Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <immintrin.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_ports/mem.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/obmc_intrinsic_sse4.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/variance_impl_ssse3.h"
////////////////////////////////////////////////////////////////////////////////
// 8 bit
////////////////////////////////////////////////////////////////////////////////
static inline void obmc_variance_w8n(const uint8_t *pre, const int pre_stride,
const int32_t *wsrc, const int32_t *mask,
unsigned int *const sse, int *const sum,
const int w, const int h) {
const int pre_step = pre_stride - w;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(w >= 8);
assert(IS_POWER_OF_TWO(w));
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p1_b = xx_loadl_32(pre + n + 4);
const __m128i v_m1_d = xx_load_128(mask + n + 4);
const __m128i v_w1_d = xx_load_128(wsrc + n + 4);
const __m128i v_p0_b = xx_loadl_32(pre + n);
const __m128i v_m0_d = xx_load_128(mask + n);
const __m128i v_w0_d = xx_load_128(wsrc + n);
const __m128i v_p0_d = _mm_cvtepu8_epi32(v_p0_b);
const __m128i v_p1_d = _mm_cvtepu8_epi32(v_p1_b);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d);
const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d);
const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d);
const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d);
const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12);
const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12);
const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d);
const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 8;
if (n % w == 0) pre += pre_step;
} while (n < w * h);
*sum = xx_hsum_epi32_si32(v_sum_d);
*sse = xx_hsum_epi32_si32(v_sse_d);
}
#define OBMCVARWXH(W, H) \
unsigned int aom_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
if (W == 4) { \
obmc_variance_w4(pre, pre_stride, wsrc, mask, sse, &sum, H); \
} else { \
obmc_variance_w8n(pre, pre_stride, wsrc, mask, sse, &sum, W, H); \
} \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
}
OBMCVARWXH(128, 128)
OBMCVARWXH(128, 64)
OBMCVARWXH(64, 128)
OBMCVARWXH(64, 64)
OBMCVARWXH(64, 32)
OBMCVARWXH(32, 64)
OBMCVARWXH(32, 32)
OBMCVARWXH(32, 16)
OBMCVARWXH(16, 32)
OBMCVARWXH(16, 16)
OBMCVARWXH(16, 8)
OBMCVARWXH(8, 16)
OBMCVARWXH(8, 8)
OBMCVARWXH(8, 4)
OBMCVARWXH(4, 8)
OBMCVARWXH(4, 4)
OBMCVARWXH(4, 16)
OBMCVARWXH(16, 4)
OBMCVARWXH(8, 32)
OBMCVARWXH(32, 8)
OBMCVARWXH(16, 64)
OBMCVARWXH(64, 16)
#include "config/aom_dsp_rtcd.h"
#define OBMC_SUBPIX_VAR(W, H) \
uint32_t aom_obmc_sub_pixel_variance##W##x##H##_sse4_1( \
const uint8_t *pre, int pre_stride, int xoffset, int yoffset, \
const int32_t *wsrc, const int32_t *mask, unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
aom_var_filter_block2d_bil_first_pass_ssse3( \
pre, fdata3, pre_stride, 1, H + 1, W, bilinear_filters_2t[xoffset]); \
aom_var_filter_block2d_bil_second_pass_ssse3( \
fdata3, temp2, W, W, H, W, bilinear_filters_2t[yoffset]); \
\
return aom_obmc_variance##W##x##H##_sse4_1(temp2, W, wsrc, mask, sse); \
}
OBMC_SUBPIX_VAR(128, 128)
OBMC_SUBPIX_VAR(128, 64)
OBMC_SUBPIX_VAR(64, 128)
OBMC_SUBPIX_VAR(64, 64)
OBMC_SUBPIX_VAR(64, 32)
OBMC_SUBPIX_VAR(32, 64)
OBMC_SUBPIX_VAR(32, 32)
OBMC_SUBPIX_VAR(32, 16)
OBMC_SUBPIX_VAR(16, 32)
OBMC_SUBPIX_VAR(16, 16)
OBMC_SUBPIX_VAR(16, 8)
OBMC_SUBPIX_VAR(8, 16)
OBMC_SUBPIX_VAR(8, 8)
OBMC_SUBPIX_VAR(8, 4)
OBMC_SUBPIX_VAR(4, 8)
OBMC_SUBPIX_VAR(4, 4)
OBMC_SUBPIX_VAR(4, 16)
OBMC_SUBPIX_VAR(16, 4)
OBMC_SUBPIX_VAR(8, 32)
OBMC_SUBPIX_VAR(32, 8)
OBMC_SUBPIX_VAR(16, 64)
OBMC_SUBPIX_VAR(64, 16)
////////////////////////////////////////////////////////////////////////////////
// High bit-depth
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_AV1_HIGHBITDEPTH
static inline void hbd_obmc_variance_w4(
const uint8_t *pre8, const int pre_stride, const int32_t *wsrc,
const int32_t *mask, uint64_t *const sse, int64_t *const sum, const int h) {
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
const int pre_step = pre_stride - 4;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p_w = xx_loadl_64(pre + n);
const __m128i v_m_d = xx_load_128(mask + n);
const __m128i v_w_d = xx_load_128(wsrc + n);
const __m128i v_p_d = _mm_cvtepu16_epi32(v_p_w);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d);
const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d);
const __m128i v_rdiff_d = xx_roundn_epi32(v_diff_d, 12);
const __m128i v_sqrdiff_d = _mm_mullo_epi32(v_rdiff_d, v_rdiff_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 4;
if (n % 4 == 0) pre += pre_step;
} while (n < 4 * h);
*sum = xx_hsum_epi32_si32(v_sum_d);
*sse = xx_hsum_epi32_si32(v_sse_d);
}
static inline void hbd_obmc_variance_w8n(
const uint8_t *pre8, const int pre_stride, const int32_t *wsrc,
const int32_t *mask, uint64_t *const sse, int64_t *const sum, const int w,
const int h) {
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
const int pre_step = pre_stride - w;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(w >= 8);
assert(IS_POWER_OF_TWO(w));
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p1_w = xx_loadl_64(pre + n + 4);
const __m128i v_m1_d = xx_load_128(mask + n + 4);
const __m128i v_w1_d = xx_load_128(wsrc + n + 4);
const __m128i v_p0_w = xx_loadl_64(pre + n);
const __m128i v_m0_d = xx_load_128(mask + n);
const __m128i v_w0_d = xx_load_128(wsrc + n);
const __m128i v_p0_d = _mm_cvtepu16_epi32(v_p0_w);
const __m128i v_p1_d = _mm_cvtepu16_epi32(v_p1_w);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d);
const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d);
const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d);
const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d);
const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12);
const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12);
const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d);
const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 8;
if (n % w == 0) pre += pre_step;
} while (n < w * h);
*sum += xx_hsum_epi32_si64(v_sum_d);
*sse += xx_hsum_epi32_si64(v_sse_d);
}
static inline void highbd_8_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
}
*sum = (int)sum64;
*sse = (unsigned int)sse64;
}
static inline void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else if (w < 128 || h < 128) {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
} else {
assert(w == 128 && h == 128);
do {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w,
64);
pre8 += 64 * pre_stride;
wsrc += 64 * w;
mask += 64 * w;
h -= 64;
} while (h > 0);
}
*sum = (int)ROUND_POWER_OF_TWO(sum64, 2);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4);
}
static inline void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask, int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
int max_pel_allowed_per_ovf = 512;
if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else if (w * h <= max_pel_allowed_per_ovf) {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
} else {
int h_per_ovf = max_pel_allowed_per_ovf / w;
assert(max_pel_allowed_per_ovf % w == 0);
do {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w,
h_per_ovf);
pre8 += h_per_ovf * pre_stride;
wsrc += h_per_ovf * w;
mask += h_per_ovf * w;
h -= h_per_ovf;
} while (h > 0);
}
*sum = (int)ROUND_POWER_OF_TWO(sum64, 4);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8);
}
#define HBD_OBMCVARWXH(W, H) \
unsigned int aom_highbd_8_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
highbd_8_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (unsigned int)(((int64_t)sum * sum) / (W * H)); \
} \
\
unsigned int aom_highbd_10_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
\
unsigned int aom_highbd_12_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, int pre_stride, const int32_t *wsrc, \
const int32_t *mask, unsigned int *sse) { \
int sum; \
int64_t var; \
highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
HBD_OBMCVARWXH(128, 128)
HBD_OBMCVARWXH(128, 64)
HBD_OBMCVARWXH(64, 128)
HBD_OBMCVARWXH(64, 64)
HBD_OBMCVARWXH(64, 32)
HBD_OBMCVARWXH(32, 64)
HBD_OBMCVARWXH(32, 32)
HBD_OBMCVARWXH(32, 16)
HBD_OBMCVARWXH(16, 32)
HBD_OBMCVARWXH(16, 16)
HBD_OBMCVARWXH(16, 8)
HBD_OBMCVARWXH(8, 16)
HBD_OBMCVARWXH(8, 8)
HBD_OBMCVARWXH(8, 4)
HBD_OBMCVARWXH(4, 8)
HBD_OBMCVARWXH(4, 4)
HBD_OBMCVARWXH(4, 16)
HBD_OBMCVARWXH(16, 4)
HBD_OBMCVARWXH(8, 32)
HBD_OBMCVARWXH(32, 8)
HBD_OBMCVARWXH(16, 64)
HBD_OBMCVARWXH(64, 16)
#endif // CONFIG_AV1_HIGHBITDEPTH