Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_dsp/x86/convolve_avx2.h"
#include "aom_dsp/x86/synonyms_avx2.h"
#include "aom_ports/mem.h"
#if defined(__clang__)
#if (__clang_major__ > 0 && __clang_major__ < 3) || \
(__clang_major__ == 3 && __clang_minor__ <= 3) || \
(defined(__APPLE__) && defined(__apple_build_version__) && \
((__clang_major__ == 4 && __clang_minor__ <= 2) || \
(__clang_major__ == 5 && __clang_minor__ == 0)))
#define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
#else // clang > 3.3, and not 5.0 on macosx.
#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
#endif // clang <= 3.3
#elif defined(__GNUC__)
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
#define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
#elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
#define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
#else // gcc > 4.7
#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
#endif // gcc <= 4.6
#else // !(gcc || clang)
#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
#endif // __clang__
static inline void xx_storeu2_epi32(const uint8_t *output_ptr,
const ptrdiff_t stride, const __m256i *a) {
*((int *)(output_ptr)) = _mm_cvtsi128_si32(_mm256_castsi256_si128(*a));
*((int *)(output_ptr + stride)) =
_mm_cvtsi128_si32(_mm256_extracti128_si256(*a, 1));
}
static inline __m256i xx_loadu2_epi64(const void *hi, const void *lo) {
__m256i a = _mm256_castsi128_si256(_mm_loadl_epi64((const __m128i *)(lo)));
a = _mm256_inserti128_si256(a, _mm_loadl_epi64((const __m128i *)(hi)), 1);
return a;
}
static inline void xx_storeu2_epi64(const uint8_t *output_ptr,
const ptrdiff_t stride, const __m256i *a) {
_mm_storel_epi64((__m128i *)output_ptr, _mm256_castsi256_si128(*a));
_mm_storel_epi64((__m128i *)(output_ptr + stride),
_mm256_extractf128_si256(*a, 1));
}
static inline void xx_store2_mi128(const uint8_t *output_ptr,
const ptrdiff_t stride, const __m256i *a) {
_mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(*a));
_mm_store_si128((__m128i *)(output_ptr + stride),
_mm256_extractf128_si256(*a, 1));
}
static void aom_filter_block1d4_h4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
firstFilters =
_mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u));
filt1Reg = _mm256_load_si256((__m256i const *)(filt4_d4_global_avx2));
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b1_1 =
_mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 =
_mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
src_ptr += src_stride;
xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 4 bytes
if (i > 0) {
__m128i srcReg1, srcRegFilt1_1;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt1_1 =
_mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128());
// shift by 6 bit each 16 bit
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
// save 4 bytes
*((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1);
}
}
static void aom_filter_block1d4_h8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt1Reg, filt2Reg;
__m256i firstFilters, secondFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2;
__m256i srcReg32b1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 32 bits
firstFilters = _mm256_shuffle_epi32(filtersReg32, 0);
// duplicate only the second 32 bits
secondFilters = _mm256_shuffle_epi32(filtersReg32, 0x55);
filt1Reg = _mm256_load_si256((__m256i const *)filt_d4_global_avx2);
filt2Reg = _mm256_load_si256((__m256i const *)(filt_d4_global_avx2 + 32));
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
// filter the source buffer
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
srcRegFilt32b1_1 =
_mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 =
_mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
src_ptr += src_stride;
xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 4 bytes
if (i > 0) {
__m128i srcReg1, srcRegFilt1_1;
__m128i srcRegFilt2;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt1_1 =
_mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
// filter the source buffer
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
// multiply 4 adjacent elements with the filter and add the result
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters));
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128());
// shift by 6 bit each 16 bit
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
// save 4 bytes
*((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1);
}
}
static void aom_filter_block1d8_h4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt2Reg, filt3Reg;
__m256i secondFilters, thirdFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1, filtersReg32;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
// multiply the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits
srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b1_1);
src_ptr += src_stride;
xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 8 bytes
if (i > 0) {
__m128i srcReg1, srcRegFilt1_1;
__m128i srcRegFilt2, srcRegFilt3;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
// filter the source buffer
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters));
srcRegFilt3 =
_mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt2, srcRegFilt3);
// shift by 6 bit each 16 bit
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
// shrink to 8 bit each 16 bits
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
// save 8 bytes
_mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1);
}
}
static void aom_filter_block1d8_h8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2);
filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
__m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 =
_mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
src_ptr += src_stride;
xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 8 bytes
if (i > 0) {
__m128i srcReg1, srcRegFilt1_1;
__m128i srcRegFilt2, srcRegFilt3;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1_1 =
_mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 =
_mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
// shift by 6 bit each 16 bit
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
// save 8 bytes
_mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1);
}
}
static void aom_filter_block1d16_h4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt2Reg, filt3Reg;
__m256i secondFilters, thirdFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1, srcReg32b2, filtersReg32;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
// multiply the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// reading 2 strides of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
src_ptr += src_stride;
xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
__m256i srcReg1, srcReg12;
__m256i srcRegFilt2, srcRegFilt3, srcRegFilt1_1;
srcReg1 = _mm256_loadu_si256((const __m256i *)(src_ptr));
srcReg12 = _mm256_permute4x64_epi64(srcReg1, 0x94);
// filter the source buffer
srcRegFilt2 = _mm256_shuffle_epi8(srcReg12, filt2Reg);
srcRegFilt3 = _mm256_shuffle_epi8(srcReg12, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2 = _mm256_maddubs_epi16(srcRegFilt2, secondFilters);
srcRegFilt3 = _mm256_maddubs_epi16(srcRegFilt3, thirdFilters);
// add and saturate the results together
srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt2, srcRegFilt3);
// shift by 6 bit each 16 bit
srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt1_1, addFilterReg32);
srcRegFilt1_1 = _mm256_srai_epi16(srcRegFilt1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm256_packus_epi16(srcRegFilt1_1, srcRegFilt1_1);
srcRegFilt1_1 = _mm256_permute4x64_epi64(srcRegFilt1_1, 0x8);
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr,
_mm256_castsi256_si128(srcRegFilt1_1));
}
}
static void aom_filter_block1d16_h8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1, srcReg32b2, filtersReg32;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
src_ptr -= 3;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2);
filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i -= 2) {
// load the 2 strides of source
srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
// filter the source buffer
srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
__m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23);
// reading 2 strides of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8);
// filter the source buffer
srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(
srcRegFilt32b2_1, _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2));
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
src_ptr += src_stride;
xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1);
output_ptr += dst_stride;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
__m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
__m128i srcRegFilt2, srcRegFilt3;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1_1 =
_mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 =
_mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
// reading the next 16 bytes
// (part of it was being read by earlier read)
srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
// filter the source buffer
srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2_1 =
_mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 =
_mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
srcRegFilt2 =
_mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt2_1 =
_mm_adds_epi16(srcRegFilt2_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
// shift by 6 bit each 16 bit
srcRegFilt1_1 =
_mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
srcRegFilt2_1 =
_mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, srcRegFilt1_1);
}
}
static void aom_filter_block1d8_v4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i filtersReg32, addFilterReg32;
__m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
__m256i srcReg23_34_lo, srcReg45_56_lo;
__m256i resReg23_34_lo, resReg45_56_lo;
__m256i resReglo, resReg;
__m256i secondFilters, thirdFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
srcReg4x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)));
// have consecutive loads on the same 256 register
srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
for (i = output_height; i > 1; i -= 2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg5x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)));
srcReg45 =
_mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
srcReg6x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
srcReg56 =
_mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
// merge every two consecutive registers
srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
// multiply 2 adjacent elements with the filter and add the result
resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters);
resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters);
// add and saturate the results together
resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo);
// shift by 6 bit each 16 bit
resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
resReglo = _mm256_srai_epi16(resReglo, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg = _mm256_packus_epi16(resReglo, resReglo);
src_ptr += src_stride;
xx_storeu2_epi64(output_ptr, out_pitch, &resReg);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23_34_lo = srcReg45_56_lo;
srcReg4x = srcReg6x;
}
}
static void aom_filter_block1d8_v8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32;
__m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
__m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
__m256i srcReg32b11, srcReg32b12, filtersReg32;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
// load 16 bytes 7 times in stride of src_pitch
srcReg32b1 = xx_loadu2_epi64(src_ptr + src_pitch, src_ptr);
srcReg32b3 =
xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
srcReg32b5 =
xx_loadu2_epi64(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4);
srcReg32b7 = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
// have each consecutive loads on the same 256 register
srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21);
srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21);
srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21);
// merge every two consecutive registers except the last one
srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
for (i = output_height; i > 1; i -= 2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg32b8 = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)));
srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
_mm256_castsi256_si128(srcReg32b8), 1);
srcReg32b9 = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 8)));
srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
_mm256_castsi256_si128(srcReg32b9), 1);
// merge every two consecutive registers
// save
srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_adds_epi16(srcReg32b8, srcReg32b12));
// shift by 6 bit each 16 bit
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32);
srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcReg32b1 = _mm256_packus_epi16(srcReg32b10, _mm256_setzero_si256());
src_ptr += src_stride;
xx_storeu2_epi64(output_ptr, out_pitch, &srcReg32b1);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg32b10 = srcReg32b11;
srcReg32b11 = srcReg32b2;
srcReg32b2 = srcReg32b4;
srcReg32b7 = srcReg32b9;
}
if (i > 0) {
__m128i srcRegFilt1, srcRegFilt4, srcRegFilt6, srcRegFilt8;
// load the last 16 bytes
srcRegFilt8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
// merge the last 2 results together
srcRegFilt4 =
_mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
_mm256_castsi256_si128(firstFilters));
srcRegFilt4 =
_mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
_mm256_castsi256_si128(secondFilters));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1 =
_mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6));
// shift by 6 bit each 16 bit
srcRegFilt1 =
_mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, _mm_setzero_si128());
// save 8 bytes
_mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1);
}
}
static void aom_filter_block1d16_v4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i filtersReg32, addFilterReg32;
__m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
__m256i srcReg23_34_lo, srcReg23_34_hi, srcReg45_56_lo, srcReg45_56_hi;
__m256i resReg23_34_lo, resReg23_34_hi, resReg45_56_lo, resReg45_56_hi;
__m256i resReglo, resReghi, resReg;
__m256i secondFilters, thirdFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg23 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
srcReg4x = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
// have consecutive loads on the same 256 register
srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
srcReg23_34_hi = _mm256_unpackhi_epi8(srcReg23, srcReg34);
for (i = output_height; i > 1; i -= 2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg5x = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
srcReg45 =
_mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
srcReg6x = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
srcReg56 =
_mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
// merge every two consecutive registers
srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
srcReg45_56_hi = _mm256_unpackhi_epi8(srcReg45, srcReg56);
// multiply 2 adjacent elements with the filter and add the result
resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters);
resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters);
// add and saturate the results together
resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo);
// multiply 2 adjacent elements with the filter and add the result
resReg23_34_hi = _mm256_maddubs_epi16(srcReg23_34_hi, secondFilters);
resReg45_56_hi = _mm256_maddubs_epi16(srcReg45_56_hi, thirdFilters);
// add and saturate the results together
resReghi = _mm256_adds_epi16(resReg23_34_hi, resReg45_56_hi);
// shift by 6 bit each 16 bit
resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
resReghi = _mm256_adds_epi16(resReghi, addFilterReg32);
resReglo = _mm256_srai_epi16(resReglo, 6);
resReghi = _mm256_srai_epi16(resReghi, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg = _mm256_packus_epi16(resReglo, resReghi);
src_ptr += src_stride;
xx_store2_mi128(output_ptr, out_pitch, &resReg);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23_34_lo = srcReg45_56_lo;
srcReg23_34_hi = srcReg45_56_hi;
srcReg4x = srcReg6x;
}
}
static void aom_filter_block1d16_v8_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg32;
__m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
__m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
__m256i srcReg32b11, srcReg32b12, filtersReg32;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
// load 16 bytes 7 times in stride of src_pitch
srcReg32b1 = yy_loadu2_128(src_ptr + src_pitch, src_ptr);
srcReg32b3 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
srcReg32b5 = yy_loadu2_128(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4);
srcReg32b7 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
// have each consecutive loads on the same 256 register
srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21);
srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21);
srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21);
// merge every two consecutive registers except the last one
srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
// save
srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
for (i = output_height; i > 1; i -= 2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg32b8 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
_mm256_castsi256_si128(srcReg32b8), 1);
srcReg32b9 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
_mm256_castsi256_si128(srcReg32b9), 1);
// merge every two consecutive registers
// save
srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_adds_epi16(srcReg32b8, srcReg32b12));
// multiply 2 adjacent elements with the filter and add the result
srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
// add and saturate the results together
srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
_mm256_adds_epi16(srcReg32b8, srcReg32b12));
// shift by 6 bit each 16 bit
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg32);
srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6);
srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
src_ptr += src_stride;
xx_store2_mi128(output_ptr, out_pitch, &srcReg32b1);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg32b10 = srcReg32b11;
srcReg32b1 = srcReg32b3;
srcReg32b11 = srcReg32b2;
srcReg32b3 = srcReg32b5;
srcReg32b2 = srcReg32b4;
srcReg32b5 = srcReg32b7;
srcReg32b7 = srcReg32b9;
}
if (i > 0) {
__m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
__m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
// load the last 16 bytes
srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
// merge the last 2 results together
srcRegFilt4 =
_mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
srcRegFilt7 =
_mm_unpackhi_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
_mm256_castsi256_si128(firstFilters));
srcRegFilt4 =
_mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters));
srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
_mm256_castsi256_si128(firstFilters));
srcRegFilt7 =
_mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
_mm256_castsi256_si128(secondFilters));
srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
_mm256_castsi256_si128(secondFilters));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
_mm256_castsi256_si128(thirdFilters));
srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1 =
_mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6));
srcRegFilt3 =
_mm_adds_epi16(srcRegFilt3, _mm_adds_epi16(srcRegFilt5, srcRegFilt7));
// shift by 6 bit each 16 bit
srcRegFilt1 =
_mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt3 =
_mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg32));
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6);
srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
// save 16 bytes
_mm_store_si128((__m128i *)output_ptr, srcRegFilt1);
}
}
static void aom_filter_block1d4_v4_avx2(
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
__m128i filtersReg;
__m256i filtersReg32, addFilterReg32;
__m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
__m256i srcReg23_34_lo, srcReg45_56_lo;
__m256i srcReg2345_3456_lo;
__m256i resReglo, resReg;
__m256i firstFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm256_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg = _mm_srai_epi16(filtersReg, 1);
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
firstFilters =
_mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
srcReg4x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)));
// have consecutive loads on the same 256 register
srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
for (i = output_height; i > 1; i -= 2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg5x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)));
srcReg45 =
_mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
srcReg6x = _mm256_castsi128_si256(
_mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
srcReg56 =
_mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
// merge every two consecutive registers
srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
srcReg2345_3456_lo = _mm256_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo);
// multiply 2 adjacent elements with the filter and add the result
resReglo = _mm256_maddubs_epi16(srcReg2345_3456_lo, firstFilters);
resReglo = _mm256_hadds_epi16(resReglo, _mm256_setzero_si256());
// shift by 6 bit each 16 bit
resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
resReglo = _mm256_srai_epi16(resReglo, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg = _mm256_packus_epi16(resReglo, resReglo);
src_ptr += src_stride;
xx_storeu2_epi32(output_ptr, out_pitch, &resReg);
output_ptr += dst_stride;
// save part of the registers for next strides
srcReg23_34_lo = srcReg45_56_lo;
srcReg4x = srcReg6x;
}
}
#if HAVE_AVX2 && HAVE_SSSE3
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
filter8_1dfunction aom_filter_block1d16_v2_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_ssse3;
#define aom_filter_block1d4_v8_avx2 aom_filter_block1d4_v8_ssse3
#define aom_filter_block1d16_v2_avx2 aom_filter_block1d16_v2_ssse3
#define aom_filter_block1d16_h2_avx2 aom_filter_block1d16_h2_ssse3
#define aom_filter_block1d8_v2_avx2 aom_filter_block1d8_v2_ssse3
#define aom_filter_block1d8_h2_avx2 aom_filter_block1d8_h2_ssse3
#define aom_filter_block1d4_v2_avx2 aom_filter_block1d4_v2_ssse3
#define aom_filter_block1d4_h2_avx2 aom_filter_block1d4_h2_ssse3
// void aom_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void aom_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2)
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2)
#endif // HAVE_AX2 && HAVE_SSSE3