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
int thismse;
if (is_scaled) {
thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse);
} else {
thismse = estimated_pref_error(this_mv, var_params, &sse);
}
cost = mv_err_cost_(this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*has_better_mv |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
// Checks whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account.
static AOM_FORCE_INLINE unsigned int check_better(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *is_better) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
int thismse;
thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse);
cost = mv_err_cost_(this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*is_better |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
static inline MV get_best_diag_step(int step_size, unsigned int left_cost,
unsigned int right_cost,
unsigned int up_cost,
unsigned int down_cost) {
const MV diag_step = { up_cost <= down_cost ? -step_size : step_size,
left_cost <= right_cost ? -step_size : step_size };
return diag_step;
}
// Searches the four cardinal direction for a better mv, then follows up with a
// search in the best quadrant. This uses bilinear filter to speed up the
// calculation.
static AOM_FORCE_INLINE MV first_level_check_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv,
int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int is_scaled) {
// Check the four cardinal directions
const MV left_mv = { this_mv.row, this_mv.col - hstep };
int dummy = 0;
const unsigned int left = check_better_fast(
xd, cm, &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy, is_scaled);
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const unsigned int right = check_better_fast(
xd, cm, &right_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy, is_scaled);
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const unsigned int up = check_better_fast(
xd, cm, &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy, is_scaled);
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
const unsigned int down = check_better_fast(
xd, cm, &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy, is_scaled);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
check_better_fast(xd, cm, &diag_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
return diag_step;
}
// Performs a following up search after first_level_check_fast is called. This
// performs two extra chess pattern searches in the best quadrant.
static AOM_FORCE_INLINE void second_level_check_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, const MV diag_step,
MV *best_mv, int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int is_scaled) {
assert(diag_step.row == hstep || diag_step.row == -hstep);
assert(diag_step.col == hstep || diag_step.col == -hstep);
const int tr = this_mv.row;
const int tc = this_mv.col;
const int br = best_mv->row;
const int bc = best_mv->col;
int dummy = 0;
if (tr != br && tc != bc) {
assert(diag_step.col == bc - tc);
assert(diag_step.row == br - tr);
const MV chess_mv_1 = { br, bc + diag_step.col };
const MV chess_mv_2 = { br + diag_step.row, bc };
check_better_fast(xd, cm, &chess_mv_1, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &chess_mv_2, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
} else if (tr == br && tc != bc) {
assert(diag_step.col == bc - tc);
// Continue searching in the best direction
const MV bottom_long_mv = { br + hstep, bc + diag_step.col };
const MV top_long_mv = { br - hstep, bc + diag_step.col };
check_better_fast(xd, cm, &bottom_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
// Search in the direction opposite of the best quadrant
const MV rev_mv = { br - diag_step.row, bc };
check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
} else if (tr != br && tc == bc) {
assert(diag_step.row == br - tr);
// Continue searching in the best direction
const MV right_long_mv = { br + diag_step.row, bc + hstep };
const MV left_long_mv = { br + diag_step.row, bc - hstep };
check_better_fast(xd, cm, &right_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &left_long_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
// Search in the direction opposite of the best quadrant
const MV rev_mv = { br, bc - diag_step.col };
check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy,
is_scaled);
}
}
// Combines first level check and second level check when applicable. This first
// searches the four cardinal directions, and perform several
// diagonal/chess-pattern searches in the best quadrant.
static AOM_FORCE_INLINE void two_level_checks_fast(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv,
int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int iters, int is_scaled) {
const MV diag_step = first_level_check_fast(
xd, cm, this_mv, best_mv, hstep, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, is_scaled);
if (iters > 1) {
second_level_check_fast(xd, cm, this_mv, diag_step, best_mv, hstep,
mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, is_scaled);
}
}
static AOM_FORCE_INLINE MV
first_level_check(MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv,
MV *best_mv, const int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
int dummy = 0;
const MV left_mv = { this_mv.row, this_mv.col - hstep };
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
const unsigned int left =
check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int right =
check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int up =
check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int down =
check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params, mv_cost_params,
besterr, sse1, distortion, &dummy);
return diag_step;
}
// A newer version of second level check that gives better quality.
// TODO(chiyotsai@google.com): evaluate this on subpel_search_types different
// from av1_find_best_sub_pixel_tree
static AOM_FORCE_INLINE void second_level_check_v2(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step,
MV *best_mv, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int is_scaled) {
assert(best_mv->row == this_mv.row + diag_step.row ||
best_mv->col == this_mv.col + diag_step.col);
if (CHECK_MV_EQUAL(this_mv, *best_mv)) {
return;
} else if (this_mv.row == best_mv->row) {
// Search away from diagonal step since diagonal search did not provide any
// improvement
diag_step.row *= -1;
} else if (this_mv.col == best_mv->col) {
diag_step.col *= -1;
}
const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col };
const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col };
const MV diag_bias_mv = { best_mv->row + diag_step.row,
best_mv->col + diag_step.col };
int has_better_mv = 0;
if (var_params->subpel_search_type != USE_2_TAPS_ORIG) {
check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv);
}
} else {
check_better_fast(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv,
is_scaled);
check_better_fast(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &has_better_mv,
is_scaled);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
check_better_fast(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv, is_scaled);
}
}
}
// Gets the error at the beginning when the mv has fullpel precision
static unsigned int setup_center_error(
const MACROBLOCKD *xd, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const int w = var_params->w;
const int h = var_params->h;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint8_t *src = ms_buffers->src->buf;
const uint8_t *y = get_buf_from_mv(ms_buffers->ref, *bestmv);
const int src_stride = ms_buffers->src->stride;
const int y_stride = ms_buffers->ref->stride;
const uint8_t *second_pred = ms_buffers->second_pred;
const uint8_t *mask = ms_buffers->mask;
const int mask_stride = ms_buffers->mask_stride;
const int invert_mask = ms_buffers->inv_mask;
unsigned int besterr;
if (second_pred != NULL) {
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
DECLARE_ALIGNED(16, uint16_t, comp_pred16[MAX_SB_SQUARE]);
uint8_t *comp_pred = CONVERT_TO_BYTEPTR(comp_pred16);
if (mask) {
aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride,
mask, mask_stride, invert_mask);
} else {
aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
} else {
DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]);
if (mask) {
aom_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask,
mask_stride, invert_mask);
} else {
aom_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
}
#else
(void)xd;
DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]);
if (mask) {
aom_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask,
mask_stride, invert_mask);
} else {
aom_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride);
}
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
#endif
} else {
besterr = vfp->vf(y, y_stride, src, src_stride, sse1);
}
*distortion = besterr;
besterr += mv_err_cost_(bestmv, mv_cost_params);
return besterr;
}
// Gets the error at the beginning when the mv has fullpel precision
static unsigned int upsampled_setup_center_error(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
unsigned int besterr = upsampled_pref_error(xd, cm, bestmv, var_params, sse1);
*distortion = besterr;
besterr += mv_err_cost_(bestmv, mv_cost_params);
return besterr;
}
static inline int divide_and_round(int n, int d) {
return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
}
static inline int is_cost_list_wellbehaved(const int *cost_list) {
return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] &&
cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4];
}
// Returns surface minima estimate at given precision in 1/2^n bits.
// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
// For a given set of costs S0, S1, S2, S3, S4 at points
// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
// the solution for the location of the minima (x0, y0) is given by:
// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
// The code below is an integerized version of that.
static inline void get_cost_surf_min(const int *cost_list, int *ir, int *ic,
int bits) {
*ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
(cost_list[1] - 2 * cost_list[0] + cost_list[3]));
*ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
(cost_list[4] - 2 * cost_list[0] + cost_list[2]));
}
// Checks the list of mvs searched in the last iteration and see if we are
// repeating it. If so, return 1. Otherwise we update the last_mv_search_list
// with current_mv and return 0.
static inline int check_repeated_mv_and_update(int_mv *last_mv_search_list,
const MV current_mv, int iter) {
if (last_mv_search_list) {
if (CHECK_MV_EQUAL(last_mv_search_list[iter].as_mv, current_mv)) {
return 1;
}
last_mv_search_list[iter].as_mv = current_mv;
}
return 0;
}
static inline int setup_center_error_facade(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *bestmv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion,
int is_scaled) {
if (is_scaled) {
return upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
} else {
return setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1,
distortion);
}
}
int av1_find_best_sub_pixel_tree_pruned_more(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion,
unsigned int *sse1, int_mv *last_mv_search_list) {
(void)cm;
const int allow_hp = ms_params->allow_hp;
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const int *cost_list = ms_params->cost_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
// The iteration we are current searching for. Iter 0 corresponds to fullpel
// mv, iter 1 to half pel, and so on
int iter = 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf = is_intrabc_block(xd->mi[0])
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
if (start_mv_stats != NULL && !is_scaled) {
besterr = start_mv_stats->distortion + start_mv_stats->err_cost;
*distortion = start_mv_stats->distortion;
*sse1 = start_mv_stats->sse;
} else {
besterr =
setup_center_error_facade(xd, cm, bestmv, var_params, mv_cost_params,
sse1, distortion, is_scaled);
}
// If forced_stop is FULL_PEL, return.
if (forced_stop == FULL_PEL) return besterr;
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
int ir, ic;
get_cost_surf_min(cost_list, &ir, &ic, 1);
if (ir != 0 || ic != 0) {
const MV this_mv = { start_mv.row + ir * hstep,
start_mv.col + ic * hstep };
int dummy = 0;
check_better_fast(xd, cm, &this_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
}
} else {
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
if (forced_stop < HALF_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
if (allow_hp && forced_stop == EIGHTH_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
return besterr;
}
int av1_find_best_sub_pixel_tree_pruned(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion,
unsigned int *sse1, int_mv *last_mv_search_list) {
(void)cm;
(void)start_mv_stats;
const int allow_hp = ms_params->allow_hp;
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const int *cost_list = ms_params->cost_list;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
// The iteration we are current searching for. Iter 0 corresponds to fullpel
// mv, iter 1 to half pel, and so on
int iter = 0;
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf = is_intrabc_block(xd->mi[0])
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
if (start_mv_stats != NULL && !is_scaled) {
besterr = start_mv_stats->distortion + start_mv_stats->err_cost;
*distortion = start_mv_stats->distortion;
*sse1 = start_mv_stats->sse;
} else {
besterr =
setup_center_error_facade(xd, cm, bestmv, var_params, mv_cost_params,
sse1, distortion, is_scaled);
}
// If forced_stop is FULL_PEL, return.
if (forced_stop == FULL_PEL) return besterr;
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX) {
const unsigned int whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
(cost_list[2] < cost_list[4] ? 0 : 2);
const MV left_mv = { start_mv.row, start_mv.col - hstep };
const MV right_mv = { start_mv.row, start_mv.col + hstep };
const MV bottom_mv = { start_mv.row + hstep, start_mv.col };
const MV top_mv = { start_mv.row - hstep, start_mv.col };
const MV bottom_left_mv = { start_mv.row + hstep, start_mv.col - hstep };
const MV bottom_right_mv = { start_mv.row + hstep, start_mv.col + hstep };
const MV top_left_mv = { start_mv.row - hstep, start_mv.col - hstep };
const MV top_right_mv = { start_mv.row - hstep, start_mv.col + hstep };
int dummy = 0;
switch (whichdir) {
case 0: // bottom left quadrant
check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_left_mv, bestmv, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, &dummy, is_scaled);
break;
case 1: // bottom right quadrant
check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &bottom_right_mv, bestmv, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, &dummy, is_scaled);
break;
case 2: // top left quadrant
check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_left_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
break;
case 3: // top right quadrant
check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
check_better_fast(xd, cm, &top_right_mv, bestmv, mv_limits, var_params,
mv_cost_params, &besterr, sse1, distortion, &dummy,
is_scaled);
break;
}
} else {
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
if (forced_stop < HALF_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
if (allow_hp && forced_stop == EIGHTH_PEL) {
if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) {
return INT_MAX;
}
iter++;
hstep >>= 1;
start_mv = *bestmv;
two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits,
var_params, mv_cost_params, &besterr, sse1,
distortion, iters_per_step, is_scaled);
}
return besterr;
}
int av1_find_best_sub_pixel_tree(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats,
MV *bestmv, int *distortion,
unsigned int *sse1,
int_mv *last_mv_search_list) {
(void)start_mv_stats;
const int allow_hp = ms_params->allow_hp;
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SUBPEL_SEARCH_TYPE subpel_search_type =
ms_params->var_params.subpel_search_type;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
// How many steps to take. A round of 0 means fullpel search only, 1 means
// half-pel, and so on.
const int round = AOMMIN(FULL_PEL - forced_stop, 3 - !allow_hp);
int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
const struct scale_factors *const sf = is_intrabc_block(xd->mi[0])
? &cm->sf_identity
: xd->block_ref_scale_factors[0];
const int is_scaled = av1_is_scaled(sf);
if (start_mv_stats != NULL && !is_scaled) {
besterr = start_mv_stats->distortion + start_mv_stats->err_cost;
*distortion = start_mv_stats->distortion;
*sse1 = start_mv_stats->sse;
} else {
if (subpel_search_type != USE_2_TAPS_ORIG) {
besterr = upsampled_setup_center_error(xd, cm, bestmv, var_params,
mv_cost_params, sse1, distortion);
} else {
besterr = setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1,
distortion);
}
}
// If forced_stop is FULL_PEL, return.
if (!round) return besterr;
for (int iter = 0; iter < round; ++iter) {
MV iter_center_mv = *bestmv;
if (check_repeated_mv_and_update(last_mv_search_list, iter_center_mv,
iter)) {
return INT_MAX;
}
MV diag_step;
if (subpel_search_type != USE_2_TAPS_ORIG) {
diag_step = first_level_check(xd, cm, iter_center_mv, bestmv, hstep,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
} else {
diag_step = first_level_check_fast(xd, cm, iter_center_mv, bestmv, hstep,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion, is_scaled);
}
// Check diagonal sub-pixel position
if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) {
second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv,
mv_limits, var_params, mv_cost_params, &besterr,
sse1, distortion, is_scaled);
}
hstep >>= 1;
}
return besterr;
}
// Note(yunqingwang): The following 2 functions are only used in the motion
// vector unit test, which return extreme motion vectors allowed by the MV
// limits.
// Returns the maximum MV.
int av1_return_max_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats,
MV *bestmv, int *distortion, unsigned int *sse1,
int_mv *last_mv_search_list) {
(void)xd;
(void)cm;
(void)start_mv;
(void)start_mv_stats;
(void)sse1;
(void)distortion;
(void)last_mv_search_list;
const int allow_hp = ms_params->allow_hp;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
bestmv->row = mv_limits->row_max;
bestmv->col = mv_limits->col_max;
unsigned int besterr = 0;
// In the sub-pel motion search, if hp is not used, then the last bit of mv
// has to be 0.
lower_mv_precision(bestmv, allow_hp, 0);
return besterr;
}
// Returns the minimum MV.
int av1_return_min_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats,
MV *bestmv, int *distortion, unsigned int *sse1,
int_mv *last_mv_search_list) {
(void)xd;
(void)cm;
(void)start_mv;
(void)start_mv_stats;
(void)sse1;
(void)distortion;
(void)last_mv_search_list;
const int allow_hp = ms_params->allow_hp;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
bestmv->row = mv_limits->row_min;
bestmv->col = mv_limits->col_min;
unsigned int besterr = 0;
// In the sub-pel motion search, if hp is not used, then the last bit of mv
// has to be 0.
lower_mv_precision(bestmv, allow_hp, 0);
return besterr;
}
#if !CONFIG_REALTIME_ONLY
// Computes the cost of the current predictor by going through the whole
// av1_enc_build_inter_predictor pipeline. This is mainly used by warped mv
// during motion_mode_rd. We are going through the whole
// av1_enc_build_inter_predictor because we might have changed the interpolation
// filter, etc before motion_mode_rd is called.
static inline unsigned int compute_motion_cost(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, BLOCK_SIZE bsize,
const MV *this_mv) {
unsigned int mse;
unsigned int sse;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const uint8_t *const src = ms_buffers->src->buf;
const int src_stride = ms_buffers->src->stride;
const uint8_t *const dst = xd->plane[0].dst.buf;
const int dst_stride = xd->plane[0].dst.stride;
const aom_variance_fn_ptr_t *vfp = ms_params->var_params.vfp;
mse = vfp->vf(dst, dst_stride, src, src_stride, &sse);
mse += mv_err_cost_(this_mv, &ms_params->mv_cost_params);
return mse;
}
// Refines MV in a small range
// Macros to build bitmasks which help us avoid redundant computations
//
// To explain the idea here, imagine that on the first iteration of the
// loop below, we step rightwards. Then, on the second iteration, the neighbors
// to consider are:
// . . .
// 0 1 .
// . . .
// Where 0 is the initial search point, 1 is the best candidate found in the
// first iteration, and the dots are the other neighbors of point 1.
//
// Naively, we would now need to scan all 8 neighbors of point 1 (point 0 and
// the seven points marked with dots), and compare them to see where to move
// next. However, we already evaluated 5 of those 8 neighbors in the last
// iteration, and decided that they are worse than point 1. So we don't need
// to re-consider these points. We only really need to consider the three
// points which are adjacent to point 1 but *not* to point 0.
//
// As the algorithm goes on, there are other ways that redundant evaluations
// can happen, if the search path curls back around on itself.
//
// To avoid all possible redundancies, we'd have to build a set containing
// every point we have already checked, and this would be quite expensive.
//
// So instead, we apply a 95%-effective solution with a much lower overhead:
// we prune out the points which were considered during the previous
// iteration, but we don't worry about any prior iteration. This can be done
// as follows:
//
// We build a static table, called neighbor_mask, which answers the question
// "if we moved in direction X last time, which neighbors are new, and which
// were scanned last iteration?"
// Then we can query this table to quickly determine which points we need to
// evaluate, and which we can skip.
//
// To query the table, the logic is simply:
// neighbor_mask[i] & (1 << j) == "if we moved in direction i last iteration,
// do we need to scan neighbor j this iteration?"
#define NEIGHBOR_MASK_DIA(left, down, right, up) \
(left | (down << 1) | (right << 2) | (up << 3))
#define NEIGHBOR_MASK_SQR(left, down, right, up, down_left, down_right, \
up_left, up_right) \
(left | (down << 1) | (right << 2) | (up << 3) | (down_left << 4) | \
(down_right << 5) | (up_left << 6) | (up_right << 7))
static const warp_search_config warp_search_info[WARP_SEARCH_METHODS] = {
// WARP_SEARCH_DIAMOND
{
.num_neighbors = 4,
.neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } },
.neighbor_mask = {
// If we stepped left last time, consider all points except right
NEIGHBOR_MASK_DIA(1, 1, 0, 1),
// If we stepped down last time, consider all points except up
NEIGHBOR_MASK_DIA(1, 1, 1, 0),
// Stepped right last time
NEIGHBOR_MASK_DIA(0, 1, 1, 1),
// Stepped up last time
NEIGHBOR_MASK_DIA(1, 0, 1, 1),
},
},
// WARP_SEARCH_SQUARE
{
.num_neighbors = 8,
.neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } },
.neighbor_mask = {
// If we stepped left last time, then we only need to consider 3 points:
// left, down+left, up+left
NEIGHBOR_MASK_SQR(1, 0, 0, 0, 1, 0, 1, 0),
// If we stepped down last time, then we only need to consider 3 points:
// down, down+left, down+right
NEIGHBOR_MASK_SQR(0, 1, 0, 0, 1, 1, 0, 0),
// Stepped right last time
NEIGHBOR_MASK_SQR(0, 0, 1, 0, 0, 1, 0, 1),
// Stepped up last time
NEIGHBOR_MASK_SQR(0, 0, 0, 1, 0, 0, 1, 1),
// If we stepped down+left last time, then we need to consider 5 points:
// left, down, down+left, down+right, up+left
NEIGHBOR_MASK_SQR(1, 1, 0, 0, 1, 1, 1, 0),
// Stepped down+right last time
NEIGHBOR_MASK_SQR(0, 1, 1, 0, 1, 1, 0, 1),
// Stepped up+left last time
NEIGHBOR_MASK_SQR(1, 0, 0, 1, 1, 0, 1, 1),
// Stepped up+right last time
NEIGHBOR_MASK_SQR(0, 0, 1, 1, 0, 1, 1, 1),
},
},
};
unsigned int av1_refine_warped_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params,
BLOCK_SIZE bsize, const int *pts0,
const int *pts_inref0, int total_samples,
WARP_SEARCH_METHOD search_method,
int num_iterations) {
MB_MODE_INFO *mbmi = xd->mi[0];
const MV *neighbors = warp_search_info[search_method].neighbors;
const int num_neighbors = warp_search_info[search_method].num_neighbors;
const uint8_t *neighbor_mask = warp_search_info[search_method].neighbor_mask;
MV *best_mv = &mbmi->mv[0].as_mv;
WarpedMotionParams best_wm_params = mbmi->wm_params;
int best_num_proj_ref = mbmi->num_proj_ref;
unsigned int bestmse;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
const int mv_shift = ms_params->allow_hp ? 0 : 1;
// Calculate the center position's error
assert(av1_is_subpelmv_in_range(mv_limits, *best_mv));
bestmse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv);
// MV search
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// First step always scans all neighbors
uint8_t valid_neighbors = UINT8_MAX;
for (int ite = 0; ite < num_iterations; ++ite) {
int best_idx = -1;
for (int idx = 0; idx < num_neighbors; ++idx) {
if ((valid_neighbors & (1 << idx)) == 0) {
continue;
}
unsigned int thismse;
MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift),
best_mv->col + neighbors[idx].col * (1 << mv_shift) };
if (av1_is_subpelmv_in_range(mv_limits, this_mv)) {
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
if (total_samples > 1) {
mbmi->num_proj_ref =
av1_selectSamples(&this_mv, pts, pts_inref, total_samples, bsize);
}
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
this_mv.row, this_mv.col, &mbmi->wm_params,
mi_row, mi_col)) {
thismse = compute_motion_cost(xd, cm, ms_params, bsize, &this_mv);
if (thismse < bestmse) {
best_idx = idx;
best_wm_params = mbmi->wm_params;
best_num_proj_ref = mbmi->num_proj_ref;
bestmse = thismse;
}
}
}
}
if (best_idx == -1) break;
if (best_idx >= 0) {
best_mv->row += neighbors[best_idx].row * (1 << mv_shift);
best_mv->col += neighbors[best_idx].col * (1 << mv_shift);
valid_neighbors = neighbor_mask[best_idx];
}
}
mbmi->wm_params = best_wm_params;
mbmi->num_proj_ref = best_num_proj_ref;
return bestmse;
}
#endif // !CONFIG_REALTIME_ONLY
// =============================================================================
// Subpixel Motion Search: OBMC
// =============================================================================
// Estimates the variance of prediction residue
static inline int estimate_obmc_pref_error(
const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const int32_t *src = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int ref_stride = ms_buffers->ref->stride;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
return vfp->osvf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, mask, sse);
}
// Calculates the variance of prediction residue
static int upsampled_obmc_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm,
const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
unsigned int *sse) {
const aom_variance_fn_ptr_t *vfp = var_params->vfp;
const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type;
const int w = var_params->w;
const int h = var_params->h;
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv);
const int ref_stride = ms_buffers->ref->stride;
const int subpel_x_q3 = get_subpel_part(this_mv->col);
const int subpel_y_q3 = get_subpel_part(this_mv->row);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
unsigned int besterr;
DECLARE_ALIGNED(16, uint8_t, pred[2 * MAX_SB_SQUARE]);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred);
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred8, w, h,
subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd,
subpel_search_type);
besterr = vfp->ovf(pred8, w, wsrc, mask, sse);
} else {
aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3,
subpel_y_q3, ref, ref_stride, subpel_search_type);
besterr = vfp->ovf(pred, w, wsrc, mask, sse);
}
#else
aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3,
subpel_y_q3, ref, ref_stride, subpel_search_type);
besterr = vfp->ovf(pred, w, wsrc, mask, sse);
#endif
return besterr;
}
static unsigned int setup_obmc_center_error(
const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
// TODO(chiyotsai@google.com): There might be a bug here where we didn't use
// get_buf_from_mv(ref, *this_mv).
const MSBuffers *ms_buffers = &var_params->ms_buffers;
const int32_t *wsrc = ms_buffers->wsrc;
const int32_t *mask = ms_buffers->obmc_mask;
const uint8_t *ref = ms_buffers->ref->buf;
const int ref_stride = ms_buffers->ref->stride;
unsigned int besterr =
var_params->vfp->ovf(ref, ref_stride, wsrc, mask, sse1);
*distortion = besterr;
besterr += mv_err_cost_(this_mv, mv_cost_params);
return besterr;
}
static unsigned int upsampled_setup_obmc_center_error(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *this_mv,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) {
unsigned int besterr =
upsampled_obmc_pref_error(xd, cm, this_mv, var_params, sse1);
*distortion = besterr;
besterr += mv_err_cost_(this_mv, mv_cost_params);
return besterr;
}
// Estimates the variance of prediction residue
// TODO(chiyotsai@google.com): the cost does does not match the cost in
// mv_cost_. Investigate this later.
static inline int estimate_obmc_mvcost(const MV *this_mv,
const MV_COST_PARAMS *mv_cost_params) {
const MV *ref_mv = mv_cost_params->ref_mv;
const int *mvjcost = mv_cost_params->mvjcost;
const int *const *mvcost = mv_cost_params->mvcost;
const int error_per_bit = mv_cost_params->error_per_bit;
const MV_COST_TYPE mv_cost_type = mv_cost_params->mv_cost_type;
const MV diff_mv = { GET_MV_SUBPEL(this_mv->row - ref_mv->row),
GET_MV_SUBPEL(this_mv->col - ref_mv->col) };
switch (mv_cost_type) {
case MV_COST_ENTROPY:
return (unsigned)((mv_cost(&diff_mv, mvjcost,
CONVERT_TO_CONST_MVCOST(mvcost)) *
error_per_bit +
4096) >>
13);
case MV_COST_NONE: return 0;
default:
assert(0 && "L1 norm is not tuned for estimated obmc mvcost");
return 0;
}
}
// Estimates whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account.
static inline unsigned int obmc_check_better_fast(
const MV *this_mv, MV *best_mv, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *has_better_mv) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
const int thismse = estimate_obmc_pref_error(this_mv, var_params, &sse);
cost = estimate_obmc_mvcost(this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*has_better_mv |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
// Estimates whether this_mv is better than best_mv. This function incorporates
// both prediction error and residue into account.
static inline unsigned int obmc_check_better(
MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv,
const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion, int *has_better_mv) {
unsigned int cost;
if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) {
unsigned int sse;
const int thismse =
upsampled_obmc_pref_error(xd, cm, this_mv, var_params, &sse);
cost = mv_err_cost_(this_mv, mv_cost_params);
cost += thismse;
if (cost < *besterr) {
*besterr = cost;
*best_mv = *this_mv;
*distortion = thismse;
*sse1 = sse;
*has_better_mv |= 1;
}
} else {
cost = INT_MAX;
}
return cost;
}
static AOM_FORCE_INLINE MV obmc_first_level_check(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV *best_mv,
const int hstep, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
int dummy = 0;
const MV left_mv = { this_mv.row, this_mv.col - hstep };
const MV right_mv = { this_mv.row, this_mv.col + hstep };
const MV top_mv = { this_mv.row - hstep, this_mv.col };
const MV bottom_mv = { this_mv.row + hstep, this_mv.col };
if (var_params->subpel_search_type != USE_2_TAPS_ORIG) {
const unsigned int left =
obmc_check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int right =
obmc_check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int up =
obmc_check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const unsigned int down =
obmc_check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
obmc_check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
return diag_step;
} else {
const unsigned int left = obmc_check_better_fast(
&left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1,
distortion, &dummy);
const unsigned int right = obmc_check_better_fast(
&right_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy);
const unsigned int up = obmc_check_better_fast(
&top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1,
distortion, &dummy);
const unsigned int down = obmc_check_better_fast(
&bottom_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr,
sse1, distortion, &dummy);
const MV diag_step = get_best_diag_step(hstep, left, right, up, down);
const MV diag_mv = { this_mv.row + diag_step.row,
this_mv.col + diag_step.col };
// Check the diagonal direction with the best mv
obmc_check_better_fast(&diag_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion, &dummy);
return diag_step;
}
}
// A newer version of second level check for obmc that gives better quality.
static AOM_FORCE_INLINE void obmc_second_level_check_v2(
MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step,
MV *best_mv, const SubpelMvLimits *mv_limits,
const SUBPEL_SEARCH_VAR_PARAMS *var_params,
const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr,
unsigned int *sse1, int *distortion) {
assert(best_mv->row == this_mv.row + diag_step.row ||
best_mv->col == this_mv.col + diag_step.col);
if (CHECK_MV_EQUAL(this_mv, *best_mv)) {
return;
} else if (this_mv.row == best_mv->row) {
// Search away from diagonal step since diagonal search did not provide any
// improvement
diag_step.row *= -1;
} else if (this_mv.col == best_mv->col) {
diag_step.col *= -1;
}
const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col };
const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col };
const MV diag_bias_mv = { best_mv->row + diag_step.row,
best_mv->col + diag_step.col };
int has_better_mv = 0;
if (var_params->subpel_search_type != USE_2_TAPS_ORIG) {
obmc_check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
obmc_check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
obmc_check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
}
} else {
obmc_check_better_fast(&row_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
obmc_check_better_fast(&col_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
// Do an additional search if the second iteration gives a better mv
if (has_better_mv) {
obmc_check_better_fast(&diag_bias_mv, best_mv, mv_limits, var_params,
mv_cost_params, besterr, sse1, distortion,
&has_better_mv);
}
}
}
int av1_find_best_obmc_sub_pixel_tree_up(
MACROBLOCKD *xd, const AV1_COMMON *const cm,
const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv,
const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion,
unsigned int *sse1, int_mv *last_mv_search_list) {
(void)last_mv_search_list;
(void)start_mv_stats;
const int allow_hp = ms_params->allow_hp;
const int forced_stop = ms_params->forced_stop;
const int iters_per_step = ms_params->iters_per_step;
const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params;
const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params;
const SUBPEL_SEARCH_TYPE subpel_search_type =
ms_params->var_params.subpel_search_type;
const SubpelMvLimits *mv_limits = &ms_params->mv_limits;
int hstep = INIT_SUBPEL_STEP_SIZE;
const int round = AOMMIN(FULL_PEL - forced_stop, 3 - !allow_hp);
unsigned int besterr = INT_MAX;
*bestmv = start_mv;
if (subpel_search_type != USE_2_TAPS_ORIG)
besterr = upsampled_setup_obmc_center_error(
xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion);
else
besterr = setup_obmc_center_error(bestmv, var_params, mv_cost_params, sse1,
distortion);
for (int iter = 0; iter < round; ++iter) {
MV iter_center_mv = *bestmv;
MV diag_step = obmc_first_level_check(xd, cm, iter_center_mv, bestmv, hstep,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) {
obmc_second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv,
mv_limits, var_params, mv_cost_params,
&besterr, sse1, distortion);
}
hstep >>= 1;
}
return besterr;
}
// =============================================================================
// Public cost function: mv_cost + pred error
// =============================================================================
int av1_get_mvpred_sse(const MV_COST_PARAMS *mv_cost_params,
const FULLPEL_MV best_mv,
const aom_variance_fn_ptr_t *vfp,
const struct buf_2d *src, const struct buf_2d *pre) {
const MV mv = get_mv_from_fullmv(&best_mv);
unsigned int sse, var;
var = vfp->vf(src->buf, src->stride, get_buf_from_fullmv(pre, &best_mv),
pre->stride, &sse);
(void)var;
return sse + mv_err_cost_(&mv, mv_cost_params);
}