Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_
#define AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/common/cdef_block.h"
/* partial A is a 16-bit vector of the form:
[x8 x7 x6 x5 x4 x3 x2 x1] and partial B has the form:
[0 y1 y2 y3 y4 y5 y6 y7].
This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ...
(x7^2+y2^7)*C7 + (x8^2+0^2)*C8 where the C1..C8 constants are in const1
and const2. */
static inline v128 fold_mul_and_sum(v128 partiala, v128 partialb, v128 const1,
v128 const2) {
v128 tmp;
/* Reverse partial B. */
partialb = v128_shuffle_8(
partialb, v128_from_32(0x0f0e0100, 0x03020504, 0x07060908, 0x0b0a0d0c));
/* Interleave the x and y values of identical indices and pair x8 with 0. */
tmp = partiala;
partiala = v128_ziplo_16(partialb, partiala);
partialb = v128_ziphi_16(partialb, tmp);
/* Square and add the corresponding x and y values. */
partiala = v128_madd_s16(partiala, partiala);
partialb = v128_madd_s16(partialb, partialb);
/* Multiply by constant. */
partiala = v128_mullo_s32(partiala, const1);
partialb = v128_mullo_s32(partialb, const2);
/* Sum all results. */
partiala = v128_add_32(partiala, partialb);
return partiala;
}
static inline v128 hsum4(v128 x0, v128 x1, v128 x2, v128 x3) {
v128 t0, t1, t2, t3;
t0 = v128_ziplo_32(x1, x0);
t1 = v128_ziplo_32(x3, x2);
t2 = v128_ziphi_32(x1, x0);
t3 = v128_ziphi_32(x3, x2);
x0 = v128_ziplo_64(t1, t0);
x1 = v128_ziphi_64(t1, t0);
x2 = v128_ziplo_64(t3, t2);
x3 = v128_ziphi_64(t3, t2);
return v128_add_32(v128_add_32(x0, x1), v128_add_32(x2, x3));
}
/* Computes cost for directions 0, 5, 6 and 7. We can call this function again
to compute the remaining directions. */
static inline v128 compute_directions(v128 lines[8], int32_t tmp_cost1[4]) {
v128 partial4a, partial4b, partial5a, partial5b, partial7a, partial7b;
v128 partial6;
v128 tmp;
/* Partial sums for lines 0 and 1. */
partial4a = v128_shl_n_byte(lines[0], 14);
partial4b = v128_shr_n_byte(lines[0], 2);
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[1], 12));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[1], 4));
tmp = v128_add_16(lines[0], lines[1]);
partial5a = v128_shl_n_byte(tmp, 10);
partial5b = v128_shr_n_byte(tmp, 6);
partial7a = v128_shl_n_byte(tmp, 4);
partial7b = v128_shr_n_byte(tmp, 12);
partial6 = tmp;
/* Partial sums for lines 2 and 3. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[2], 10));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[2], 6));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[3], 8));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[3], 8));
tmp = v128_add_16(lines[2], lines[3]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 8));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 8));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 6));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 10));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 4 and 5. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[4], 6));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[4], 10));
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[5], 4));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[5], 12));
tmp = v128_add_16(lines[4], lines[5]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 6));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 10));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 8));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 8));
partial6 = v128_add_16(partial6, tmp);
/* Partial sums for lines 6 and 7. */
partial4a = v128_add_16(partial4a, v128_shl_n_byte(lines[6], 2));
partial4b = v128_add_16(partial4b, v128_shr_n_byte(lines[6], 14));
partial4a = v128_add_16(partial4a, lines[7]);
tmp = v128_add_16(lines[6], lines[7]);
partial5a = v128_add_16(partial5a, v128_shl_n_byte(tmp, 4));
partial5b = v128_add_16(partial5b, v128_shr_n_byte(tmp, 12));
partial7a = v128_add_16(partial7a, v128_shl_n_byte(tmp, 10));
partial7b = v128_add_16(partial7b, v128_shr_n_byte(tmp, 6));
partial6 = v128_add_16(partial6, tmp);
/* Compute costs in terms of partial sums. */
partial4a =
fold_mul_and_sum(partial4a, partial4b, v128_from_32(210, 280, 420, 840),
v128_from_32(105, 120, 140, 168));
partial7a =
fold_mul_and_sum(partial7a, partial7b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial5a =
fold_mul_and_sum(partial5a, partial5b, v128_from_32(210, 420, 0, 0),
v128_from_32(105, 105, 105, 140));
partial6 = v128_madd_s16(partial6, partial6);
partial6 = v128_mullo_s32(partial6, v128_dup_32(105));
partial4a = hsum4(partial4a, partial5a, partial6, partial7a);
v128_store_unaligned(tmp_cost1, partial4a);
return partial4a;
}
/* transpose and reverse the order of the lines -- equivalent to a 90-degree
counter-clockwise rotation of the pixels. */
static inline void array_reverse_transpose_8x8(v128 *in, v128 *res) {
const v128 tr0_0 = v128_ziplo_16(in[1], in[0]);
const v128 tr0_1 = v128_ziplo_16(in[3], in[2]);
const v128 tr0_2 = v128_ziphi_16(in[1], in[0]);
const v128 tr0_3 = v128_ziphi_16(in[3], in[2]);
const v128 tr0_4 = v128_ziplo_16(in[5], in[4]);
const v128 tr0_5 = v128_ziplo_16(in[7], in[6]);
const v128 tr0_6 = v128_ziphi_16(in[5], in[4]);
const v128 tr0_7 = v128_ziphi_16(in[7], in[6]);
const v128 tr1_0 = v128_ziplo_32(tr0_1, tr0_0);
const v128 tr1_1 = v128_ziplo_32(tr0_5, tr0_4);
const v128 tr1_2 = v128_ziphi_32(tr0_1, tr0_0);
const v128 tr1_3 = v128_ziphi_32(tr0_5, tr0_4);
const v128 tr1_4 = v128_ziplo_32(tr0_3, tr0_2);
const v128 tr1_5 = v128_ziplo_32(tr0_7, tr0_6);
const v128 tr1_6 = v128_ziphi_32(tr0_3, tr0_2);
const v128 tr1_7 = v128_ziphi_32(tr0_7, tr0_6);
res[7] = v128_ziplo_64(tr1_1, tr1_0);
res[6] = v128_ziphi_64(tr1_1, tr1_0);
res[5] = v128_ziplo_64(tr1_3, tr1_2);
res[4] = v128_ziphi_64(tr1_3, tr1_2);
res[3] = v128_ziplo_64(tr1_5, tr1_4);
res[2] = v128_ziphi_64(tr1_5, tr1_4);
res[1] = v128_ziplo_64(tr1_7, tr1_6);
res[0] = v128_ziphi_64(tr1_7, tr1_6);
}
int SIMD_FUNC(cdef_find_dir)(const uint16_t *img, int stride, int32_t *var,
int coeff_shift) {
int i;
int32_t cost[8];
int32_t best_cost = 0;
int best_dir = 0;
v128 lines[8];
for (i = 0; i < 8; i++) {
lines[i] = v128_load_unaligned(&img[i * stride]);
lines[i] =
v128_sub_16(v128_shr_s16(lines[i], coeff_shift), v128_dup_16(128));
}
/* Compute "mostly vertical" directions. */
v128 dir47 = compute_directions(lines, cost + 4);
array_reverse_transpose_8x8(lines, lines);
/* Compute "mostly horizontal" directions. */
v128 dir03 = compute_directions(lines, cost);
v128 max = v128_max_s32(dir03, dir47);
max = v128_max_s32(max, v128_align(max, max, 8));
max = v128_max_s32(max, v128_align(max, max, 4));
best_cost = v128_low_u32(max);
v128 t =
v128_pack_s32_s16(v128_cmpeq_32(max, dir47), v128_cmpeq_32(max, dir03));
best_dir = v128_movemask_8(v128_pack_s16_s8(t, t));
best_dir = get_msb(best_dir ^ (best_dir - 1)); // Count trailing zeros
/* Difference between the optimal variance and the variance along the
orthogonal direction. Again, the sum(x^2) terms cancel out. */
*var = best_cost - cost[(best_dir + 4) & 7];
/* We'd normally divide by 840, but dividing by 1024 is close enough
for what we're going to do with this. */
*var >>= 10;
return best_dir;
}
// Work around compiler out of memory issues with Win32 builds. This issue has
// been observed with Visual Studio 2017, 2019, and 2022 (version 17.10.3).
#if defined(_MSC_VER) && defined(_M_IX86)
#define CDEF_INLINE static inline
#else
#define CDEF_INLINE SIMD_INLINE
#endif
// sign(a-b) * min(abs(a-b), max(0, threshold - (abs(a-b) >> adjdamp)))
CDEF_INLINE v256 constrain16(v256 a, v256 b, unsigned int threshold,
unsigned int adjdamp) {
v256 diff = v256_sub_16(a, b);
const v256 sign = v256_shr_n_s16(diff, 15);
diff = v256_abs_s16(diff);
const v256 s =
v256_ssub_u16(v256_dup_16(threshold), v256_shr_u16(diff, adjdamp));
return v256_xor(v256_add_16(sign, v256_min_s16(diff, s)), sign);
}
SIMD_INLINE v256 get_max_primary(const int is_lowbd, v256 *tap, v256 max,
v256 cdef_large_value_mask) {
if (is_lowbd) {
v256 max_u8;
max_u8 = tap[0];
max_u8 = v256_max_u8(max_u8, tap[1]);
max_u8 = v256_max_u8(max_u8, tap[2]);
max_u8 = v256_max_u8(max_u8, tap[3]);
/* The source is 16 bits, however, we only really care about the lower
8 bits. The upper 8 bits contain the "large" flag. After the final
primary max has been calculated, zero out the upper 8 bits. Use this
to find the "16 bit" max. */
max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask));
} else {
/* Convert CDEF_VERY_LARGE to 0 before calculating max. */
max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask));
}
return max;
}
SIMD_INLINE v256 get_max_secondary(const int is_lowbd, v256 *tap, v256 max,
v256 cdef_large_value_mask) {
if (is_lowbd) {
v256 max_u8;
max_u8 = tap[0];
max_u8 = v256_max_u8(max_u8, tap[1]);
max_u8 = v256_max_u8(max_u8, tap[2]);
max_u8 = v256_max_u8(max_u8, tap[3]);
max_u8 = v256_max_u8(max_u8, tap[4]);
max_u8 = v256_max_u8(max_u8, tap[5]);
max_u8 = v256_max_u8(max_u8, tap[6]);
max_u8 = v256_max_u8(max_u8, tap[7]);
/* The source is 16 bits, however, we only really care about the lower
8 bits. The upper 8 bits contain the "large" flag. After the final
primary max has been calculated, zero out the upper 8 bits. Use this
to find the "16 bit" max. */
max = v256_max_s16(max, v256_and(max_u8, cdef_large_value_mask));
} else {
/* Convert CDEF_VERY_LARGE to 0 before calculating max. */
max = v256_max_s16(max, v256_and(tap[0], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[1], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[2], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[3], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[4], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[5], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[6], cdef_large_value_mask));
max = v256_max_s16(max, v256_and(tap[7], cdef_large_value_mask));
}
return max;
}
// MSVC takes far too much time optimizing these.
#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("", off)
#endif
CDEF_INLINE void filter_block_4x4(const int is_lowbd, void *dest, int dstride,
const uint16_t *in, int pri_strength,
int sec_strength, int dir, int pri_damping,
int sec_damping, int coeff_shift, int height,
int enable_primary, int enable_secondary) {
uint8_t *dst8 = (uint8_t *)dest;
uint16_t *dst16 = (uint16_t *)dest;
const int clipping_required = enable_primary && enable_secondary;
v256 p0, p1, p2, p3;
v256 sum, row, res;
v256 max, min;
const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE);
const int po1 = cdef_directions[dir][0];
const int po2 = cdef_directions[dir][1];
const int s1o1 = cdef_directions[dir + 2][0];
const int s1o2 = cdef_directions[dir + 2][1];
const int s2o1 = cdef_directions[dir - 2][0];
const int s2o2 = cdef_directions[dir - 2][1];
const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
const int *sec_taps = cdef_sec_taps;
int i;
if (enable_primary && pri_strength)
pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength));
if (enable_secondary && sec_strength)
sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength));
for (i = 0; i < height; i += 4) {
sum = v256_zero();
row = v256_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]),
v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]),
v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]),
v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE]));
max = min = row;
if (enable_primary) {
v256 tap[4];
// Primary near taps
tap[0] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po1]));
p0 = constrain16(tap[0], row, pri_strength, pri_damping);
tap[1] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po1]));
p1 = constrain16(tap[1], row, pri_strength, pri_damping);
// sum += pri_taps[0] * (p0 + p1)
sum = v256_add_16(
sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1)));
// Primary far taps
tap[2] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + po2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + po2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + po2]));
p0 = constrain16(tap[2], row, pri_strength, pri_damping);
tap[3] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - po2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - po2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - po2]));
p1 = constrain16(tap[3], row, pri_strength, pri_damping);
// sum += pri_taps[1] * (p0 + p1)
sum = v256_add_16(
sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1)));
if (clipping_required) {
max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask);
min = v256_min_s16(min, tap[0]);
min = v256_min_s16(min, tap[1]);
min = v256_min_s16(min, tap[2]);
min = v256_min_s16(min, tap[3]);
}
}
if (enable_secondary) {
v256 tap[8];
// Secondary near taps
tap[0] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o1]));
p0 = constrain16(tap[0], row, sec_strength, sec_damping);
tap[1] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o1]));
p1 = constrain16(tap[1], row, sec_strength, sec_damping);
tap[2] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o1]));
p2 = constrain16(tap[2], row, sec_strength, sec_damping);
tap[3] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o1]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o1]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o1]));
p3 = constrain16(tap[3], row, sec_strength, sec_damping);
// sum += sec_taps[0] * (p0 + p1 + p2 + p3)
sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]),
v256_add_16(v256_add_16(p0, p1),
v256_add_16(p2, p3))));
// Secondary far taps
tap[4] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s1o2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s1o2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s1o2]));
p0 = constrain16(tap[4], row, sec_strength, sec_damping);
tap[5] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s1o2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s1o2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s1o2]));
p1 = constrain16(tap[5], row, sec_strength, sec_damping);
tap[6] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE + s2o2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE + s2o2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE + s2o2]));
p2 = constrain16(tap[6], row, sec_strength, sec_damping);
tap[7] =
v256_from_v64(v64_load_unaligned(&in[(i + 0) * CDEF_BSTRIDE - s2o2]),
v64_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]),
v64_load_unaligned(&in[(i + 2) * CDEF_BSTRIDE - s2o2]),
v64_load_unaligned(&in[(i + 3) * CDEF_BSTRIDE - s2o2]));
p3 = constrain16(tap[7], row, sec_strength, sec_damping);
// sum += sec_taps[1] * (p0 + p1 + p2 + p3)
sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]),
v256_add_16(v256_add_16(p0, p1),
v256_add_16(p2, p3))));
if (clipping_required) {
max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask);
min = v256_min_s16(min, tap[0]);
min = v256_min_s16(min, tap[1]);
min = v256_min_s16(min, tap[2]);
min = v256_min_s16(min, tap[3]);
min = v256_min_s16(min, tap[4]);
min = v256_min_s16(min, tap[5]);
min = v256_min_s16(min, tap[6]);
min = v256_min_s16(min, tap[7]);
}
}
// res = row + ((sum - (sum < 0) + 8) >> 4)
sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero()));
res = v256_add_16(sum, v256_dup_16(8));
res = v256_shr_n_s16(res, 4);
res = v256_add_16(row, res);
if (clipping_required) {
res = v256_min_s16(v256_max_s16(res, min), max);
}
if (is_lowbd) {
const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res));
u32_store_aligned(&dst8[(i + 0) * dstride],
v64_high_u32(v128_high_v64(res_128)));
u32_store_aligned(&dst8[(i + 1) * dstride],
v64_low_u32(v128_high_v64(res_128)));
u32_store_aligned(&dst8[(i + 2) * dstride],
v64_high_u32(v128_low_v64(res_128)));
u32_store_aligned(&dst8[(i + 3) * dstride],
v64_low_u32(v128_low_v64(res_128)));
} else {
v64_store_aligned(&dst16[(i + 0) * dstride],
v128_high_v64(v256_high_v128(res)));
v64_store_aligned(&dst16[(i + 1) * dstride],
v128_low_v64(v256_high_v128(res)));
v64_store_aligned(&dst16[(i + 2) * dstride],
v128_high_v64(v256_low_v128(res)));
v64_store_aligned(&dst16[(i + 3) * dstride],
v128_low_v64(v256_low_v128(res)));
}
}
}
CDEF_INLINE void filter_block_8x8(const int is_lowbd, void *dest, int dstride,
const uint16_t *in, int pri_strength,
int sec_strength, int dir, int pri_damping,
int sec_damping, int coeff_shift, int height,
int enable_primary, int enable_secondary) {
uint8_t *dst8 = (uint8_t *)dest;
uint16_t *dst16 = (uint16_t *)dest;
const int clipping_required = enable_primary && enable_secondary;
int i;
v256 sum, p0, p1, p2, p3, row, res;
const v256 cdef_large_value_mask = v256_dup_16((uint16_t)~CDEF_VERY_LARGE);
v256 max, min;
const int po1 = cdef_directions[dir][0];
const int po2 = cdef_directions[dir][1];
const int s1o1 = cdef_directions[dir + 2][0];
const int s1o2 = cdef_directions[dir + 2][1];
const int s2o1 = cdef_directions[dir - 2][0];
const int s2o2 = cdef_directions[dir - 2][1];
const int *pri_taps = cdef_pri_taps[(pri_strength >> coeff_shift) & 1];
const int *sec_taps = cdef_sec_taps;
if (enable_primary && pri_strength)
pri_damping = AOMMAX(0, pri_damping - get_msb(pri_strength));
if (enable_secondary && sec_strength)
sec_damping = AOMMAX(0, sec_damping - get_msb(sec_strength));
for (i = 0; i < height; i += 2) {
v256 tap[8];
sum = v256_zero();
row = v256_from_v128(v128_load_aligned(&in[i * CDEF_BSTRIDE]),
v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]));
min = max = row;
if (enable_primary) {
// Primary near taps
tap[0] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + po1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po1]));
tap[1] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - po1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po1]));
p0 = constrain16(tap[0], row, pri_strength, pri_damping);
p1 = constrain16(tap[1], row, pri_strength, pri_damping);
// sum += pri_taps[0] * (p0 + p1)
sum = v256_add_16(
sum, v256_mullo_s16(v256_dup_16(pri_taps[0]), v256_add_16(p0, p1)));
// Primary far taps
tap[2] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + po2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + po2]));
tap[3] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - po2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - po2]));
p0 = constrain16(tap[2], row, pri_strength, pri_damping);
p1 = constrain16(tap[3], row, pri_strength, pri_damping);
// sum += pri_taps[1] * (p0 + p1)
sum = v256_add_16(
sum, v256_mullo_s16(v256_dup_16(pri_taps[1]), v256_add_16(p0, p1)));
if (clipping_required) {
max = get_max_primary(is_lowbd, tap, max, cdef_large_value_mask);
min = v256_min_s16(min, tap[0]);
min = v256_min_s16(min, tap[1]);
min = v256_min_s16(min, tap[2]);
min = v256_min_s16(min, tap[3]);
}
// End primary
}
if (enable_secondary) {
// Secondary near taps
tap[0] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o1]));
tap[1] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o1]));
tap[2] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o1]));
tap[3] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o1]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o1]));
p0 = constrain16(tap[0], row, sec_strength, sec_damping);
p1 = constrain16(tap[1], row, sec_strength, sec_damping);
p2 = constrain16(tap[2], row, sec_strength, sec_damping);
p3 = constrain16(tap[3], row, sec_strength, sec_damping);
// sum += sec_taps[0] * (p0 + p1 + p2 + p3)
sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[0]),
v256_add_16(v256_add_16(p0, p1),
v256_add_16(p2, p3))));
// Secondary far taps
tap[4] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + s1o2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s1o2]));
tap[5] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - s1o2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s1o2]));
tap[6] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE + s2o2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE + s2o2]));
tap[7] = v256_from_v128(
v128_load_unaligned(&in[i * CDEF_BSTRIDE - s2o2]),
v128_load_unaligned(&in[(i + 1) * CDEF_BSTRIDE - s2o2]));
p0 = constrain16(tap[4], row, sec_strength, sec_damping);
p1 = constrain16(tap[5], row, sec_strength, sec_damping);
p2 = constrain16(tap[6], row, sec_strength, sec_damping);
p3 = constrain16(tap[7], row, sec_strength, sec_damping);
// sum += sec_taps[1] * (p0 + p1 + p2 + p3)
sum = v256_add_16(sum, v256_mullo_s16(v256_dup_16(sec_taps[1]),
v256_add_16(v256_add_16(p0, p1),
v256_add_16(p2, p3))));
if (clipping_required) {
max = get_max_secondary(is_lowbd, tap, max, cdef_large_value_mask);
min = v256_min_s16(min, tap[0]);
min = v256_min_s16(min, tap[1]);
min = v256_min_s16(min, tap[2]);
min = v256_min_s16(min, tap[3]);
min = v256_min_s16(min, tap[4]);
min = v256_min_s16(min, tap[5]);
min = v256_min_s16(min, tap[6]);
min = v256_min_s16(min, tap[7]);
}
// End secondary
}
// res = row + ((sum - (sum < 0) + 8) >> 4)
sum = v256_add_16(sum, v256_cmplt_s16(sum, v256_zero()));
res = v256_add_16(sum, v256_dup_16(8));
res = v256_shr_n_s16(res, 4);
res = v256_add_16(row, res);
if (clipping_required) {
res = v256_min_s16(v256_max_s16(res, min), max);
}
if (is_lowbd) {
const v128 res_128 = v256_low_v128(v256_pack_s16_u8(res, res));
v64_store_aligned(&dst8[i * dstride], v128_high_v64(res_128));
v64_store_aligned(&dst8[(i + 1) * dstride], v128_low_v64(res_128));
} else {
v128_store_unaligned(&dst16[i * dstride], v256_high_v128(res));
v128_store_unaligned(&dst16[(i + 1) * dstride], v256_low_v128(res));
}
}
}
#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("", on)
#endif
SIMD_INLINE void copy_block_4xh(const int is_lowbd, void *dest, int dstride,
const uint16_t *in, int height) {
uint8_t *dst8 = (uint8_t *)dest;
uint16_t *dst16 = (uint16_t *)dest;
int i;
for (i = 0; i < height; i += 4) {
const v128 row0 =
v128_from_v64(v64_load_aligned(&in[(i + 0) * CDEF_BSTRIDE]),
v64_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]));
const v128 row1 =
v128_from_v64(v64_load_aligned(&in[(i + 2) * CDEF_BSTRIDE]),
v64_load_aligned(&in[(i + 3) * CDEF_BSTRIDE]));
if (is_lowbd) {
/* Note: v128_pack_s16_u8(). The parameter order is swapped internally */
const v128 res_128 = v128_pack_s16_u8(row1, row0);
u32_store_aligned(&dst8[(i + 0) * dstride],
v64_high_u32(v128_low_v64(res_128)));
u32_store_aligned(&dst8[(i + 1) * dstride],
v64_low_u32(v128_low_v64(res_128)));
u32_store_aligned(&dst8[(i + 2) * dstride],
v64_high_u32(v128_high_v64(res_128)));
u32_store_aligned(&dst8[(i + 3) * dstride],
v64_low_u32(v128_high_v64(res_128)));
} else {
v64_store_aligned(&dst16[(i + 0) * dstride], v128_high_v64(row0));
v64_store_aligned(&dst16[(i + 1) * dstride], v128_low_v64(row0));
v64_store_aligned(&dst16[(i + 2) * dstride], v128_high_v64(row1));
v64_store_aligned(&dst16[(i + 3) * dstride], v128_low_v64(row1));
}
}
}
SIMD_INLINE void copy_block_8xh(const int is_lowbd, void *dest, int dstride,
const uint16_t *in, int height) {
uint8_t *dst8 = (uint8_t *)dest;
uint16_t *dst16 = (uint16_t *)dest;
int i;
for (i = 0; i < height; i += 2) {
const v128 row0 = v128_load_aligned(&in[i * CDEF_BSTRIDE]);
const v128 row1 = v128_load_aligned(&in[(i + 1) * CDEF_BSTRIDE]);
if (is_lowbd) {
/* Note: v128_pack_s16_u8(). The parameter order is swapped internally */
const v128 res_128 = v128_pack_s16_u8(row1, row0);
v64_store_aligned(&dst8[i * dstride], v128_low_v64(res_128));
v64_store_aligned(&dst8[(i + 1) * dstride], v128_high_v64(res_128));
} else {
v128_store_unaligned(&dst16[i * dstride], row0);
v128_store_unaligned(&dst16[(i + 1) * dstride], row1);
}
}
}
void SIMD_FUNC(cdef_filter_8_0)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/1);
} else {
filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/1);
}
}
void SIMD_FUNC(cdef_filter_8_1)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/0);
} else {
filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/0);
}
}
void SIMD_FUNC(cdef_filter_8_2)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/0,
/*enable_secondary=*/1);
} else {
filter_block_4x4(/*is_lowbd=*/1, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/0,
/*enable_secondary=*/1);
}
}
void SIMD_FUNC(cdef_filter_8_3)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
(void)pri_strength;
(void)sec_strength;
(void)dir;
(void)pri_damping;
(void)sec_damping;
(void)coeff_shift;
(void)block_width;
if (block_width == 8) {
copy_block_8xh(/*is_lowbd=*/1, dest, dstride, in, block_height);
} else {
copy_block_4xh(/*is_lowbd=*/1, dest, dstride, in, block_height);
}
}
void SIMD_FUNC(cdef_filter_16_0)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/1);
} else {
filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/1);
}
}
void SIMD_FUNC(cdef_filter_16_1)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/0);
} else {
filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/1,
/*enable_secondary=*/0);
}
}
void SIMD_FUNC(cdef_filter_16_2)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
if (block_width == 8) {
filter_block_8x8(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/0,
/*enable_secondary=*/1);
} else {
filter_block_4x4(/*is_lowbd=*/0, dest, dstride, in, pri_strength,
sec_strength, dir, pri_damping, sec_damping, coeff_shift,
block_height, /*enable_primary=*/0,
/*enable_secondary=*/1);
}
}
void SIMD_FUNC(cdef_filter_16_3)(void *dest, int dstride, const uint16_t *in,
int pri_strength, int sec_strength, int dir,
int pri_damping, int sec_damping,
int coeff_shift, int block_width,
int block_height) {
(void)pri_strength;
(void)sec_strength;
(void)dir;
(void)pri_damping;
(void)sec_damping;
(void)coeff_shift;
(void)block_width;
if (block_width == 8) {
copy_block_8xh(/*is_lowbd=*/0, dest, dstride, in, block_height);
} else {
copy_block_4xh(/*is_lowbd=*/0, dest, dstride, in, block_height);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void SIMD_FUNC(cdef_copy_rect8_16bit_to_16bit)(uint16_t *dst, int dstride,
const uint16_t *src, int sstride,
int width, int height) {
int i, j;
for (i = 0; i < height; i++) {
for (j = 0; j < (width & ~0x7); j += 8) {
v128 row = v128_load_unaligned(&src[i * sstride + j]);
v128_store_unaligned(&dst[i * dstride + j], row);
}
for (; j < width; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
#undef CDEF_INLINE
#endif // AOM_AV1_COMMON_CDEF_BLOCK_SIMD_H_