Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/bitdepth_conversion_sse2.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_ports/mem.h"
static inline void sign_extend_16bit_to_32bit_sse2(__m128i in, __m128i zero,
__m128i *out_lo,
__m128i *out_hi) {
const __m128i sign_bits = _mm_cmplt_epi16(in, zero);
*out_lo = _mm_unpacklo_epi16(in, sign_bits);
*out_hi = _mm_unpackhi_epi16(in, sign_bits);
}
static inline __m128i invert_sign_32_sse2(__m128i a, __m128i sign) {
a = _mm_xor_si128(a, sign);
return _mm_sub_epi32(a, sign);
}
void aom_minmax_8x8_sse2(const uint8_t *s, int p, const uint8_t *d, int dp,
int *min, int *max) {
__m128i u0, s0, d0, diff, maxabsdiff, minabsdiff, negdiff, absdiff0, absdiff;
u0 = _mm_setzero_si128();
// Row 0
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff0 = _mm_max_epi16(diff, negdiff);
// Row 1
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(absdiff0, absdiff);
minabsdiff = _mm_min_epi16(absdiff0, absdiff);
// Row 2
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 2 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
// Row 3
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 3 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
// Row 4
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 4 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
// Row 5
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 5 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
// Row 6
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 6 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
// Row 7
s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0);
d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 7 * dp)), u0);
diff = _mm_subs_epi16(s0, d0);
negdiff = _mm_subs_epi16(u0, diff);
absdiff = _mm_max_epi16(diff, negdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff);
minabsdiff = _mm_min_epi16(minabsdiff, absdiff);
maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_si128(maxabsdiff, 8));
maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 32));
maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 16));
*max = _mm_extract_epi16(maxabsdiff, 0);
minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_si128(minabsdiff, 8));
minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 32));
minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 16));
*min = _mm_extract_epi16(minabsdiff, 0);
}
unsigned int aom_avg_8x8_sse2(const uint8_t *s, int p) {
__m128i sum0, sum1, s0, s1, s2, s3, u0;
unsigned int avg = 0;
u0 = _mm_setzero_si128();
s0 = loadh_epi64((const __m128i *)(s + p),
_mm_loadl_epi64((const __m128i *)(s)));
s1 = loadh_epi64((const __m128i *)(s + 3 * p),
_mm_loadl_epi64((const __m128i *)(s + 2 * p)));
s2 = loadh_epi64((const __m128i *)(s + 5 * p),
_mm_loadl_epi64((const __m128i *)(s + 4 * p)));
s3 = loadh_epi64((const __m128i *)(s + 7 * p),
_mm_loadl_epi64((const __m128i *)(s + 6 * p)));
s0 = _mm_sad_epu8(s0, u0);
s1 = _mm_sad_epu8(s1, u0);
s2 = _mm_sad_epu8(s2, u0);
s3 = _mm_sad_epu8(s3, u0);
sum0 = _mm_add_epi16(s0, s1);
sum1 = _mm_add_epi16(s2, s3);
sum0 = _mm_add_epi16(sum0, sum1);
sum0 = _mm_add_epi16(sum0, _mm_srli_si128(sum0, 8));
avg = _mm_cvtsi128_si32(sum0);
return (avg + 32) >> 6;
}
static void calc_avg_8x8_dual_sse2(const uint8_t *s, int p, int *avg) {
__m128i sum0, sum1, s0, s1, s2, s3, u0;
u0 = _mm_setzero_si128();
s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s)), u0);
s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + p)), u0);
s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 2 * p)), u0);
s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 3 * p)), u0);
sum0 = _mm_add_epi16(s0, s1);
sum1 = _mm_add_epi16(s2, s3);
s0 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 4 * p)), u0);
s1 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 5 * p)), u0);
s2 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 6 * p)), u0);
s3 = _mm_sad_epu8(_mm_loadu_si128((const __m128i *)(s + 7 * p)), u0);
sum0 = _mm_add_epi16(sum0, _mm_add_epi16(s0, s1));
sum1 = _mm_add_epi16(sum1, _mm_add_epi16(s2, s3));
sum0 = _mm_add_epi16(sum0, sum1);
// (avg + 32) >> 6
__m128i rounding = _mm_set1_epi32(32);
sum0 = _mm_add_epi32(sum0, rounding);
sum0 = _mm_srli_epi32(sum0, 6);
avg[0] = _mm_cvtsi128_si32(sum0);
avg[1] = _mm_extract_epi16(sum0, 4);
}
void aom_avg_8x8_quad_sse2(const uint8_t *s, int p, int x16_idx, int y16_idx,
int *avg) {
const uint8_t *s_ptr = s + y16_idx * p + x16_idx;
for (int k = 0; k < 2; k++) {
calc_avg_8x8_dual_sse2(s_ptr, p, avg + k * 2);
s_ptr += 8 * p;
}
}
unsigned int aom_avg_4x4_sse2(const uint8_t *s, int p) {
__m128i s0, s1, u0;
unsigned int avg = 0;
u0 = _mm_setzero_si128();
s0 = _mm_unpacklo_epi32(xx_loadl_32(s), xx_loadl_32(s + p));
s1 = _mm_unpacklo_epi32(xx_loadl_32(s + p * 2), xx_loadl_32(s + p * 3));
s0 = _mm_sad_epu8(s0, u0);
s1 = _mm_sad_epu8(s1, u0);
s0 = _mm_add_epi16(s0, s1);
avg = _mm_cvtsi128_si32(s0);
return (avg + 8) >> 4;
}
static inline void hadamard_col4_sse2(__m128i *in, int iter) {
const __m128i a0 = in[0];
const __m128i a1 = in[1];
const __m128i a2 = in[2];
const __m128i a3 = in[3];
const __m128i b0 = _mm_srai_epi16(_mm_add_epi16(a0, a1), 1);
const __m128i b1 = _mm_srai_epi16(_mm_sub_epi16(a0, a1), 1);
const __m128i b2 = _mm_srai_epi16(_mm_add_epi16(a2, a3), 1);
const __m128i b3 = _mm_srai_epi16(_mm_sub_epi16(a2, a3), 1);
in[0] = _mm_add_epi16(b0, b2);
in[1] = _mm_add_epi16(b1, b3);
in[2] = _mm_sub_epi16(b0, b2);
in[3] = _mm_sub_epi16(b1, b3);
if (iter == 0) {
const __m128i ba = _mm_unpacklo_epi16(in[0], in[1]);
const __m128i dc = _mm_unpacklo_epi16(in[2], in[3]);
const __m128i dcba_lo = _mm_unpacklo_epi32(ba, dc);
const __m128i dcba_hi = _mm_unpackhi_epi32(ba, dc);
in[0] = dcba_lo;
in[1] = _mm_srli_si128(dcba_lo, 8);
in[2] = dcba_hi;
in[3] = _mm_srli_si128(dcba_hi, 8);
}
}
void aom_hadamard_4x4_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
__m128i src[4];
src[0] = _mm_loadl_epi64((const __m128i *)src_diff);
src[1] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride));
src[2] = _mm_loadl_epi64((const __m128i *)(src_diff += src_stride));
src[3] = _mm_loadl_epi64((const __m128i *)(src_diff + src_stride));
hadamard_col4_sse2(src, 0);
hadamard_col4_sse2(src, 1);
store_tran_low(_mm_unpacklo_epi64(src[0], src[1]), coeff);
coeff += 8;
store_tran_low(_mm_unpacklo_epi64(src[2], src[3]), coeff);
}
static inline void hadamard_col8_sse2(__m128i *in, int iter) {
__m128i a0 = in[0];
__m128i a1 = in[1];
__m128i a2 = in[2];
__m128i a3 = in[3];
__m128i a4 = in[4];
__m128i a5 = in[5];
__m128i a6 = in[6];
__m128i a7 = in[7];
__m128i b0 = _mm_add_epi16(a0, a1);
__m128i b1 = _mm_sub_epi16(a0, a1);
__m128i b2 = _mm_add_epi16(a2, a3);
__m128i b3 = _mm_sub_epi16(a2, a3);
__m128i b4 = _mm_add_epi16(a4, a5);
__m128i b5 = _mm_sub_epi16(a4, a5);
__m128i b6 = _mm_add_epi16(a6, a7);
__m128i b7 = _mm_sub_epi16(a6, a7);
a0 = _mm_add_epi16(b0, b2);
a1 = _mm_add_epi16(b1, b3);
a2 = _mm_sub_epi16(b0, b2);
a3 = _mm_sub_epi16(b1, b3);
a4 = _mm_add_epi16(b4, b6);
a5 = _mm_add_epi16(b5, b7);
a6 = _mm_sub_epi16(b4, b6);
a7 = _mm_sub_epi16(b5, b7);
if (iter == 0) {
b0 = _mm_add_epi16(a0, a4);
b7 = _mm_add_epi16(a1, a5);
b3 = _mm_add_epi16(a2, a6);
b4 = _mm_add_epi16(a3, a7);
b2 = _mm_sub_epi16(a0, a4);
b6 = _mm_sub_epi16(a1, a5);
b1 = _mm_sub_epi16(a2, a6);
b5 = _mm_sub_epi16(a3, a7);
a0 = _mm_unpacklo_epi16(b0, b1);
a1 = _mm_unpacklo_epi16(b2, b3);
a2 = _mm_unpackhi_epi16(b0, b1);
a3 = _mm_unpackhi_epi16(b2, b3);
a4 = _mm_unpacklo_epi16(b4, b5);
a5 = _mm_unpacklo_epi16(b6, b7);
a6 = _mm_unpackhi_epi16(b4, b5);
a7 = _mm_unpackhi_epi16(b6, b7);
b0 = _mm_unpacklo_epi32(a0, a1);
b1 = _mm_unpacklo_epi32(a4, a5);
b2 = _mm_unpackhi_epi32(a0, a1);
b3 = _mm_unpackhi_epi32(a4, a5);
b4 = _mm_unpacklo_epi32(a2, a3);
b5 = _mm_unpacklo_epi32(a6, a7);
b6 = _mm_unpackhi_epi32(a2, a3);
b7 = _mm_unpackhi_epi32(a6, a7);
in[0] = _mm_unpacklo_epi64(b0, b1);
in[1] = _mm_unpackhi_epi64(b0, b1);
in[2] = _mm_unpacklo_epi64(b2, b3);
in[3] = _mm_unpackhi_epi64(b2, b3);
in[4] = _mm_unpacklo_epi64(b4, b5);
in[5] = _mm_unpackhi_epi64(b4, b5);
in[6] = _mm_unpacklo_epi64(b6, b7);
in[7] = _mm_unpackhi_epi64(b6, b7);
} else {
in[0] = _mm_add_epi16(a0, a4);
in[7] = _mm_add_epi16(a1, a5);
in[3] = _mm_add_epi16(a2, a6);
in[4] = _mm_add_epi16(a3, a7);
in[2] = _mm_sub_epi16(a0, a4);
in[6] = _mm_sub_epi16(a1, a5);
in[1] = _mm_sub_epi16(a2, a6);
in[5] = _mm_sub_epi16(a3, a7);
}
}
static inline void hadamard_8x8_sse2(const int16_t *src_diff,
ptrdiff_t src_stride, tran_low_t *coeff,
int is_final) {
__m128i src[8];
src[0] = _mm_load_si128((const __m128i *)src_diff);
src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride));
hadamard_col8_sse2(src, 0);
hadamard_col8_sse2(src, 1);
if (is_final) {
store_tran_low(src[0], coeff);
coeff += 8;
store_tran_low(src[1], coeff);
coeff += 8;
store_tran_low(src[2], coeff);
coeff += 8;
store_tran_low(src[3], coeff);
coeff += 8;
store_tran_low(src[4], coeff);
coeff += 8;
store_tran_low(src[5], coeff);
coeff += 8;
store_tran_low(src[6], coeff);
coeff += 8;
store_tran_low(src[7], coeff);
} else {
int16_t *coeff16 = (int16_t *)coeff;
_mm_store_si128((__m128i *)coeff16, src[0]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[1]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[2]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[3]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[4]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[5]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[6]);
coeff16 += 8;
_mm_store_si128((__m128i *)coeff16, src[7]);
}
}
void aom_hadamard_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
hadamard_8x8_sse2(src_diff, src_stride, coeff, 1);
}
static inline void hadamard_lp_8x8_sse2(const int16_t *src_diff,
ptrdiff_t src_stride, int16_t *coeff) {
__m128i src[8];
src[0] = _mm_load_si128((const __m128i *)src_diff);
src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride));
src[7] = _mm_load_si128((const __m128i *)(src_diff + src_stride));
hadamard_col8_sse2(src, 0);
hadamard_col8_sse2(src, 1);
_mm_store_si128((__m128i *)coeff, src[0]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[1]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[2]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[3]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[4]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[5]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[6]);
coeff += 8;
_mm_store_si128((__m128i *)coeff, src[7]);
}
void aom_hadamard_lp_8x8_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
hadamard_lp_8x8_sse2(src_diff, src_stride, coeff);
}
void aom_hadamard_lp_8x8_dual_sse2(const int16_t *src_diff,
ptrdiff_t src_stride, int16_t *coeff) {
for (int i = 0; i < 2; i++) {
hadamard_lp_8x8_sse2(src_diff + (i * 8), src_stride, coeff + (i * 64));
}
}
void aom_hadamard_lp_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
for (int idx = 0; idx < 4; ++idx) {
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
hadamard_lp_8x8_sse2(src_ptr, src_stride, coeff + idx * 64);
}
int16_t *t_coeff = coeff;
for (int idx = 0; idx < 64; idx += 8) {
__m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff);
__m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64));
__m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128));
__m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192));
__m128i b0 = _mm_add_epi16(coeff0, coeff1);
__m128i b1 = _mm_sub_epi16(coeff0, coeff1);
__m128i b2 = _mm_add_epi16(coeff2, coeff3);
__m128i b3 = _mm_sub_epi16(coeff2, coeff3);
b0 = _mm_srai_epi16(b0, 1);
b1 = _mm_srai_epi16(b1, 1);
b2 = _mm_srai_epi16(b2, 1);
b3 = _mm_srai_epi16(b3, 1);
coeff0 = _mm_add_epi16(b0, b2);
coeff1 = _mm_add_epi16(b1, b3);
coeff2 = _mm_sub_epi16(b0, b2);
coeff3 = _mm_sub_epi16(b1, b3);
_mm_store_si128((__m128i *)t_coeff, coeff0);
_mm_store_si128((__m128i *)(t_coeff + 64), coeff1);
_mm_store_si128((__m128i *)(t_coeff + 128), coeff2);
_mm_store_si128((__m128i *)(t_coeff + 192), coeff3);
t_coeff += 8;
}
}
static inline void hadamard_16x16_sse2(const int16_t *src_diff,
ptrdiff_t src_stride, tran_low_t *coeff,
int is_final) {
// For high bitdepths, it is unnecessary to store_tran_low
// (mult/unpack/store), then load_tran_low (load/pack) the same memory in the
// next stage. Output to an intermediate buffer first, then store_tran_low()
// in the final stage.
DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]);
int16_t *t_coeff = temp_coeff;
int16_t *coeff16 = (int16_t *)coeff;
int idx;
for (idx = 0; idx < 4; ++idx) {
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
hadamard_8x8_sse2(src_ptr, src_stride, (tran_low_t *)(t_coeff + idx * 64),
0);
}
for (idx = 0; idx < 64; idx += 8) {
__m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff);
__m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 64));
__m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 128));
__m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 192));
__m128i b0 = _mm_add_epi16(coeff0, coeff1);
__m128i b1 = _mm_sub_epi16(coeff0, coeff1);
__m128i b2 = _mm_add_epi16(coeff2, coeff3);
__m128i b3 = _mm_sub_epi16(coeff2, coeff3);
b0 = _mm_srai_epi16(b0, 1);
b1 = _mm_srai_epi16(b1, 1);
b2 = _mm_srai_epi16(b2, 1);
b3 = _mm_srai_epi16(b3, 1);
coeff0 = _mm_add_epi16(b0, b2);
coeff1 = _mm_add_epi16(b1, b3);
coeff2 = _mm_sub_epi16(b0, b2);
coeff3 = _mm_sub_epi16(b1, b3);
if (is_final) {
store_tran_low_offset_4(coeff0, coeff);
store_tran_low_offset_4(coeff1, coeff + 64);
store_tran_low_offset_4(coeff2, coeff + 128);
store_tran_low_offset_4(coeff3, coeff + 192);
coeff += 4;
} else {
_mm_store_si128((__m128i *)coeff16, coeff0);
_mm_store_si128((__m128i *)(coeff16 + 64), coeff1);
_mm_store_si128((__m128i *)(coeff16 + 128), coeff2);
_mm_store_si128((__m128i *)(coeff16 + 192), coeff3);
coeff16 += 8;
}
t_coeff += 8;
// Increment the pointer additionally by 0 and 8 in alternate
// iterations(instead of 8) to ensure the coherency with the implementation
// of store_tran_low_offset_4()
coeff += (((idx >> 3) & 1) << 3);
}
}
void aom_hadamard_16x16_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
hadamard_16x16_sse2(src_diff, src_stride, coeff, 1);
}
void aom_hadamard_32x32_sse2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
// For high bitdepths, it is unnecessary to store_tran_low
// (mult/unpack/store), then load_tran_low (load/pack) the same memory in the
// next stage. Output to an intermediate buffer first, then store_tran_low()
// in the final stage.
DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]);
int16_t *t_coeff = temp_coeff;
int idx;
__m128i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo,
b3_lo;
__m128i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi,
b3_hi;
__m128i b0, b1, b2, b3;
const __m128i zero = _mm_setzero_si128();
for (idx = 0; idx < 4; ++idx) {
const int16_t *src_ptr =
src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
hadamard_16x16_sse2(src_ptr, src_stride,
(tran_low_t *)(t_coeff + idx * 256), 0);
}
for (idx = 0; idx < 256; idx += 8) {
__m128i coeff0 = _mm_load_si128((const __m128i *)t_coeff);
__m128i coeff1 = _mm_load_si128((const __m128i *)(t_coeff + 256));
__m128i coeff2 = _mm_load_si128((const __m128i *)(t_coeff + 512));
__m128i coeff3 = _mm_load_si128((const __m128i *)(t_coeff + 768));
// Sign extend 16 bit to 32 bit.
sign_extend_16bit_to_32bit_sse2(coeff0, zero, &coeff0_lo, &coeff0_hi);
sign_extend_16bit_to_32bit_sse2(coeff1, zero, &coeff1_lo, &coeff1_hi);
sign_extend_16bit_to_32bit_sse2(coeff2, zero, &coeff2_lo, &coeff2_hi);
sign_extend_16bit_to_32bit_sse2(coeff3, zero, &coeff3_lo, &coeff3_hi);
b0_lo = _mm_add_epi32(coeff0_lo, coeff1_lo);
b0_hi = _mm_add_epi32(coeff0_hi, coeff1_hi);
b1_lo = _mm_sub_epi32(coeff0_lo, coeff1_lo);
b1_hi = _mm_sub_epi32(coeff0_hi, coeff1_hi);
b2_lo = _mm_add_epi32(coeff2_lo, coeff3_lo);
b2_hi = _mm_add_epi32(coeff2_hi, coeff3_hi);
b3_lo = _mm_sub_epi32(coeff2_lo, coeff3_lo);
b3_hi = _mm_sub_epi32(coeff2_hi, coeff3_hi);
b0_lo = _mm_srai_epi32(b0_lo, 2);
b1_lo = _mm_srai_epi32(b1_lo, 2);
b2_lo = _mm_srai_epi32(b2_lo, 2);
b3_lo = _mm_srai_epi32(b3_lo, 2);
b0_hi = _mm_srai_epi32(b0_hi, 2);
b1_hi = _mm_srai_epi32(b1_hi, 2);
b2_hi = _mm_srai_epi32(b2_hi, 2);
b3_hi = _mm_srai_epi32(b3_hi, 2);
b0 = _mm_packs_epi32(b0_lo, b0_hi);
b1 = _mm_packs_epi32(b1_lo, b1_hi);
b2 = _mm_packs_epi32(b2_lo, b2_hi);
b3 = _mm_packs_epi32(b3_lo, b3_hi);
coeff0 = _mm_add_epi16(b0, b2);
coeff1 = _mm_add_epi16(b1, b3);
store_tran_low_offset_4(coeff0, coeff);
store_tran_low_offset_4(coeff1, coeff + 256);
coeff2 = _mm_sub_epi16(b0, b2);
coeff3 = _mm_sub_epi16(b1, b3);
store_tran_low_offset_4(coeff2, coeff + 512);
store_tran_low_offset_4(coeff3, coeff + 768);
// Increment the pointer by 4 and 12 in alternate iterations(instead of 8)
// to ensure the coherency with the implementation of
// store_tran_low_offset_4()
coeff += (4 + (((idx >> 3) & 1) << 3));
t_coeff += 8;
}
}
int aom_satd_sse2(const tran_low_t *coeff, int length) {
int i;
const __m128i zero = _mm_setzero_si128();
__m128i accum = zero;
for (i = 0; i < length; i += 4) {
const __m128i src_line = _mm_load_si128((const __m128i *)coeff);
const __m128i coeff_sign = _mm_srai_epi32(src_line, 31);
const __m128i abs_coeff = invert_sign_32_sse2(src_line, coeff_sign);
accum = _mm_add_epi32(accum, abs_coeff);
coeff += 4;
}
{ // cascading summation of accum
__m128i hi = _mm_srli_si128(accum, 8);
accum = _mm_add_epi32(accum, hi);
hi = _mm_srli_epi64(accum, 32);
accum = _mm_add_epi32(accum, hi);
}
return _mm_cvtsi128_si32(accum);
}
int aom_satd_lp_sse2(const int16_t *coeff, int length) {
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
__m128i accum = zero;
for (int i = 0; i < length; i += 16) {
const __m128i src_line0 = _mm_loadu_si128((const __m128i *)coeff);
const __m128i src_line1 = _mm_loadu_si128((const __m128i *)(coeff + 8));
const __m128i inv0 = _mm_sub_epi16(zero, src_line0);
const __m128i inv1 = _mm_sub_epi16(zero, src_line1);
const __m128i abs0 = _mm_max_epi16(src_line0, inv0); // abs(src_line)
const __m128i abs1 = _mm_max_epi16(src_line1, inv1); // abs(src_line)
const __m128i sum0 = _mm_madd_epi16(abs0, one);
const __m128i sum1 = _mm_madd_epi16(abs1, one);
accum = _mm_add_epi32(accum, sum0);
accum = _mm_add_epi32(accum, sum1);
coeff += 16;
}
{ // cascading summation of accum
__m128i hi = _mm_srli_si128(accum, 8);
accum = _mm_add_epi32(accum, hi);
hi = _mm_srli_epi64(accum, 32);
accum = _mm_add_epi32(accum, hi);
}
return _mm_cvtsi128_si32(accum);
}
void aom_int_pro_row_sse2(int16_t *hbuf, const uint8_t *ref,
const int ref_stride, const int width,
const int height, int norm_factor) {
// SIMD implementation assumes width and height to be multiple of 16 and 2
// respectively. For any odd width or height, SIMD support needs to be added.
assert(width % 16 == 0 && height % 2 == 0);
__m128i zero = _mm_setzero_si128();
for (int wd = 0; wd < width; wd += 16) {
const uint8_t *ref_tmp = ref + wd;
int16_t *hbuf_tmp = hbuf + wd;
__m128i s0 = zero;
__m128i s1 = zero;
int idx = 0;
do {
__m128i src_line = _mm_loadu_si128((const __m128i *)ref_tmp);
__m128i t0 = _mm_unpacklo_epi8(src_line, zero);
__m128i t1 = _mm_unpackhi_epi8(src_line, zero);
s0 = _mm_add_epi16(s0, t0);
s1 = _mm_add_epi16(s1, t1);
ref_tmp += ref_stride;
src_line = _mm_loadu_si128((const __m128i *)ref_tmp);
t0 = _mm_unpacklo_epi8(src_line, zero);
t1 = _mm_unpackhi_epi8(src_line, zero);
s0 = _mm_add_epi16(s0, t0);
s1 = _mm_add_epi16(s1, t1);
ref_tmp += ref_stride;
idx += 2;
} while (idx < height);
s0 = _mm_srai_epi16(s0, norm_factor);
s1 = _mm_srai_epi16(s1, norm_factor);
_mm_storeu_si128((__m128i *)(hbuf_tmp), s0);
_mm_storeu_si128((__m128i *)(hbuf_tmp + 8), s1);
}
}
void aom_int_pro_col_sse2(int16_t *vbuf, const uint8_t *ref,
const int ref_stride, const int width,
const int height, int norm_factor) {
// SIMD implementation assumes width to be multiple of 16.
assert(width % 16 == 0);
for (int ht = 0; ht < height; ht++) {
const uint8_t *ref_tmp = ref + (ht * ref_stride);
__m128i zero = _mm_setzero_si128();
__m128i s0 = zero;
__m128i s1, src_line;
for (int i = 0; i < width; i += 16) {
src_line = _mm_loadu_si128((const __m128i *)ref_tmp);
s1 = _mm_sad_epu8(src_line, zero);
s0 = _mm_add_epi16(s0, s1);
ref_tmp += 16;
}
s1 = _mm_srli_si128(s0, 8);
s0 = _mm_add_epi16(s0, s1);
vbuf[ht] = _mm_cvtsi128_si32(s0) >> norm_factor;
}
}