Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/bitdepth_conversion_avx2.h"
#include "aom_dsp/x86/synonyms_avx2.h"
#include "aom_ports/mem.h"
static inline void sign_extend_16bit_to_32bit_avx2(__m256i in, __m256i zero,
__m256i *out_lo,
__m256i *out_hi) {
const __m256i sign_bits = _mm256_cmpgt_epi16(zero, in);
*out_lo = _mm256_unpacklo_epi16(in, sign_bits);
*out_hi = _mm256_unpackhi_epi16(in, sign_bits);
}
static void hadamard_col8x2_avx2(__m256i *in, int iter) {
__m256i a0 = in[0];
__m256i a1 = in[1];
__m256i a2 = in[2];
__m256i a3 = in[3];
__m256i a4 = in[4];
__m256i a5 = in[5];
__m256i a6 = in[6];
__m256i a7 = in[7];
__m256i b0 = _mm256_add_epi16(a0, a1);
__m256i b1 = _mm256_sub_epi16(a0, a1);
__m256i b2 = _mm256_add_epi16(a2, a3);
__m256i b3 = _mm256_sub_epi16(a2, a3);
__m256i b4 = _mm256_add_epi16(a4, a5);
__m256i b5 = _mm256_sub_epi16(a4, a5);
__m256i b6 = _mm256_add_epi16(a6, a7);
__m256i b7 = _mm256_sub_epi16(a6, a7);
a0 = _mm256_add_epi16(b0, b2);
a1 = _mm256_add_epi16(b1, b3);
a2 = _mm256_sub_epi16(b0, b2);
a3 = _mm256_sub_epi16(b1, b3);
a4 = _mm256_add_epi16(b4, b6);
a5 = _mm256_add_epi16(b5, b7);
a6 = _mm256_sub_epi16(b4, b6);
a7 = _mm256_sub_epi16(b5, b7);
if (iter == 0) {
b0 = _mm256_add_epi16(a0, a4);
b7 = _mm256_add_epi16(a1, a5);
b3 = _mm256_add_epi16(a2, a6);
b4 = _mm256_add_epi16(a3, a7);
b2 = _mm256_sub_epi16(a0, a4);
b6 = _mm256_sub_epi16(a1, a5);
b1 = _mm256_sub_epi16(a2, a6);
b5 = _mm256_sub_epi16(a3, a7);
a0 = _mm256_unpacklo_epi16(b0, b1);
a1 = _mm256_unpacklo_epi16(b2, b3);
a2 = _mm256_unpackhi_epi16(b0, b1);
a3 = _mm256_unpackhi_epi16(b2, b3);
a4 = _mm256_unpacklo_epi16(b4, b5);
a5 = _mm256_unpacklo_epi16(b6, b7);
a6 = _mm256_unpackhi_epi16(b4, b5);
a7 = _mm256_unpackhi_epi16(b6, b7);
b0 = _mm256_unpacklo_epi32(a0, a1);
b1 = _mm256_unpacklo_epi32(a4, a5);
b2 = _mm256_unpackhi_epi32(a0, a1);
b3 = _mm256_unpackhi_epi32(a4, a5);
b4 = _mm256_unpacklo_epi32(a2, a3);
b5 = _mm256_unpacklo_epi32(a6, a7);
b6 = _mm256_unpackhi_epi32(a2, a3);
b7 = _mm256_unpackhi_epi32(a6, a7);
in[0] = _mm256_unpacklo_epi64(b0, b1);
in[1] = _mm256_unpackhi_epi64(b0, b1);
in[2] = _mm256_unpacklo_epi64(b2, b3);
in[3] = _mm256_unpackhi_epi64(b2, b3);
in[4] = _mm256_unpacklo_epi64(b4, b5);
in[5] = _mm256_unpackhi_epi64(b4, b5);
in[6] = _mm256_unpacklo_epi64(b6, b7);
in[7] = _mm256_unpackhi_epi64(b6, b7);
} else {
in[0] = _mm256_add_epi16(a0, a4);
in[7] = _mm256_add_epi16(a1, a5);
in[3] = _mm256_add_epi16(a2, a6);
in[4] = _mm256_add_epi16(a3, a7);
in[2] = _mm256_sub_epi16(a0, a4);
in[6] = _mm256_sub_epi16(a1, a5);
in[1] = _mm256_sub_epi16(a2, a6);
in[5] = _mm256_sub_epi16(a3, a7);
}
}
void aom_hadamard_lp_8x8_dual_avx2(const int16_t *src_diff,
ptrdiff_t src_stride, int16_t *coeff) {
__m256i src[8];
src[0] = _mm256_loadu_si256((const __m256i *)src_diff);
src[1] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[2] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[3] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[4] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[5] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[6] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride));
src[7] = _mm256_loadu_si256((const __m256i *)(src_diff + src_stride));
hadamard_col8x2_avx2(src, 0);
hadamard_col8x2_avx2(src, 1);
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[0], src[1], 0x20));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[2], src[3], 0x20));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[4], src[5], 0x20));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[6], src[7], 0x20));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[0], src[1], 0x31));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[2], src[3], 0x31));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[4], src[5], 0x31));
coeff += 16;
_mm256_storeu_si256((__m256i *)coeff,
_mm256_permute2x128_si256(src[6], src[7], 0x31));
}
static inline void hadamard_16x16_avx2(const int16_t *src_diff,
ptrdiff_t src_stride, tran_low_t *coeff,
int is_final) {
DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]);
int16_t *t_coeff = temp_coeff;
int16_t *coeff16 = (int16_t *)coeff;
int idx;
for (idx = 0; idx < 2; ++idx) {
const int16_t *src_ptr = src_diff + idx * 8 * src_stride;
aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride,
t_coeff + (idx * 64 * 2));
}
for (idx = 0; idx < 64; idx += 16) {
const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64));
const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128));
const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192));
__m256i b0 = _mm256_add_epi16(coeff0, coeff1);
__m256i b1 = _mm256_sub_epi16(coeff0, coeff1);
__m256i b2 = _mm256_add_epi16(coeff2, coeff3);
__m256i b3 = _mm256_sub_epi16(coeff2, coeff3);
b0 = _mm256_srai_epi16(b0, 1);
b1 = _mm256_srai_epi16(b1, 1);
b2 = _mm256_srai_epi16(b2, 1);
b3 = _mm256_srai_epi16(b3, 1);
if (is_final) {
store_tran_low(_mm256_add_epi16(b0, b2), coeff);
store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64);
store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128);
store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192);
coeff += 16;
} else {
_mm256_storeu_si256((__m256i *)coeff16, _mm256_add_epi16(b0, b2));
_mm256_storeu_si256((__m256i *)(coeff16 + 64), _mm256_add_epi16(b1, b3));
_mm256_storeu_si256((__m256i *)(coeff16 + 128), _mm256_sub_epi16(b0, b2));
_mm256_storeu_si256((__m256i *)(coeff16 + 192), _mm256_sub_epi16(b1, b3));
coeff16 += 16;
}
t_coeff += 16;
}
}
void aom_hadamard_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
hadamard_16x16_avx2(src_diff, src_stride, coeff, 1);
}
void aom_hadamard_lp_16x16_avx2(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
int16_t *t_coeff = coeff;
for (int idx = 0; idx < 2; ++idx) {
const int16_t *src_ptr = src_diff + idx * 8 * src_stride;
aom_hadamard_lp_8x8_dual_avx2(src_ptr, src_stride,
t_coeff + (idx * 64 * 2));
}
for (int idx = 0; idx < 64; idx += 16) {
const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64));
const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128));
const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192));
__m256i b0 = _mm256_add_epi16(coeff0, coeff1);
__m256i b1 = _mm256_sub_epi16(coeff0, coeff1);
__m256i b2 = _mm256_add_epi16(coeff2, coeff3);
__m256i b3 = _mm256_sub_epi16(coeff2, coeff3);
b0 = _mm256_srai_epi16(b0, 1);
b1 = _mm256_srai_epi16(b1, 1);
b2 = _mm256_srai_epi16(b2, 1);
b3 = _mm256_srai_epi16(b3, 1);
_mm256_storeu_si256((__m256i *)coeff, _mm256_add_epi16(b0, b2));
_mm256_storeu_si256((__m256i *)(coeff + 64), _mm256_add_epi16(b1, b3));
_mm256_storeu_si256((__m256i *)(coeff + 128), _mm256_sub_epi16(b0, b2));
_mm256_storeu_si256((__m256i *)(coeff + 192), _mm256_sub_epi16(b1, b3));
coeff += 16;
t_coeff += 16;
}
}
void aom_hadamard_32x32_avx2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
// For high bitdepths, it is unnecessary to store_tran_low
// (mult/unpack/store), then load_tran_low (load/pack) the same memory in the
// next stage. Output to an intermediate buffer first, then store_tran_low()
// in the final stage.
DECLARE_ALIGNED(32, int16_t, temp_coeff[32 * 32]);
int16_t *t_coeff = temp_coeff;
int idx;
__m256i coeff0_lo, coeff1_lo, coeff2_lo, coeff3_lo, b0_lo, b1_lo, b2_lo,
b3_lo;
__m256i coeff0_hi, coeff1_hi, coeff2_hi, coeff3_hi, b0_hi, b1_hi, b2_hi,
b3_hi;
__m256i b0, b1, b2, b3;
const __m256i zero = _mm256_setzero_si256();
for (idx = 0; idx < 4; ++idx) {
// src_diff: 9 bit, dynamic range [-255, 255]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
hadamard_16x16_avx2(src_ptr, src_stride,
(tran_low_t *)(t_coeff + idx * 256), 0);
}
for (idx = 0; idx < 256; idx += 16) {
const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256));
const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512));
const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768));
// Sign extend 16 bit to 32 bit.
sign_extend_16bit_to_32bit_avx2(coeff0, zero, &coeff0_lo, &coeff0_hi);
sign_extend_16bit_to_32bit_avx2(coeff1, zero, &coeff1_lo, &coeff1_hi);
sign_extend_16bit_to_32bit_avx2(coeff2, zero, &coeff2_lo, &coeff2_hi);
sign_extend_16bit_to_32bit_avx2(coeff3, zero, &coeff3_lo, &coeff3_hi);
b0_lo = _mm256_add_epi32(coeff0_lo, coeff1_lo);
b0_hi = _mm256_add_epi32(coeff0_hi, coeff1_hi);
b1_lo = _mm256_sub_epi32(coeff0_lo, coeff1_lo);
b1_hi = _mm256_sub_epi32(coeff0_hi, coeff1_hi);
b2_lo = _mm256_add_epi32(coeff2_lo, coeff3_lo);
b2_hi = _mm256_add_epi32(coeff2_hi, coeff3_hi);
b3_lo = _mm256_sub_epi32(coeff2_lo, coeff3_lo);
b3_hi = _mm256_sub_epi32(coeff2_hi, coeff3_hi);
b0_lo = _mm256_srai_epi32(b0_lo, 2);
b1_lo = _mm256_srai_epi32(b1_lo, 2);
b2_lo = _mm256_srai_epi32(b2_lo, 2);
b3_lo = _mm256_srai_epi32(b3_lo, 2);
b0_hi = _mm256_srai_epi32(b0_hi, 2);
b1_hi = _mm256_srai_epi32(b1_hi, 2);
b2_hi = _mm256_srai_epi32(b2_hi, 2);
b3_hi = _mm256_srai_epi32(b3_hi, 2);
b0 = _mm256_packs_epi32(b0_lo, b0_hi);
b1 = _mm256_packs_epi32(b1_lo, b1_hi);
b2 = _mm256_packs_epi32(b2_lo, b2_hi);
b3 = _mm256_packs_epi32(b3_lo, b3_hi);
store_tran_low(_mm256_add_epi16(b0, b2), coeff);
store_tran_low(_mm256_add_epi16(b1, b3), coeff + 256);
store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 512);
store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 768);
coeff += 16;
t_coeff += 16;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_hadamard_col8_avx2(__m256i *in, int iter) {
__m256i a0 = in[0];
__m256i a1 = in[1];
__m256i a2 = in[2];
__m256i a3 = in[3];
__m256i a4 = in[4];
__m256i a5 = in[5];
__m256i a6 = in[6];
__m256i a7 = in[7];
__m256i b0 = _mm256_add_epi32(a0, a1);
__m256i b1 = _mm256_sub_epi32(a0, a1);
__m256i b2 = _mm256_add_epi32(a2, a3);
__m256i b3 = _mm256_sub_epi32(a2, a3);
__m256i b4 = _mm256_add_epi32(a4, a5);
__m256i b5 = _mm256_sub_epi32(a4, a5);
__m256i b6 = _mm256_add_epi32(a6, a7);
__m256i b7 = _mm256_sub_epi32(a6, a7);
a0 = _mm256_add_epi32(b0, b2);
a1 = _mm256_add_epi32(b1, b3);
a2 = _mm256_sub_epi32(b0, b2);
a3 = _mm256_sub_epi32(b1, b3);
a4 = _mm256_add_epi32(b4, b6);
a5 = _mm256_add_epi32(b5, b7);
a6 = _mm256_sub_epi32(b4, b6);
a7 = _mm256_sub_epi32(b5, b7);
if (iter == 0) {
b0 = _mm256_add_epi32(a0, a4);
b7 = _mm256_add_epi32(a1, a5);
b3 = _mm256_add_epi32(a2, a6);
b4 = _mm256_add_epi32(a3, a7);
b2 = _mm256_sub_epi32(a0, a4);
b6 = _mm256_sub_epi32(a1, a5);
b1 = _mm256_sub_epi32(a2, a6);
b5 = _mm256_sub_epi32(a3, a7);
a0 = _mm256_unpacklo_epi32(b0, b1);
a1 = _mm256_unpacklo_epi32(b2, b3);
a2 = _mm256_unpackhi_epi32(b0, b1);
a3 = _mm256_unpackhi_epi32(b2, b3);
a4 = _mm256_unpacklo_epi32(b4, b5);
a5 = _mm256_unpacklo_epi32(b6, b7);
a6 = _mm256_unpackhi_epi32(b4, b5);
a7 = _mm256_unpackhi_epi32(b6, b7);
b0 = _mm256_unpacklo_epi64(a0, a1);
b1 = _mm256_unpacklo_epi64(a4, a5);
b2 = _mm256_unpackhi_epi64(a0, a1);
b3 = _mm256_unpackhi_epi64(a4, a5);
b4 = _mm256_unpacklo_epi64(a2, a3);
b5 = _mm256_unpacklo_epi64(a6, a7);
b6 = _mm256_unpackhi_epi64(a2, a3);
b7 = _mm256_unpackhi_epi64(a6, a7);
in[0] = _mm256_permute2x128_si256(b0, b1, 0x20);
in[1] = _mm256_permute2x128_si256(b0, b1, 0x31);
in[2] = _mm256_permute2x128_si256(b2, b3, 0x20);
in[3] = _mm256_permute2x128_si256(b2, b3, 0x31);
in[4] = _mm256_permute2x128_si256(b4, b5, 0x20);
in[5] = _mm256_permute2x128_si256(b4, b5, 0x31);
in[6] = _mm256_permute2x128_si256(b6, b7, 0x20);
in[7] = _mm256_permute2x128_si256(b6, b7, 0x31);
} else {
in[0] = _mm256_add_epi32(a0, a4);
in[7] = _mm256_add_epi32(a1, a5);
in[3] = _mm256_add_epi32(a2, a6);
in[4] = _mm256_add_epi32(a3, a7);
in[2] = _mm256_sub_epi32(a0, a4);
in[6] = _mm256_sub_epi32(a1, a5);
in[1] = _mm256_sub_epi32(a2, a6);
in[5] = _mm256_sub_epi32(a3, a7);
}
}
void aom_highbd_hadamard_8x8_avx2(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
__m128i src16[8];
__m256i src32[8];
src16[0] = _mm_loadu_si128((const __m128i *)src_diff);
src16[1] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[2] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[3] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[4] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[5] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[6] = _mm_loadu_si128((const __m128i *)(src_diff += src_stride));
src16[7] = _mm_loadu_si128((const __m128i *)(src_diff + src_stride));
src32[0] = _mm256_cvtepi16_epi32(src16[0]);
src32[1] = _mm256_cvtepi16_epi32(src16[1]);
src32[2] = _mm256_cvtepi16_epi32(src16[2]);
src32[3] = _mm256_cvtepi16_epi32(src16[3]);
src32[4] = _mm256_cvtepi16_epi32(src16[4]);
src32[5] = _mm256_cvtepi16_epi32(src16[5]);
src32[6] = _mm256_cvtepi16_epi32(src16[6]);
src32[7] = _mm256_cvtepi16_epi32(src16[7]);
highbd_hadamard_col8_avx2(src32, 0);
highbd_hadamard_col8_avx2(src32, 1);
_mm256_storeu_si256((__m256i *)coeff, src32[0]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[1]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[2]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[3]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[4]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[5]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[6]);
coeff += 8;
_mm256_storeu_si256((__m256i *)coeff, src32[7]);
}
void aom_highbd_hadamard_16x16_avx2(const int16_t *src_diff,
ptrdiff_t src_stride, tran_low_t *coeff) {
int idx;
tran_low_t *t_coeff = coeff;
for (idx = 0; idx < 4; ++idx) {
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
aom_highbd_hadamard_8x8_avx2(src_ptr, src_stride, t_coeff + idx * 64);
}
for (idx = 0; idx < 64; idx += 8) {
__m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
__m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64));
__m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128));
__m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192));
__m256i b0 = _mm256_add_epi32(coeff0, coeff1);
__m256i b1 = _mm256_sub_epi32(coeff0, coeff1);
__m256i b2 = _mm256_add_epi32(coeff2, coeff3);
__m256i b3 = _mm256_sub_epi32(coeff2, coeff3);
b0 = _mm256_srai_epi32(b0, 1);
b1 = _mm256_srai_epi32(b1, 1);
b2 = _mm256_srai_epi32(b2, 1);
b3 = _mm256_srai_epi32(b3, 1);
coeff0 = _mm256_add_epi32(b0, b2);
coeff1 = _mm256_add_epi32(b1, b3);
coeff2 = _mm256_sub_epi32(b0, b2);
coeff3 = _mm256_sub_epi32(b1, b3);
_mm256_storeu_si256((__m256i *)coeff, coeff0);
_mm256_storeu_si256((__m256i *)(coeff + 64), coeff1);
_mm256_storeu_si256((__m256i *)(coeff + 128), coeff2);
_mm256_storeu_si256((__m256i *)(coeff + 192), coeff3);
coeff += 8;
t_coeff += 8;
}
}
void aom_highbd_hadamard_32x32_avx2(const int16_t *src_diff,
ptrdiff_t src_stride, tran_low_t *coeff) {
int idx;
tran_low_t *t_coeff = coeff;
for (idx = 0; idx < 4; ++idx) {
const int16_t *src_ptr =
src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
aom_highbd_hadamard_16x16_avx2(src_ptr, src_stride, t_coeff + idx * 256);
}
for (idx = 0; idx < 256; idx += 8) {
__m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff);
__m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 256));
__m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 512));
__m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 768));
__m256i b0 = _mm256_add_epi32(coeff0, coeff1);
__m256i b1 = _mm256_sub_epi32(coeff0, coeff1);
__m256i b2 = _mm256_add_epi32(coeff2, coeff3);
__m256i b3 = _mm256_sub_epi32(coeff2, coeff3);
b0 = _mm256_srai_epi32(b0, 2);
b1 = _mm256_srai_epi32(b1, 2);
b2 = _mm256_srai_epi32(b2, 2);
b3 = _mm256_srai_epi32(b3, 2);
coeff0 = _mm256_add_epi32(b0, b2);
coeff1 = _mm256_add_epi32(b1, b3);
coeff2 = _mm256_sub_epi32(b0, b2);
coeff3 = _mm256_sub_epi32(b1, b3);
_mm256_storeu_si256((__m256i *)coeff, coeff0);
_mm256_storeu_si256((__m256i *)(coeff + 256), coeff1);
_mm256_storeu_si256((__m256i *)(coeff + 512), coeff2);
_mm256_storeu_si256((__m256i *)(coeff + 768), coeff3);
coeff += 8;
t_coeff += 8;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
int aom_satd_avx2(const tran_low_t *coeff, int length) {
__m256i accum = _mm256_setzero_si256();
int i;
for (i = 0; i < length; i += 8, coeff += 8) {
const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff);
const __m256i abs = _mm256_abs_epi32(src_line);
accum = _mm256_add_epi32(accum, abs);
}
{ // 32 bit horizontal add
const __m256i a = _mm256_srli_si256(accum, 8);
const __m256i b = _mm256_add_epi32(accum, a);
const __m256i c = _mm256_srli_epi64(b, 32);
const __m256i d = _mm256_add_epi32(b, c);
const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d),
_mm256_extractf128_si256(d, 1));
return _mm_cvtsi128_si32(accum_128);
}
}
int aom_satd_lp_avx2(const int16_t *coeff, int length) {
const __m256i one = _mm256_set1_epi16(1);
__m256i accum = _mm256_setzero_si256();
for (int i = 0; i < length; i += 16) {
const __m256i src_line = _mm256_loadu_si256((const __m256i *)coeff);
const __m256i abs = _mm256_abs_epi16(src_line);
const __m256i sum = _mm256_madd_epi16(abs, one);
accum = _mm256_add_epi32(accum, sum);
coeff += 16;
}
{ // 32 bit horizontal add
const __m256i a = _mm256_srli_si256(accum, 8);
const __m256i b = _mm256_add_epi32(accum, a);
const __m256i c = _mm256_srli_epi64(b, 32);
const __m256i d = _mm256_add_epi32(b, c);
const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d),
_mm256_extractf128_si256(d, 1));
return _mm_cvtsi128_si32(accum_128);
}
}
void aom_avg_8x8_quad_avx2(const uint8_t *s, int p, int x16_idx, int y16_idx,
int *avg) {
const uint8_t *s_y0 = s + y16_idx * p + x16_idx;
const uint8_t *s_y1 = s_y0 + 8 * p;
__m256i sum0, sum1, s0, s1, s2, s3, u0;
u0 = _mm256_setzero_si256();
s0 = _mm256_sad_epu8(yy_loadu2_128(s_y1, s_y0), u0);
s1 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + p, s_y0 + p), u0);
s2 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 2 * p, s_y0 + 2 * p), u0);
s3 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 3 * p, s_y0 + 3 * p), u0);
sum0 = _mm256_add_epi16(s0, s1);
sum1 = _mm256_add_epi16(s2, s3);
s0 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 4 * p, s_y0 + 4 * p), u0);
s1 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 5 * p, s_y0 + 5 * p), u0);
s2 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 6 * p, s_y0 + 6 * p), u0);
s3 = _mm256_sad_epu8(yy_loadu2_128(s_y1 + 7 * p, s_y0 + 7 * p), u0);
sum0 = _mm256_add_epi16(sum0, _mm256_add_epi16(s0, s1));
sum1 = _mm256_add_epi16(sum1, _mm256_add_epi16(s2, s3));
sum0 = _mm256_add_epi16(sum0, sum1);
// (avg + 32) >> 6
__m256i rounding = _mm256_set1_epi32(32);
sum0 = _mm256_add_epi32(sum0, rounding);
sum0 = _mm256_srli_epi32(sum0, 6);
__m128i lo = _mm256_castsi256_si128(sum0);
__m128i hi = _mm256_extracti128_si256(sum0, 1);
avg[0] = _mm_cvtsi128_si32(lo);
avg[1] = _mm_extract_epi32(lo, 2);
avg[2] = _mm_cvtsi128_si32(hi);
avg[3] = _mm_extract_epi32(hi, 2);
}
void aom_int_pro_row_avx2(int16_t *hbuf, const uint8_t *ref,
const int ref_stride, const int width,
const int height, int norm_factor) {
// SIMD implementation assumes width and height to be multiple of 16 and 2
// respectively. For any odd width or height, SIMD support needs to be added.
assert(width % 16 == 0 && height % 2 == 0);
if (width % 32 == 0) {
const __m256i zero = _mm256_setzero_si256();
for (int wd = 0; wd < width; wd += 32) {
const uint8_t *ref_tmp = ref + wd;
int16_t *hbuf_tmp = hbuf + wd;
__m256i s0 = zero;
__m256i s1 = zero;
int idx = 0;
do {
__m256i src_line = _mm256_loadu_si256((const __m256i *)ref_tmp);
__m256i t0 = _mm256_unpacklo_epi8(src_line, zero);
__m256i t1 = _mm256_unpackhi_epi8(src_line, zero);
s0 = _mm256_add_epi16(s0, t0);
s1 = _mm256_add_epi16(s1, t1);
ref_tmp += ref_stride;
src_line = _mm256_loadu_si256((const __m256i *)ref_tmp);
t0 = _mm256_unpacklo_epi8(src_line, zero);
t1 = _mm256_unpackhi_epi8(src_line, zero);
s0 = _mm256_add_epi16(s0, t0);
s1 = _mm256_add_epi16(s1, t1);
ref_tmp += ref_stride;
idx += 2;
} while (idx < height);
s0 = _mm256_srai_epi16(s0, norm_factor);
s1 = _mm256_srai_epi16(s1, norm_factor);
_mm_storeu_si128((__m128i *)(hbuf_tmp), _mm256_castsi256_si128(s0));
_mm_storeu_si128((__m128i *)(hbuf_tmp + 8), _mm256_castsi256_si128(s1));
_mm_storeu_si128((__m128i *)(hbuf_tmp + 16),
_mm256_extractf128_si256(s0, 1));
_mm_storeu_si128((__m128i *)(hbuf_tmp + 24),
_mm256_extractf128_si256(s1, 1));
}
} else if (width % 16 == 0) {
aom_int_pro_row_sse2(hbuf, ref, ref_stride, width, height, norm_factor);
}
}
static inline void load_from_src_buf(const uint8_t *ref1, __m256i *src,
const int stride) {
src[0] = _mm256_loadu_si256((const __m256i *)ref1);
src[1] = _mm256_loadu_si256((const __m256i *)(ref1 + stride));
src[2] = _mm256_loadu_si256((const __m256i *)(ref1 + (2 * stride)));
src[3] = _mm256_loadu_si256((const __m256i *)(ref1 + (3 * stride)));
}
#define CALC_TOT_SAD_AND_STORE \
/* r00 r10 x x r01 r11 x x | r02 r12 x x r03 r13 x x */ \
const __m256i r01 = _mm256_add_epi16(_mm256_slli_si256(r1, 2), r0); \
/* r00 r10 r20 x r01 r11 r21 x | r02 r12 r22 x r03 r13 r23 x */ \
const __m256i r012 = _mm256_add_epi16(_mm256_slli_si256(r2, 4), r01); \
/* r00 r10 r20 r30 r01 r11 r21 r31 | r02 r12 r22 r32 r03 r13 r23 r33 */ \
const __m256i result0 = _mm256_add_epi16(_mm256_slli_si256(r3, 6), r012); \
\
const __m128i results0 = _mm_add_epi16( \
_mm256_castsi256_si128(result0), _mm256_extractf128_si256(result0, 1)); \
const __m128i results1 = \
_mm_add_epi16(results0, _mm_srli_si128(results0, 8)); \
_mm_storel_epi64((__m128i *)vbuf, _mm_srli_epi16(results1, norm_factor));
static inline void aom_int_pro_col_16wd_avx2(int16_t *vbuf, const uint8_t *ref,
const int ref_stride,
const int height,
int norm_factor) {
const __m256i zero = _mm256_setzero_si256();
int ht = 0;
// Post sad operation, the data is present in lower 16-bit of each 64-bit lane
// and higher 16-bits are Zero. Here, we are processing 8 rows at a time to
// utilize the higher 16-bits efficiently.
do {
__m256i src_00 =
_mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref)));
src_00 = _mm256_inserti128_si256(
src_00, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 4)), 1);
__m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(ref + ref_stride * 1)));
src_01 = _mm256_inserti128_si256(
src_01, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 5)), 1);
__m256i src_10 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(ref + ref_stride * 2)));
src_10 = _mm256_inserti128_si256(
src_10, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 6)), 1);
__m256i src_11 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(ref + ref_stride * 3)));
src_11 = _mm256_inserti128_si256(
src_11, _mm_loadu_si128((const __m128i *)(ref + ref_stride * 7)), 1);
// s00 x x x s01 x x x | s40 x x x s41 x x x
const __m256i s0 = _mm256_sad_epu8(src_00, zero);
// s10 x x x s11 x x x | s50 x x x s51 x x x
const __m256i s1 = _mm256_sad_epu8(src_01, zero);
// s20 x x x s21 x x x | s60 x x x s61 x x x
const __m256i s2 = _mm256_sad_epu8(src_10, zero);
// s30 x x x s31 x x x | s70 x x x s71 x x x
const __m256i s3 = _mm256_sad_epu8(src_11, zero);
// s00 s10 x x x x x x | s40 s50 x x x x x x
const __m256i s0_lo = _mm256_unpacklo_epi16(s0, s1);
// s01 s11 x x x x x x | s41 s51 x x x x x x
const __m256i s0_hi = _mm256_unpackhi_epi16(s0, s1);
// s20 s30 x x x x x x | s60 s70 x x x x x x
const __m256i s1_lo = _mm256_unpacklo_epi16(s2, s3);
// s21 s31 x x x x x x | s61 s71 x x x x x x
const __m256i s1_hi = _mm256_unpackhi_epi16(s2, s3);
// s0 s1 x x x x x x | s4 s5 x x x x x x
const __m256i s0_add = _mm256_add_epi16(s0_lo, s0_hi);
// s2 s3 x x x x x x | s6 s7 x x x x x x
const __m256i s1_add = _mm256_add_epi16(s1_lo, s1_hi);
// s1 s1 s2 s3 s4 s5 s6 s7
const __m128i results = _mm256_castsi256_si128(
_mm256_permute4x64_epi64(_mm256_unpacklo_epi32(s0_add, s1_add), 0x08));
_mm_storeu_si128((__m128i *)vbuf, _mm_srli_epi16(results, norm_factor));
vbuf += 8;
ref += (ref_stride << 3);
ht += 8;
} while (ht < height);
}
void aom_int_pro_col_avx2(int16_t *vbuf, const uint8_t *ref,
const int ref_stride, const int width,
const int height, int norm_factor) {
assert(width % 16 == 0);
if (width == 128) {
const __m256i zero = _mm256_setzero_si256();
for (int ht = 0; ht < height; ht += 4) {
__m256i src[16];
// Load source data.
load_from_src_buf(ref, &src[0], ref_stride);
load_from_src_buf(ref + 32, &src[4], ref_stride);
load_from_src_buf(ref + 64, &src[8], ref_stride);
load_from_src_buf(ref + 96, &src[12], ref_stride);
// Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x
const __m256i s0 = _mm256_add_epi16(_mm256_sad_epu8(src[0], zero),
_mm256_sad_epu8(src[4], zero));
const __m256i s1 = _mm256_add_epi16(_mm256_sad_epu8(src[8], zero),
_mm256_sad_epu8(src[12], zero));
const __m256i r0 = _mm256_add_epi16(s0, s1);
// Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x
const __m256i s2 = _mm256_add_epi16(_mm256_sad_epu8(src[1], zero),
_mm256_sad_epu8(src[5], zero));
const __m256i s3 = _mm256_add_epi16(_mm256_sad_epu8(src[9], zero),
_mm256_sad_epu8(src[13], zero));
const __m256i r1 = _mm256_add_epi16(s2, s3);
// Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x
const __m256i s4 = _mm256_add_epi16(_mm256_sad_epu8(src[2], zero),
_mm256_sad_epu8(src[6], zero));
const __m256i s5 = _mm256_add_epi16(_mm256_sad_epu8(src[10], zero),
_mm256_sad_epu8(src[14], zero));
const __m256i r2 = _mm256_add_epi16(s4, s5);
// Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x
const __m256i s6 = _mm256_add_epi16(_mm256_sad_epu8(src[3], zero),
_mm256_sad_epu8(src[7], zero));
const __m256i s7 = _mm256_add_epi16(_mm256_sad_epu8(src[11], zero),
_mm256_sad_epu8(src[15], zero));
const __m256i r3 = _mm256_add_epi16(s6, s7);
CALC_TOT_SAD_AND_STORE
vbuf += 4;
ref += ref_stride << 2;
}
} else if (width == 64) {
const __m256i zero = _mm256_setzero_si256();
for (int ht = 0; ht < height; ht += 4) {
__m256i src[8];
// Load source data.
load_from_src_buf(ref, &src[0], ref_stride);
load_from_src_buf(ref + 32, &src[4], ref_stride);
// Row0 output: r00 x x x r01 x x x | r02 x x x r03 x x x
const __m256i s0 = _mm256_sad_epu8(src[0], zero);
const __m256i s1 = _mm256_sad_epu8(src[4], zero);
const __m256i r0 = _mm256_add_epi16(s0, s1);
// Row1 output: r10 x x x r11 x x x | r12 x x x r13 x x x
const __m256i s2 = _mm256_sad_epu8(src[1], zero);
const __m256i s3 = _mm256_sad_epu8(src[5], zero);
const __m256i r1 = _mm256_add_epi16(s2, s3);
// Row2 output: r20 x x x r21 x x x | r22 x x x r23 x x x
const __m256i s4 = _mm256_sad_epu8(src[2], zero);
const __m256i s5 = _mm256_sad_epu8(src[6], zero);
const __m256i r2 = _mm256_add_epi16(s4, s5);
// Row3 output: r30 x x x r31 x x x | r32 x x x r33 x x x
const __m256i s6 = _mm256_sad_epu8(src[3], zero);
const __m256i s7 = _mm256_sad_epu8(src[7], zero);
const __m256i r3 = _mm256_add_epi16(s6, s7);
CALC_TOT_SAD_AND_STORE
vbuf += 4;
ref += ref_stride << 2;
}
} else if (width == 32) {
assert(height % 2 == 0);
const __m256i zero = _mm256_setzero_si256();
for (int ht = 0; ht < height; ht += 4) {
__m256i src[4];
// Load source data.
load_from_src_buf(ref, &src[0], ref_stride);
// s00 x x x s01 x x x s02 x x x s03 x x x
const __m256i r0 = _mm256_sad_epu8(src[0], zero);
// s10 x x x s11 x x x s12 x x x s13 x x x
const __m256i r1 = _mm256_sad_epu8(src[1], zero);
// s20 x x x s21 x x x s22 x x x s23 x x x
const __m256i r2 = _mm256_sad_epu8(src[2], zero);
// s30 x x x s31 x x x s32 x x x s33 x x x
const __m256i r3 = _mm256_sad_epu8(src[3], zero);
CALC_TOT_SAD_AND_STORE
vbuf += 4;
ref += ref_stride << 2;
}
} else if (width == 16) {
aom_int_pro_col_16wd_avx2(vbuf, ref, ref_stride, height, norm_factor);
}
}
static inline void calc_vector_mean_sse_64wd(const int16_t *ref,
const int16_t *src, __m256i *mean,
__m256i *sse) {
const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16));
const __m256i src_line2 = _mm256_loadu_si256((const __m256i *)(src + 32));
const __m256i src_line3 = _mm256_loadu_si256((const __m256i *)(src + 48));
const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref);
const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16));
const __m256i ref_line2 = _mm256_loadu_si256((const __m256i *)(ref + 32));
const __m256i ref_line3 = _mm256_loadu_si256((const __m256i *)(ref + 48));
const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0);
const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1);
const __m256i diff2 = _mm256_sub_epi16(ref_line2, src_line2);
const __m256i diff3 = _mm256_sub_epi16(ref_line3, src_line3);
const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0);
const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1);
const __m256i diff_sqr2 = _mm256_madd_epi16(diff2, diff2);
const __m256i diff_sqr3 = _mm256_madd_epi16(diff3, diff3);
*mean = _mm256_add_epi16(*mean, _mm256_add_epi16(diff0, diff1));
*mean = _mm256_add_epi16(*mean, diff2);
*mean = _mm256_add_epi16(*mean, diff3);
*sse = _mm256_add_epi32(*sse, _mm256_add_epi32(diff_sqr0, diff_sqr1));
*sse = _mm256_add_epi32(*sse, diff_sqr2);
*sse = _mm256_add_epi32(*sse, diff_sqr3);
}
#define CALC_VAR_FROM_MEAN_SSE(mean, sse) \
{ \
mean = _mm256_madd_epi16(mean, _mm256_set1_epi16(1)); \
mean = _mm256_hadd_epi32(mean, sse); \
mean = _mm256_add_epi32(mean, _mm256_bsrli_epi128(mean, 4)); \
const __m128i result = _mm_add_epi32(_mm256_castsi256_si128(mean), \
_mm256_extractf128_si256(mean, 1)); \
/*(mean * mean): dynamic range 31 bits.*/ \
const int mean_int = _mm_extract_epi32(result, 0); \
const int sse_int = _mm_extract_epi32(result, 2); \
const unsigned int mean_abs = abs(mean_int); \
var = sse_int - ((mean_abs * mean_abs) >> (bwl + 2)); \
}
// ref: [0 - 510]
// src: [0 - 510]
// bwl: {2, 3, 4, 5}
int aom_vector_var_avx2(const int16_t *ref, const int16_t *src, int bwl) {
const int width = 4 << bwl;
assert(width % 16 == 0 && width <= 128);
int var = 0;
// Instead of having a loop over width 16, considered loop unrolling to avoid
// some addition operations.
if (width == 128) {
__m256i mean = _mm256_setzero_si256();
__m256i sse = _mm256_setzero_si256();
calc_vector_mean_sse_64wd(src, ref, &mean, &sse);
calc_vector_mean_sse_64wd(src + 64, ref + 64, &mean, &sse);
CALC_VAR_FROM_MEAN_SSE(mean, sse)
} else if (width == 64) {
__m256i mean = _mm256_setzero_si256();
__m256i sse = _mm256_setzero_si256();
calc_vector_mean_sse_64wd(src, ref, &mean, &sse);
CALC_VAR_FROM_MEAN_SSE(mean, sse)
} else if (width == 32) {
const __m256i src_line0 = _mm256_loadu_si256((const __m256i *)src);
const __m256i ref_line0 = _mm256_loadu_si256((const __m256i *)ref);
const __m256i src_line1 = _mm256_loadu_si256((const __m256i *)(src + 16));
const __m256i ref_line1 = _mm256_loadu_si256((const __m256i *)(ref + 16));
const __m256i diff0 = _mm256_sub_epi16(ref_line0, src_line0);
const __m256i diff1 = _mm256_sub_epi16(ref_line1, src_line1);
const __m256i diff_sqr0 = _mm256_madd_epi16(diff0, diff0);
const __m256i diff_sqr1 = _mm256_madd_epi16(diff1, diff1);
const __m256i sse = _mm256_add_epi32(diff_sqr0, diff_sqr1);
__m256i mean = _mm256_add_epi16(diff0, diff1);
CALC_VAR_FROM_MEAN_SSE(mean, sse)
} else if (width == 16) {
const __m256i src_line = _mm256_loadu_si256((const __m256i *)src);
const __m256i ref_line = _mm256_loadu_si256((const __m256i *)ref);
__m256i mean = _mm256_sub_epi16(ref_line, src_line);
const __m256i sse = _mm256_madd_epi16(mean, mean);
CALC_VAR_FROM_MEAN_SSE(mean, sse)
}
return var;
}