Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/bitdepth_conversion_sse2.h"
#include "aom_dsp/x86/quantize_x86.h"
static inline void calculate_dqcoeff_and_store(__m128i qcoeff, __m128i dequant,
tran_low_t *dqcoeff) {
const __m128i low = _mm_mullo_epi16(qcoeff, dequant);
const __m128i high = _mm_mulhi_epi16(qcoeff, dequant);
const __m128i dqcoeff32_0 = _mm_unpacklo_epi16(low, high);
const __m128i dqcoeff32_1 = _mm_unpackhi_epi16(low, high);
_mm_store_si128((__m128i *)(dqcoeff), dqcoeff32_0);
_mm_store_si128((__m128i *)(dqcoeff + 4), dqcoeff32_1);
}
void aom_quantize_b_avx(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const int16_t *iscan) {
const __m128i zero = _mm_setzero_si128();
const __m256i big_zero = _mm256_setzero_si256();
int index;
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i eob = zero, eob0;
(void)scan;
*eob_ptr = 0;
load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant,
dequant_ptr, &dequant, quant_shift_ptr, &shift);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero);
if (n_coeffs == 16) return;
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff(&qcoeff0, round, quant, shift);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
// Reinsert signs
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
calculate_dqcoeff_and_store(qcoeff0, dequant, dqcoeff_ptr);
dequant = _mm_unpackhi_epi64(dequant, dequant);
calculate_dqcoeff_and_store(qcoeff1, dequant, dqcoeff_ptr + 8);
eob =
scan_for_eob(&qcoeff0, &qcoeff1, cmp_mask0, cmp_mask1, iscan, 0, zero);
}
// AC only loop.
for (index = 16; index < n_coeffs; index += 16) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero);
continue;
}
calculate_qcoeff(&qcoeff0, round, quant, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
calculate_dqcoeff_and_store(qcoeff0, dequant, dqcoeff_ptr + index);
calculate_dqcoeff_and_store(qcoeff1, dequant, dqcoeff_ptr + index + 8);
eob0 = scan_for_eob(&qcoeff0, &qcoeff1, cmp_mask0, cmp_mask1, iscan, index,
zero);
eob = _mm_max_epi16(eob, eob0);
}
*eob_ptr = accumulate_eob(eob);
}
void aom_quantize_b_32x32_avx(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m256i big_zero = _mm256_setzero_si256();
int index;
const int log_scale = 1;
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i eob = zero, eob0;
(void)scan;
// Setup global values.
// The 32x32 halves zbin and round.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
// Shift with rounding.
zbin = _mm_add_epi16(zbin, one);
zbin = _mm_srli_epi16(zbin, 1);
// x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so
// it is a strict "greater" comparison.
zbin = _mm_sub_epi16(zbin, one);
round = _mm_load_si128((const __m128i *)round_ptr);
round = _mm_add_epi16(round, one);
round = _mm_srli_epi16(round, 1);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC.
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
// Mask out zbin threshold coeffs.
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero, dqcoeff_ptr,
&log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + 8, &log_scale);
eob =
scan_for_eob(&qcoeff0, &qcoeff1, cmp_mask0, cmp_mask1, iscan, 0, zero);
}
// AC only loop.
for (index = 16; index < n_coeffs; index += 16) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero);
continue;
}
calculate_qcoeff_log_scale(&qcoeff0, round, quant, &shift, &log_scale);
calculate_qcoeff_log_scale(&qcoeff1, round, quant, &shift, &log_scale);
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
calculate_dqcoeff_and_store_log_scale(qcoeff0, dequant, zero,
dqcoeff_ptr + index, &log_scale);
calculate_dqcoeff_and_store_log_scale(qcoeff1, dequant, zero,
dqcoeff_ptr + index + 8, &log_scale);
eob0 = scan_for_eob(&qcoeff0, &qcoeff1, cmp_mask0, cmp_mask1, iscan, index,
zero);
eob = _mm_max_epi16(eob, eob0);
}
*eob_ptr = accumulate_eob(eob);
}