Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include <string.h>
#include <tmmintrin.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_ports/mem.h"
// For width a multiple of 16
static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int w, int h);
static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int h);
static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int h);
// For width a multiple of 16
static void masked_variance(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride, int width,
int height, unsigned int *sse, int *sum_);
static void masked_variance8xh(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, const uint8_t *b_ptr,
const uint8_t *m_ptr, int m_stride, int height,
unsigned int *sse, int *sum_);
static void masked_variance4xh(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, const uint8_t *b_ptr,
const uint8_t *m_ptr, int m_stride, int height,
unsigned int *sse, int *sum_);
#define MASK_SUBPIX_VAR_SSSE3(W, H) \
unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
int sum; \
uint8_t temp[(H + 1) * W]; \
\
bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
\
if (!invert_mask) \
masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
msk_stride, W, H, sse, &sum); \
else \
masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
msk_stride, W, H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
}
#define MASK_SUBPIX_VAR8XH_SSSE3(H) \
unsigned int aom_masked_sub_pixel_variance8x##H##_ssse3( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
int sum; \
uint8_t temp[(H + 1) * 8]; \
\
bilinear_filter8xh(src, src_stride, xoffset, yoffset, temp, H); \
\
if (!invert_mask) \
masked_variance8xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \
H, sse, &sum); \
else \
masked_variance8xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \
H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (8 * H)); \
}
#define MASK_SUBPIX_VAR4XH_SSSE3(H) \
unsigned int aom_masked_sub_pixel_variance4x##H##_ssse3( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref, int ref_stride, const uint8_t *second_pred, \
const uint8_t *msk, int msk_stride, int invert_mask, \
unsigned int *sse) { \
int sum; \
uint8_t temp[(H + 1) * 4]; \
\
bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
\
if (!invert_mask) \
masked_variance4xh(ref, ref_stride, temp, second_pred, msk, msk_stride, \
H, sse, &sum); \
else \
masked_variance4xh(ref, ref_stride, second_pred, temp, msk, msk_stride, \
H, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \
}
MASK_SUBPIX_VAR_SSSE3(128, 128)
MASK_SUBPIX_VAR_SSSE3(128, 64)
MASK_SUBPIX_VAR_SSSE3(64, 128)
MASK_SUBPIX_VAR_SSSE3(64, 64)
MASK_SUBPIX_VAR_SSSE3(64, 32)
MASK_SUBPIX_VAR_SSSE3(32, 64)
MASK_SUBPIX_VAR_SSSE3(32, 32)
MASK_SUBPIX_VAR_SSSE3(32, 16)
MASK_SUBPIX_VAR_SSSE3(16, 32)
MASK_SUBPIX_VAR_SSSE3(16, 16)
MASK_SUBPIX_VAR_SSSE3(16, 8)
MASK_SUBPIX_VAR8XH_SSSE3(16)
MASK_SUBPIX_VAR8XH_SSSE3(8)
MASK_SUBPIX_VAR8XH_SSSE3(4)
MASK_SUBPIX_VAR4XH_SSSE3(8)
MASK_SUBPIX_VAR4XH_SSSE3(4)
#if !CONFIG_REALTIME_ONLY
MASK_SUBPIX_VAR4XH_SSSE3(16)
MASK_SUBPIX_VAR_SSSE3(16, 4)
MASK_SUBPIX_VAR8XH_SSSE3(32)
MASK_SUBPIX_VAR_SSSE3(32, 8)
MASK_SUBPIX_VAR_SSSE3(64, 16)
MASK_SUBPIX_VAR_SSSE3(16, 64)
#endif // !CONFIG_REALTIME_ONLY
static inline __m128i filter_block(const __m128i a, const __m128i b,
const __m128i filter) {
__m128i v0 = _mm_unpacklo_epi8(a, b);
v0 = _mm_maddubs_epi16(v0, filter);
v0 = xx_roundn_epu16(v0, FILTER_BITS);
__m128i v1 = _mm_unpackhi_epi8(a, b);
v1 = _mm_maddubs_epi16(v1, filter);
v1 = xx_roundn_epu16(v1, FILTER_BITS);
return _mm_packus_epi16(v0, v1);
}
static void bilinear_filter(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int w, int h) {
int i, j;
// Horizontal filter
if (xoffset == 0) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 16) {
__m128i x = _mm_loadu_si128((__m128i *)&src[j]);
_mm_storeu_si128((__m128i *)&b[j], x);
}
src += src_stride;
b += w;
}
} else if (xoffset == 4) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 16) {
__m128i x = _mm_loadu_si128((__m128i *)&src[j]);
__m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]);
__m128i z = _mm_alignr_epi8(y, x, 1);
_mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu8(x, z));
}
src += src_stride;
b += w;
}
} else {
uint8_t *b = dst;
const uint8_t *hfilter = bilinear_filters_2t[xoffset];
const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 16) {
const __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 16]);
const __m128i z = _mm_alignr_epi8(y, x, 1);
const __m128i res = filter_block(x, z, hfilter_vec);
_mm_storeu_si128((__m128i *)&b[j], res);
}
src += src_stride;
b += w;
}
}
// Vertical filter
if (yoffset == 0) {
// The data is already in 'dst', so no need to filter
} else if (yoffset == 4) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; j += 16) {
__m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
__m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
_mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu8(x, y));
}
dst += w;
}
} else {
const uint8_t *vfilter = bilinear_filters_2t[yoffset];
const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
for (i = 0; i < h; ++i) {
for (j = 0; j < w; j += 16) {
const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
const __m128i res = filter_block(x, y, vfilter_vec);
_mm_storeu_si128((__m128i *)&dst[j], res);
}
dst += w;
}
}
}
static inline __m128i filter_block_2rows(const __m128i *a0, const __m128i *b0,
const __m128i *a1, const __m128i *b1,
const __m128i *filter) {
__m128i v0 = _mm_unpacklo_epi8(*a0, *b0);
v0 = _mm_maddubs_epi16(v0, *filter);
v0 = xx_roundn_epu16(v0, FILTER_BITS);
__m128i v1 = _mm_unpacklo_epi8(*a1, *b1);
v1 = _mm_maddubs_epi16(v1, *filter);
v1 = xx_roundn_epu16(v1, FILTER_BITS);
return _mm_packus_epi16(v0, v1);
}
static void bilinear_filter8xh(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int h) {
int i;
// Horizontal filter
if (xoffset == 0) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = _mm_loadl_epi64((__m128i *)src);
_mm_storel_epi64((__m128i *)b, x);
src += src_stride;
b += 8;
}
} else if (xoffset == 4) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = _mm_loadu_si128((__m128i *)src);
__m128i z = _mm_srli_si128(x, 1);
_mm_storel_epi64((__m128i *)b, _mm_avg_epu8(x, z));
src += src_stride;
b += 8;
}
} else {
uint8_t *b = dst;
const uint8_t *hfilter = bilinear_filters_2t[xoffset];
const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
for (i = 0; i < h; i += 2) {
const __m128i x0 = _mm_loadu_si128((__m128i *)src);
const __m128i z0 = _mm_srli_si128(x0, 1);
const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]);
const __m128i z1 = _mm_srli_si128(x1, 1);
const __m128i res = filter_block_2rows(&x0, &z0, &x1, &z1, &hfilter_vec);
_mm_storeu_si128((__m128i *)b, res);
src += src_stride * 2;
b += 16;
}
// Handle i = h separately
const __m128i x0 = _mm_loadu_si128((__m128i *)src);
const __m128i z0 = _mm_srli_si128(x0, 1);
__m128i v0 = _mm_unpacklo_epi8(x0, z0);
v0 = _mm_maddubs_epi16(v0, hfilter_vec);
v0 = xx_roundn_epu16(v0, FILTER_BITS);
_mm_storel_epi64((__m128i *)b, _mm_packus_epi16(v0, v0));
}
// Vertical filter
if (yoffset == 0) {
// The data is already in 'dst', so no need to filter
} else if (yoffset == 4) {
for (i = 0; i < h; ++i) {
__m128i x = _mm_loadl_epi64((__m128i *)dst);
__m128i y = _mm_loadl_epi64((__m128i *)&dst[8]);
_mm_storel_epi64((__m128i *)dst, _mm_avg_epu8(x, y));
dst += 8;
}
} else {
const uint8_t *vfilter = bilinear_filters_2t[yoffset];
const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
for (i = 0; i < h; i += 2) {
const __m128i x = _mm_loadl_epi64((__m128i *)dst);
const __m128i y = _mm_loadl_epi64((__m128i *)&dst[8]);
const __m128i z = _mm_loadl_epi64((__m128i *)&dst[16]);
const __m128i res = filter_block_2rows(&x, &y, &y, &z, &vfilter_vec);
_mm_storeu_si128((__m128i *)dst, res);
dst += 16;
}
}
}
static void bilinear_filter4xh(const uint8_t *src, int src_stride, int xoffset,
int yoffset, uint8_t *dst, int h) {
int i;
// Horizontal filter
if (xoffset == 0) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = xx_loadl_32((__m128i *)src);
xx_storel_32(b, x);
src += src_stride;
b += 4;
}
} else if (xoffset == 4) {
uint8_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = _mm_loadl_epi64((__m128i *)src);
__m128i z = _mm_srli_si128(x, 1);
xx_storel_32(b, _mm_avg_epu8(x, z));
src += src_stride;
b += 4;
}
} else {
uint8_t *b = dst;
const uint8_t *hfilter = bilinear_filters_2t[xoffset];
const __m128i hfilter_vec = _mm_set1_epi16(hfilter[0] | (hfilter[1] << 8));
for (i = 0; i < h; i += 4) {
const __m128i x0 = _mm_loadl_epi64((__m128i *)src);
const __m128i z0 = _mm_srli_si128(x0, 1);
const __m128i x1 = _mm_loadl_epi64((__m128i *)&src[src_stride]);
const __m128i z1 = _mm_srli_si128(x1, 1);
const __m128i x2 = _mm_loadl_epi64((__m128i *)&src[src_stride * 2]);
const __m128i z2 = _mm_srli_si128(x2, 1);
const __m128i x3 = _mm_loadl_epi64((__m128i *)&src[src_stride * 3]);
const __m128i z3 = _mm_srli_si128(x3, 1);
const __m128i a0 = _mm_unpacklo_epi32(x0, x1);
const __m128i b0 = _mm_unpacklo_epi32(z0, z1);
const __m128i a1 = _mm_unpacklo_epi32(x2, x3);
const __m128i b1 = _mm_unpacklo_epi32(z2, z3);
const __m128i res = filter_block_2rows(&a0, &b0, &a1, &b1, &hfilter_vec);
_mm_storeu_si128((__m128i *)b, res);
src += src_stride * 4;
b += 16;
}
// Handle i = h separately
const __m128i x = _mm_loadl_epi64((__m128i *)src);
const __m128i z = _mm_srli_si128(x, 1);
__m128i v0 = _mm_unpacklo_epi8(x, z);
v0 = _mm_maddubs_epi16(v0, hfilter_vec);
v0 = xx_roundn_epu16(v0, FILTER_BITS);
xx_storel_32(b, _mm_packus_epi16(v0, v0));
}
// Vertical filter
if (yoffset == 0) {
// The data is already in 'dst', so no need to filter
} else if (yoffset == 4) {
for (i = 0; i < h; ++i) {
__m128i x = xx_loadl_32((__m128i *)dst);
__m128i y = xx_loadl_32((__m128i *)&dst[4]);
xx_storel_32(dst, _mm_avg_epu8(x, y));
dst += 4;
}
} else {
const uint8_t *vfilter = bilinear_filters_2t[yoffset];
const __m128i vfilter_vec = _mm_set1_epi16(vfilter[0] | (vfilter[1] << 8));
for (i = 0; i < h; i += 4) {
const __m128i a = xx_loadl_32((__m128i *)dst);
const __m128i b = xx_loadl_32((__m128i *)&dst[4]);
const __m128i c = xx_loadl_32((__m128i *)&dst[8]);
const __m128i d = xx_loadl_32((__m128i *)&dst[12]);
const __m128i e = xx_loadl_32((__m128i *)&dst[16]);
const __m128i a0 = _mm_unpacklo_epi32(a, b);
const __m128i b0 = _mm_unpacklo_epi32(b, c);
const __m128i a1 = _mm_unpacklo_epi32(c, d);
const __m128i b1 = _mm_unpacklo_epi32(d, e);
const __m128i res = filter_block_2rows(&a0, &b0, &a1, &b1, &vfilter_vec);
_mm_storeu_si128((__m128i *)dst, res);
dst += 16;
}
}
}
static inline void accumulate_block(const __m128i *src, const __m128i *a,
const __m128i *b, const __m128i *m,
__m128i *sum, __m128i *sum_sq) {
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i m_inv = _mm_sub_epi8(mask_max, *m);
// Calculate 16 predicted pixels.
// Note that the maximum value of any entry of 'pred_l' or 'pred_r'
// is 64 * 255, so we have plenty of space to add rounding constants.
const __m128i data_l = _mm_unpacklo_epi8(*a, *b);
const __m128i mask_l = _mm_unpacklo_epi8(*m, m_inv);
__m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi8(*a, *b);
const __m128i mask_r = _mm_unpackhi_epi8(*m, m_inv);
__m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
const __m128i src_l = _mm_unpacklo_epi8(*src, zero);
const __m128i src_r = _mm_unpackhi_epi8(*src, zero);
const __m128i diff_l = _mm_sub_epi16(pred_l, src_l);
const __m128i diff_r = _mm_sub_epi16(pred_r, src_r);
// Update partial sums and partial sums of squares
*sum =
_mm_add_epi32(*sum, _mm_madd_epi16(_mm_add_epi16(diff_l, diff_r), one));
*sum_sq =
_mm_add_epi32(*sum_sq, _mm_add_epi32(_mm_madd_epi16(diff_l, diff_l),
_mm_madd_epi16(diff_r, diff_r)));
}
static void masked_variance(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride, int width,
int height, unsigned int *sse, int *sum_) {
int x, y;
__m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 16) {
const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]);
accumulate_block(&src, &a, &b, &m, &sum, &sum_sq);
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// Reduce down to a single sum and sum of squares
sum = _mm_hadd_epi32(sum, sum_sq);
sum = _mm_hadd_epi32(sum, sum);
*sum_ = _mm_cvtsi128_si32(sum);
*sse = (unsigned int)_mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
}
static void masked_variance8xh(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, const uint8_t *b_ptr,
const uint8_t *m_ptr, int m_stride, int height,
unsigned int *sse, int *sum_) {
int y;
__m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
for (y = 0; y < height; y += 2) {
__m128i src = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)src_ptr),
_mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
const __m128i m =
_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr),
_mm_loadl_epi64((const __m128i *)&m_ptr[m_stride]));
accumulate_block(&src, &a, &b, &m, &sum, &sum_sq);
src_ptr += src_stride * 2;
a_ptr += 16;
b_ptr += 16;
m_ptr += m_stride * 2;
}
// Reduce down to a single sum and sum of squares
sum = _mm_hadd_epi32(sum, sum_sq);
sum = _mm_hadd_epi32(sum, sum);
*sum_ = _mm_cvtsi128_si32(sum);
*sse = (unsigned int)_mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
}
static void masked_variance4xh(const uint8_t *src_ptr, int src_stride,
const uint8_t *a_ptr, const uint8_t *b_ptr,
const uint8_t *m_ptr, int m_stride, int height,
unsigned int *sse, int *sum_) {
int y;
__m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
for (y = 0; y < height; y += 4) {
// Load four rows at a time
__m128i src = _mm_setr_epi32(*(int *)src_ptr, *(int *)&src_ptr[src_stride],
*(int *)&src_ptr[src_stride * 2],
*(int *)&src_ptr[src_stride * 3]);
const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
const __m128i m = _mm_setr_epi32(*(int *)m_ptr, *(int *)&m_ptr[m_stride],
*(int *)&m_ptr[m_stride * 2],
*(int *)&m_ptr[m_stride * 3]);
accumulate_block(&src, &a, &b, &m, &sum, &sum_sq);
src_ptr += src_stride * 4;
a_ptr += 16;
b_ptr += 16;
m_ptr += m_stride * 4;
}
// Reduce down to a single sum and sum of squares
sum = _mm_hadd_epi32(sum, sum_sq);
sum = _mm_hadd_epi32(sum, sum);
*sum_ = _mm_cvtsi128_si32(sum);
*sse = (unsigned int)_mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
}
#if CONFIG_AV1_HIGHBITDEPTH
// For width a multiple of 8
static void highbd_bilinear_filter(const uint16_t *src, int src_stride,
int xoffset, int yoffset, uint16_t *dst,
int w, int h);
static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride,
int xoffset, int yoffset, uint16_t *dst,
int h);
// For width a multiple of 8
static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride,
const uint16_t *a_ptr, int a_stride,
const uint16_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride,
int width, int height, uint64_t *sse,
int *sum_);
static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride,
const uint16_t *a_ptr,
const uint16_t *b_ptr,
const uint8_t *m_ptr, int m_stride,
int height, int *sse, int *sum_);
#define HIGHBD_MASK_SUBPIX_VAR_SSSE3(W, H) \
unsigned int aom_highbd_8_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
uint64_t sse64; \
int sum; \
uint16_t temp[(H + 1) * W]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
\
if (!invert_mask) \
highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
msk_stride, W, H, &sse64, &sum); \
else \
highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
msk_stride, W, H, &sse64, &sum); \
*sse = (uint32_t)sse64; \
return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \
} \
unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
uint64_t sse64; \
int sum; \
int64_t var; \
uint16_t temp[(H + 1) * W]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
\
if (!invert_mask) \
highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
msk_stride, W, H, &sse64, &sum); \
else \
highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
msk_stride, W, H, &sse64, &sum); \
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 4); \
sum = ROUND_POWER_OF_TWO(sum, 2); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
uint64_t sse64; \
int sum; \
int64_t var; \
uint16_t temp[(H + 1) * W]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter(src, src_stride, xoffset, yoffset, temp, W, H); \
\
if (!invert_mask) \
highbd_masked_variance(ref, ref_stride, temp, W, second_pred, W, msk, \
msk_stride, W, H, &sse64, &sum); \
else \
highbd_masked_variance(ref, ref_stride, second_pred, W, temp, W, msk, \
msk_stride, W, H, &sse64, &sum); \
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse64, 8); \
sum = ROUND_POWER_OF_TWO(sum, 4); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
#define HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(H) \
unsigned int aom_highbd_8_masked_sub_pixel_variance4x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
int sse_; \
int sum; \
uint16_t temp[(H + 1) * 4]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
\
if (!invert_mask) \
highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
msk_stride, H, &sse_, &sum); \
else \
highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
msk_stride, H, &sse_, &sum); \
*sse = (uint32_t)sse_; \
return *sse - (uint32_t)(((int64_t)sum * sum) / (4 * H)); \
} \
unsigned int aom_highbd_10_masked_sub_pixel_variance4x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
int sse_; \
int sum; \
int64_t var; \
uint16_t temp[(H + 1) * 4]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
\
if (!invert_mask) \
highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
msk_stride, H, &sse_, &sum); \
else \
highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
msk_stride, H, &sse_, &sum); \
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 4); \
sum = ROUND_POWER_OF_TWO(sum, 2); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
} \
unsigned int aom_highbd_12_masked_sub_pixel_variance4x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *ref8, int ref_stride, const uint8_t *second_pred8, \
const uint8_t *msk, int msk_stride, int invert_mask, uint32_t *sse) { \
int sse_; \
int sum; \
int64_t var; \
uint16_t temp[(H + 1) * 4]; \
const uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \
const uint16_t *second_pred = CONVERT_TO_SHORTPTR(second_pred8); \
\
highbd_bilinear_filter4xh(src, src_stride, xoffset, yoffset, temp, H); \
\
if (!invert_mask) \
highbd_masked_variance4xh(ref, ref_stride, temp, second_pred, msk, \
msk_stride, H, &sse_, &sum); \
else \
highbd_masked_variance4xh(ref, ref_stride, second_pred, temp, msk, \
msk_stride, H, &sse_, &sum); \
*sse = (uint32_t)ROUND_POWER_OF_TWO(sse_, 8); \
sum = ROUND_POWER_OF_TWO(sum, 4); \
var = (int64_t)(*sse) - (((int64_t)sum * sum) / (4 * H)); \
return (var >= 0) ? (uint32_t)var : 0; \
}
HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 128)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(128, 64)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 128)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 64)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 32)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 64)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 32)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 16)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 32)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 16)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 8)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 16)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 8)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 4)
HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(8)
HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(4)
#if !CONFIG_REALTIME_ONLY
HIGHBD_MASK_SUBPIX_VAR4XH_SSSE3(16)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 4)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(8, 32)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(32, 8)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(16, 64)
HIGHBD_MASK_SUBPIX_VAR_SSSE3(64, 16)
#endif // !CONFIG_REALTIME_ONLY
static inline __m128i highbd_filter_block(const __m128i a, const __m128i b,
const __m128i filter) {
__m128i v0 = _mm_unpacklo_epi16(a, b);
v0 = _mm_madd_epi16(v0, filter);
v0 = xx_roundn_epu32(v0, FILTER_BITS);
__m128i v1 = _mm_unpackhi_epi16(a, b);
v1 = _mm_madd_epi16(v1, filter);
v1 = xx_roundn_epu32(v1, FILTER_BITS);
return _mm_packs_epi32(v0, v1);
}
static void highbd_bilinear_filter(const uint16_t *src, int src_stride,
int xoffset, int yoffset, uint16_t *dst,
int w, int h) {
int i, j;
// Horizontal filter
if (xoffset == 0) {
uint16_t *b = dst;
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 8) {
__m128i x = _mm_loadu_si128((__m128i *)&src[j]);
_mm_storeu_si128((__m128i *)&b[j], x);
}
src += src_stride;
b += w;
}
} else if (xoffset == 4) {
uint16_t *b = dst;
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 8) {
__m128i x = _mm_loadu_si128((__m128i *)&src[j]);
__m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]);
__m128i z = _mm_alignr_epi8(y, x, 2);
_mm_storeu_si128((__m128i *)&b[j], _mm_avg_epu16(x, z));
}
src += src_stride;
b += w;
}
} else {
uint16_t *b = dst;
const uint8_t *hfilter = bilinear_filters_2t[xoffset];
const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16));
for (i = 0; i < h + 1; ++i) {
for (j = 0; j < w; j += 8) {
const __m128i x = _mm_loadu_si128((__m128i *)&src[j]);
const __m128i y = _mm_loadu_si128((__m128i *)&src[j + 8]);
const __m128i z = _mm_alignr_epi8(y, x, 2);
const __m128i res = highbd_filter_block(x, z, hfilter_vec);
_mm_storeu_si128((__m128i *)&b[j], res);
}
src += src_stride;
b += w;
}
}
// Vertical filter
if (yoffset == 0) {
// The data is already in 'dst', so no need to filter
} else if (yoffset == 4) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; j += 8) {
__m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
__m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
_mm_storeu_si128((__m128i *)&dst[j], _mm_avg_epu16(x, y));
}
dst += w;
}
} else {
const uint8_t *vfilter = bilinear_filters_2t[yoffset];
const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16));
for (i = 0; i < h; ++i) {
for (j = 0; j < w; j += 8) {
const __m128i x = _mm_loadu_si128((__m128i *)&dst[j]);
const __m128i y = _mm_loadu_si128((__m128i *)&dst[j + w]);
const __m128i res = highbd_filter_block(x, y, vfilter_vec);
_mm_storeu_si128((__m128i *)&dst[j], res);
}
dst += w;
}
}
}
static inline __m128i highbd_filter_block_2rows(const __m128i *a0,
const __m128i *b0,
const __m128i *a1,
const __m128i *b1,
const __m128i *filter) {
__m128i v0 = _mm_unpacklo_epi16(*a0, *b0);
v0 = _mm_madd_epi16(v0, *filter);
v0 = xx_roundn_epu32(v0, FILTER_BITS);
__m128i v1 = _mm_unpacklo_epi16(*a1, *b1);
v1 = _mm_madd_epi16(v1, *filter);
v1 = xx_roundn_epu32(v1, FILTER_BITS);
return _mm_packs_epi32(v0, v1);
}
static void highbd_bilinear_filter4xh(const uint16_t *src, int src_stride,
int xoffset, int yoffset, uint16_t *dst,
int h) {
int i;
// Horizontal filter
if (xoffset == 0) {
uint16_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = _mm_loadl_epi64((__m128i *)src);
_mm_storel_epi64((__m128i *)b, x);
src += src_stride;
b += 4;
}
} else if (xoffset == 4) {
uint16_t *b = dst;
for (i = 0; i < h + 1; ++i) {
__m128i x = _mm_loadu_si128((__m128i *)src);
__m128i z = _mm_srli_si128(x, 2);
_mm_storel_epi64((__m128i *)b, _mm_avg_epu16(x, z));
src += src_stride;
b += 4;
}
} else {
uint16_t *b = dst;
const uint8_t *hfilter = bilinear_filters_2t[xoffset];
const __m128i hfilter_vec = _mm_set1_epi32(hfilter[0] | (hfilter[1] << 16));
for (i = 0; i < h; i += 2) {
const __m128i x0 = _mm_loadu_si128((__m128i *)src);
const __m128i z0 = _mm_srli_si128(x0, 2);
const __m128i x1 = _mm_loadu_si128((__m128i *)&src[src_stride]);
const __m128i z1 = _mm_srli_si128(x1, 2);
const __m128i res =
highbd_filter_block_2rows(&x0, &z0, &x1, &z1, &hfilter_vec);
_mm_storeu_si128((__m128i *)b, res);
src += src_stride * 2;
b += 8;
}
// Process i = h separately
__m128i x = _mm_loadu_si128((__m128i *)src);
__m128i z = _mm_srli_si128(x, 2);
__m128i v0 = _mm_unpacklo_epi16(x, z);
v0 = _mm_madd_epi16(v0, hfilter_vec);
v0 = xx_roundn_epu32(v0, FILTER_BITS);
_mm_storel_epi64((__m128i *)b, _mm_packs_epi32(v0, v0));
}
// Vertical filter
if (yoffset == 0) {
// The data is already in 'dst', so no need to filter
} else if (yoffset == 4) {
for (i = 0; i < h; ++i) {
__m128i x = _mm_loadl_epi64((__m128i *)dst);
__m128i y = _mm_loadl_epi64((__m128i *)&dst[4]);
_mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(x, y));
dst += 4;
}
} else {
const uint8_t *vfilter = bilinear_filters_2t[yoffset];
const __m128i vfilter_vec = _mm_set1_epi32(vfilter[0] | (vfilter[1] << 16));
for (i = 0; i < h; i += 2) {
const __m128i x = _mm_loadl_epi64((__m128i *)dst);
const __m128i y = _mm_loadl_epi64((__m128i *)&dst[4]);
const __m128i z = _mm_loadl_epi64((__m128i *)&dst[8]);
const __m128i res =
highbd_filter_block_2rows(&x, &y, &y, &z, &vfilter_vec);
_mm_storeu_si128((__m128i *)dst, res);
dst += 8;
}
}
}
static void highbd_masked_variance(const uint16_t *src_ptr, int src_stride,
const uint16_t *a_ptr, int a_stride,
const uint16_t *b_ptr, int b_stride,
const uint8_t *m_ptr, int m_stride,
int width, int height, uint64_t *sse,
int *sum_) {
int x, y;
// Note on bit widths:
// The maximum value of 'sum' is (2^12 - 1) * 128 * 128 =~ 2^26,
// so this can be kept as four 32-bit values.
// But the maximum value of 'sum_sq' is (2^12 - 1)^2 * 128 * 128 =~ 2^38,
// so this must be stored as two 64-bit values.
__m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i round_const =
_mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m128i zero = _mm_setzero_si128();
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 8) {
const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
const __m128i m =
_mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)&m_ptr[x]), zero);
const __m128i m_inv = _mm_sub_epi16(mask_max, m);
// Calculate 8 predicted pixels.
const __m128i data_l = _mm_unpacklo_epi16(a, b);
const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
__m128i pred_l = _mm_madd_epi16(data_l, mask_l);
pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi16(a, b);
const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
__m128i pred_r = _mm_madd_epi16(data_r, mask_r);
pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i src_l = _mm_unpacklo_epi16(src, zero);
const __m128i src_r = _mm_unpackhi_epi16(src, zero);
__m128i diff_l = _mm_sub_epi32(pred_l, src_l);
__m128i diff_r = _mm_sub_epi32(pred_r, src_r);
// Update partial sums and partial sums of squares
sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r));
// A trick: Now each entry of diff_l and diff_r is stored in a 32-bit
// field, but the range of values is only [-(2^12 - 1), 2^12 - 1].
// So we can re-pack into 16-bit fields and use _mm_madd_epi16
// to calculate the squares and partially sum them.
const __m128i tmp = _mm_packs_epi32(diff_l, diff_r);
const __m128i prod = _mm_madd_epi16(tmp, tmp);
// Then we want to sign-extend to 64 bits and accumulate
const __m128i sign = _mm_srai_epi32(prod, 31);
const __m128i tmp_0 = _mm_unpacklo_epi32(prod, sign);
const __m128i tmp_1 = _mm_unpackhi_epi32(prod, sign);
sum_sq = _mm_add_epi64(sum_sq, _mm_add_epi64(tmp_0, tmp_1));
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// Reduce down to a single sum and sum of squares
sum = _mm_hadd_epi32(sum, zero);
sum = _mm_hadd_epi32(sum, zero);
*sum_ = _mm_cvtsi128_si32(sum);
sum_sq = _mm_add_epi64(sum_sq, _mm_srli_si128(sum_sq, 8));
_mm_storel_epi64((__m128i *)sse, sum_sq);
}
static void highbd_masked_variance4xh(const uint16_t *src_ptr, int src_stride,
const uint16_t *a_ptr,
const uint16_t *b_ptr,
const uint8_t *m_ptr, int m_stride,
int height, int *sse, int *sum_) {
int y;
// Note: For this function, h <= 8 (or maybe 16 if we add 4:1 partitions).
// So the maximum value of sum is (2^12 - 1) * 4 * 16 =~ 2^18
// and the maximum value of sum_sq is (2^12 - 1)^2 * 4 * 16 =~ 2^30.
// So we can safely pack sum_sq into 32-bit fields, which is slightly more
// convenient.
__m128i sum = _mm_setzero_si128(), sum_sq = _mm_setzero_si128();
const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m128i round_const =
_mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m128i zero = _mm_setzero_si128();
for (y = 0; y < height; y += 2) {
__m128i src = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)src_ptr),
_mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
const __m128i a = _mm_loadu_si128((const __m128i *)a_ptr);
const __m128i b = _mm_loadu_si128((const __m128i *)b_ptr);
const __m128i m = _mm_unpacklo_epi8(
_mm_unpacklo_epi32(_mm_cvtsi32_si128(*(const int *)m_ptr),
_mm_cvtsi32_si128(*(const int *)&m_ptr[m_stride])),
zero);
const __m128i m_inv = _mm_sub_epi16(mask_max, m);
const __m128i data_l = _mm_unpacklo_epi16(a, b);
const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
__m128i pred_l = _mm_madd_epi16(data_l, mask_l);
pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i data_r = _mm_unpackhi_epi16(a, b);
const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
__m128i pred_r = _mm_madd_epi16(data_r, mask_r);
pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m128i src_l = _mm_unpacklo_epi16(src, zero);
const __m128i src_r = _mm_unpackhi_epi16(src, zero);
__m128i diff_l = _mm_sub_epi32(pred_l, src_l);
__m128i diff_r = _mm_sub_epi32(pred_r, src_r);
// Update partial sums and partial sums of squares
sum = _mm_add_epi32(sum, _mm_add_epi32(diff_l, diff_r));
const __m128i tmp = _mm_packs_epi32(diff_l, diff_r);
const __m128i prod = _mm_madd_epi16(tmp, tmp);
sum_sq = _mm_add_epi32(sum_sq, prod);
src_ptr += src_stride * 2;
a_ptr += 8;
b_ptr += 8;
m_ptr += m_stride * 2;
}
// Reduce down to a single sum and sum of squares
sum = _mm_hadd_epi32(sum, sum_sq);
sum = _mm_hadd_epi32(sum, zero);
*sum_ = _mm_cvtsi128_si32(sum);
*sse = (unsigned int)_mm_cvtsi128_si32(_mm_srli_si128(sum, 4));
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void aom_comp_mask_pred_ssse3(uint8_t *comp_pred, const uint8_t *pred,
int width, int height, const uint8_t *ref,
int ref_stride, const uint8_t *mask,
int mask_stride, int invert_mask) {
const uint8_t *src0 = invert_mask ? pred : ref;
const uint8_t *src1 = invert_mask ? ref : pred;
const int stride0 = invert_mask ? width : ref_stride;
const int stride1 = invert_mask ? ref_stride : width;
assert(height % 2 == 0);
int i = 0;
if (width == 8) {
comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1,
mask, mask_stride);
} else if (width == 16) {
do {
comp_mask_pred_16_ssse3(src0, src1, mask, comp_pred);
comp_mask_pred_16_ssse3(src0 + stride0, src1 + stride1,
mask + mask_stride, comp_pred + width);
comp_pred += (width << 1);
src0 += (stride0 << 1);
src1 += (stride1 << 1);
mask += (mask_stride << 1);
i += 2;
} while (i < height);
} else {
do {
for (int x = 0; x < width; x += 32) {
comp_mask_pred_16_ssse3(src0 + x, src1 + x, mask + x, comp_pred);
comp_mask_pred_16_ssse3(src0 + x + 16, src1 + x + 16, mask + x + 16,
comp_pred + 16);
comp_pred += 32;
}
src0 += (stride0);
src1 += (stride1);
mask += (mask_stride);
i += 1;
} while (i < height);
}
}