Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
static inline uint64_t aom_sum_squares_2d_i16_4x4_neon(const int16_t *src,
int stride) {
int16x4_t s0 = vld1_s16(src + 0 * stride);
int16x4_t s1 = vld1_s16(src + 1 * stride);
int16x4_t s2 = vld1_s16(src + 2 * stride);
int16x4_t s3 = vld1_s16(src + 3 * stride);
int32x4_t sum_squares = vmull_s16(s0, s0);
sum_squares = vmlal_s16(sum_squares, s1, s1);
sum_squares = vmlal_s16(sum_squares, s2, s2);
sum_squares = vmlal_s16(sum_squares, s3, s3);
return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sum_squares));
}
static inline uint64_t aom_sum_squares_2d_i16_4xn_neon(const int16_t *src,
int stride, int height) {
int32x4_t sum_squares[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int h = height;
do {
int16x4_t s0 = vld1_s16(src + 0 * stride);
int16x4_t s1 = vld1_s16(src + 1 * stride);
int16x4_t s2 = vld1_s16(src + 2 * stride);
int16x4_t s3 = vld1_s16(src + 3 * stride);
sum_squares[0] = vmlal_s16(sum_squares[0], s0, s0);
sum_squares[0] = vmlal_s16(sum_squares[0], s1, s1);
sum_squares[1] = vmlal_s16(sum_squares[1], s2, s2);
sum_squares[1] = vmlal_s16(sum_squares[1], s3, s3);
src += 4 * stride;
h -= 4;
} while (h != 0);
return horizontal_long_add_u32x4(
vreinterpretq_u32_s32(vaddq_s32(sum_squares[0], sum_squares[1])));
}
static inline uint64_t aom_sum_squares_2d_i16_nxn_neon(const int16_t *src,
int stride, int width,
int height) {
uint64x2_t sum_squares = vdupq_n_u64(0);
int h = height;
do {
int32x4_t ss_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int w = 0;
do {
const int16_t *s = src + w;
int16x8_t s0 = vld1q_s16(s + 0 * stride);
int16x8_t s1 = vld1q_s16(s + 1 * stride);
int16x8_t s2 = vld1q_s16(s + 2 * stride);
int16x8_t s3 = vld1q_s16(s + 3 * stride);
ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s0), vget_low_s16(s0));
ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s1), vget_low_s16(s1));
ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s2), vget_low_s16(s2));
ss_row[0] = vmlal_s16(ss_row[0], vget_low_s16(s3), vget_low_s16(s3));
ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s0), vget_high_s16(s0));
ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s1), vget_high_s16(s1));
ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s2), vget_high_s16(s2));
ss_row[1] = vmlal_s16(ss_row[1], vget_high_s16(s3), vget_high_s16(s3));
w += 8;
} while (w < width);
sum_squares = vpadalq_u32(
sum_squares, vreinterpretq_u32_s32(vaddq_s32(ss_row[0], ss_row[1])));
src += 4 * stride;
h -= 4;
} while (h != 0);
return horizontal_add_u64x2(sum_squares);
}
uint64_t aom_sum_squares_2d_i16_neon(const int16_t *src, int stride, int width,
int height) {
// 4 elements per row only requires half an SIMD register, so this
// must be a special case, but also note that over 75% of all calls
// are with size == 4, so it is also the common case.
if (LIKELY(width == 4 && height == 4)) {
return aom_sum_squares_2d_i16_4x4_neon(src, stride);
} else if (LIKELY(width == 4 && (height & 3) == 0)) {
return aom_sum_squares_2d_i16_4xn_neon(src, stride, height);
} else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
// Generic case
return aom_sum_squares_2d_i16_nxn_neon(src, stride, width, height);
} else {
return aom_sum_squares_2d_i16_c(src, stride, width, height);
}
}
static inline uint64_t aom_sum_sse_2d_i16_4x4_neon(const int16_t *src,
int stride, int *sum) {
int16x4_t s0 = vld1_s16(src + 0 * stride);
int16x4_t s1 = vld1_s16(src + 1 * stride);
int16x4_t s2 = vld1_s16(src + 2 * stride);
int16x4_t s3 = vld1_s16(src + 3 * stride);
int32x4_t sse = vmull_s16(s0, s0);
sse = vmlal_s16(sse, s1, s1);
sse = vmlal_s16(sse, s2, s2);
sse = vmlal_s16(sse, s3, s3);
int32x4_t sum_01 = vaddl_s16(s0, s1);
int32x4_t sum_23 = vaddl_s16(s2, s3);
*sum += horizontal_add_s32x4(vaddq_s32(sum_01, sum_23));
return horizontal_long_add_u32x4(vreinterpretq_u32_s32(sse));
}
static inline uint64_t aom_sum_sse_2d_i16_4xn_neon(const int16_t *src,
int stride, int height,
int *sum) {
int32x4_t sse[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int32x2_t sum_acc[2] = { vdup_n_s32(0), vdup_n_s32(0) };
int h = height;
do {
int16x4_t s0 = vld1_s16(src + 0 * stride);
int16x4_t s1 = vld1_s16(src + 1 * stride);
int16x4_t s2 = vld1_s16(src + 2 * stride);
int16x4_t s3 = vld1_s16(src + 3 * stride);
sse[0] = vmlal_s16(sse[0], s0, s0);
sse[0] = vmlal_s16(sse[0], s1, s1);
sse[1] = vmlal_s16(sse[1], s2, s2);
sse[1] = vmlal_s16(sse[1], s3, s3);
sum_acc[0] = vpadal_s16(sum_acc[0], s0);
sum_acc[0] = vpadal_s16(sum_acc[0], s1);
sum_acc[1] = vpadal_s16(sum_acc[1], s2);
sum_acc[1] = vpadal_s16(sum_acc[1], s3);
src += 4 * stride;
h -= 4;
} while (h != 0);
*sum += horizontal_add_s32x4(vcombine_s32(sum_acc[0], sum_acc[1]));
return horizontal_long_add_u32x4(
vreinterpretq_u32_s32(vaddq_s32(sse[0], sse[1])));
}
static inline uint64_t aom_sum_sse_2d_i16_nxn_neon(const int16_t *src,
int stride, int width,
int height, int *sum) {
uint64x2_t sse = vdupq_n_u64(0);
int32x4_t sum_acc = vdupq_n_s32(0);
int h = height;
do {
int32x4_t sse_row[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int w = 0;
do {
const int16_t *s = src + w;
int16x8_t s0 = vld1q_s16(s + 0 * stride);
int16x8_t s1 = vld1q_s16(s + 1 * stride);
int16x8_t s2 = vld1q_s16(s + 2 * stride);
int16x8_t s3 = vld1q_s16(s + 3 * stride);
sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s0), vget_low_s16(s0));
sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s1), vget_low_s16(s1));
sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s2), vget_low_s16(s2));
sse_row[0] = vmlal_s16(sse_row[0], vget_low_s16(s3), vget_low_s16(s3));
sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s0), vget_high_s16(s0));
sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s1), vget_high_s16(s1));
sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s2), vget_high_s16(s2));
sse_row[1] = vmlal_s16(sse_row[1], vget_high_s16(s3), vget_high_s16(s3));
sum_acc = vpadalq_s16(sum_acc, s0);
sum_acc = vpadalq_s16(sum_acc, s1);
sum_acc = vpadalq_s16(sum_acc, s2);
sum_acc = vpadalq_s16(sum_acc, s3);
w += 8;
} while (w < width);
sse = vpadalq_u32(sse,
vreinterpretq_u32_s32(vaddq_s32(sse_row[0], sse_row[1])));
src += 4 * stride;
h -= 4;
} while (h != 0);
*sum += horizontal_add_s32x4(sum_acc);
return horizontal_add_u64x2(sse);
}
uint64_t aom_sum_sse_2d_i16_neon(const int16_t *src, int stride, int width,
int height, int *sum) {
uint64_t sse;
if (LIKELY(width == 4 && height == 4)) {
sse = aom_sum_sse_2d_i16_4x4_neon(src, stride, sum);
} else if (LIKELY(width == 4 && (height & 3) == 0)) {
// width = 4, height is a multiple of 4.
sse = aom_sum_sse_2d_i16_4xn_neon(src, stride, height, sum);
} else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
// Generic case - width is multiple of 8, height is multiple of 4.
sse = aom_sum_sse_2d_i16_nxn_neon(src, stride, width, height, sum);
} else {
sse = aom_sum_sse_2d_i16_c(src, stride, width, height, sum);
}
return sse;
}
static inline uint64_t aom_sum_squares_i16_4xn_neon(const int16_t *src,
uint32_t n) {
uint64x2_t sum_u64 = vdupq_n_u64(0);
int i = n;
do {
uint32x4_t sum;
int16x4_t s0 = vld1_s16(src);
sum = vreinterpretq_u32_s32(vmull_s16(s0, s0));
sum_u64 = vpadalq_u32(sum_u64, sum);
src += 4;
i -= 4;
} while (i >= 4);
if (i > 0) {
return horizontal_add_u64x2(sum_u64) + aom_sum_squares_i16_c(src, i);
}
return horizontal_add_u64x2(sum_u64);
}
static inline uint64_t aom_sum_squares_i16_8xn_neon(const int16_t *src,
uint32_t n) {
uint64x2_t sum_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) };
int i = n;
do {
uint32x4_t sum[2];
int16x8_t s0 = vld1q_s16(src);
sum[0] =
vreinterpretq_u32_s32(vmull_s16(vget_low_s16(s0), vget_low_s16(s0)));
sum[1] =
vreinterpretq_u32_s32(vmull_s16(vget_high_s16(s0), vget_high_s16(s0)));
sum_u64[0] = vpadalq_u32(sum_u64[0], sum[0]);
sum_u64[1] = vpadalq_u32(sum_u64[1], sum[1]);
src += 8;
i -= 8;
} while (i >= 8);
if (i > 0) {
return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1])) +
aom_sum_squares_i16_c(src, i);
}
return horizontal_add_u64x2(vaddq_u64(sum_u64[0], sum_u64[1]));
}
uint64_t aom_sum_squares_i16_neon(const int16_t *src, uint32_t n) {
// This function seems to be called only for values of N >= 64. See
// av1/encoder/compound_type.c.
if (LIKELY(n >= 8)) {
return aom_sum_squares_i16_8xn_neon(src, n);
}
if (n >= 4) {
return aom_sum_squares_i16_4xn_neon(src, n);
}
return aom_sum_squares_i16_c(src, n);
}
static inline uint64_t aom_var_2d_u8_4xh_neon(uint8_t *src, int src_stride,
int width, int height) {
uint64_t sum = 0;
uint64_t sse = 0;
uint32x2_t sum_u32 = vdup_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
// 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
// element before we need to accumulate to 32-bit elements. Since we're
// accumulating in uint16x4_t vectors, this means we can accumulate up to 4
// rows of 256 elements. Therefore the limit can be computed as: h_limit = (4
// * 256) / width.
int h_limit = (4 * 256) / width;
int h_tmp = height > h_limit ? h_limit : height;
int h = 0;
do {
uint16x4_t sum_u16 = vdup_n_u16(0);
do {
uint8_t *src_ptr = src;
int w = width;
do {
uint8x8_t s0 = load_unaligned_u8(src_ptr, src_stride);
sum_u16 = vpadal_u8(sum_u16, s0);
uint16x8_t sse_u16 = vmull_u8(s0, s0);
sse_u32 = vpadalq_u16(sse_u32, sse_u16);
src_ptr += 8;
w -= 8;
} while (w >= 8);
// Process remaining columns in the row using C.
while (w > 0) {
int idx = width - w;
const uint8_t v = src[idx];
sum += v;
sse += v * v;
w--;
}
src += 2 * src_stride;
h += 2;
} while (h < h_tmp && h < height);
sum_u32 = vpadal_u16(sum_u32, sum_u16);
h_tmp += h_limit;
} while (h < height);
sum += horizontal_long_add_u32x2(sum_u32);
sse += horizontal_long_add_u32x4(sse_u32);
return sse - sum * sum / (width * height);
}
static inline uint64_t aom_var_2d_u8_8xh_neon(uint8_t *src, int src_stride,
int width, int height) {
uint64_t sum = 0;
uint64_t sse = 0;
uint32x2_t sum_u32 = vdup_n_u32(0);
uint32x4_t sse_u32 = vdupq_n_u32(0);
// 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
// element before we need to accumulate to 32-bit elements. Since we're
// accumulating in uint16x4_t vectors, this means we can accumulate up to 4
// rows of 256 elements. Therefore the limit can be computed as: h_limit = (4
// * 256) / width.
int h_limit = (4 * 256) / width;
int h_tmp = height > h_limit ? h_limit : height;
int h = 0;
do {
uint16x4_t sum_u16 = vdup_n_u16(0);
do {
uint8_t *src_ptr = src;
int w = width;
do {
uint8x8_t s0 = vld1_u8(src_ptr);
sum_u16 = vpadal_u8(sum_u16, s0);
uint16x8_t sse_u16 = vmull_u8(s0, s0);
sse_u32 = vpadalq_u16(sse_u32, sse_u16);
src_ptr += 8;
w -= 8;
} while (w >= 8);
// Process remaining columns in the row using C.
while (w > 0) {
int idx = width - w;
const uint8_t v = src[idx];
sum += v;
sse += v * v;
w--;
}
src += src_stride;
++h;
} while (h < h_tmp && h < height);
sum_u32 = vpadal_u16(sum_u32, sum_u16);
h_tmp += h_limit;
} while (h < height);
sum += horizontal_long_add_u32x2(sum_u32);
sse += horizontal_long_add_u32x4(sse_u32);
return sse - sum * sum / (width * height);
}
static inline uint64_t aom_var_2d_u8_16xh_neon(uint8_t *src, int src_stride,
int width, int height) {
uint64_t sum = 0;
uint64_t sse = 0;
uint32x4_t sum_u32 = vdupq_n_u32(0);
uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
// 255*256 = 65280, so we can accumulate up to 256 8-bit elements in a 16-bit
// element before we need to accumulate to 32-bit elements. Since we're
// accumulating in uint16x8_t vectors, this means we can accumulate up to 8
// rows of 256 elements. Therefore the limit can be computed as: h_limit = (8
// * 256) / width.
int h_limit = (8 * 256) / width;
int h_tmp = height > h_limit ? h_limit : height;
int h = 0;
do {
uint16x8_t sum_u16 = vdupq_n_u16(0);
do {
int w = width;
uint8_t *src_ptr = src;
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
sum_u16 = vpadalq_u8(sum_u16, s0);
uint16x8_t sse_u16_lo = vmull_u8(vget_low_u8(s0), vget_low_u8(s0));
uint16x8_t sse_u16_hi = vmull_u8(vget_high_u8(s0), vget_high_u8(s0));
sse_u32[0] = vpadalq_u16(sse_u32[0], sse_u16_lo);
sse_u32[1] = vpadalq_u16(sse_u32[1], sse_u16_hi);
src_ptr += 16;
w -= 16;
} while (w >= 16);
// Process remaining columns in the row using C.
while (w > 0) {
int idx = width - w;
const uint8_t v = src[idx];
sum += v;
sse += v * v;
w--;
}
src += src_stride;
++h;
} while (h < h_tmp && h < height);
sum_u32 = vpadalq_u16(sum_u32, sum_u16);
h_tmp += h_limit;
} while (h < height);
sum += horizontal_long_add_u32x4(sum_u32);
sse += horizontal_long_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
return sse - sum * sum / (width * height);
}
uint64_t aom_var_2d_u8_neon(uint8_t *src, int src_stride, int width,
int height) {
if (width >= 16) {
return aom_var_2d_u8_16xh_neon(src, src_stride, width, height);
}
if (width >= 8) {
return aom_var_2d_u8_8xh_neon(src, src_stride, width, height);
}
if (width >= 4 && height % 2 == 0) {
return aom_var_2d_u8_4xh_neon(src, src_stride, width, height);
}
return aom_var_2d_u8_c(src, src_stride, width, height);
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline uint64_t aom_var_2d_u16_4xh_neon(uint8_t *src, int src_stride,
int width, int height) {
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src);
uint64_t sum = 0;
uint64_t sse = 0;
uint32x2_t sum_u32 = vdup_n_u32(0);
uint64x2_t sse_u64 = vdupq_n_u64(0);
int h = height;
do {
int w = width;
uint16_t *src_ptr = src_u16;
do {
uint16x4_t s0 = vld1_u16(src_ptr);
sum_u32 = vpadal_u16(sum_u32, s0);
uint32x4_t sse_u32 = vmull_u16(s0, s0);
sse_u64 = vpadalq_u32(sse_u64, sse_u32);
src_ptr += 4;
w -= 4;
} while (w >= 4);
// Process remaining columns in the row using C.
while (w > 0) {
int idx = width - w;
const uint16_t v = src_u16[idx];
sum += v;
sse += v * v;
w--;
}
src_u16 += src_stride;
} while (--h != 0);
sum += horizontal_long_add_u32x2(sum_u32);
sse += horizontal_add_u64x2(sse_u64);
return sse - sum * sum / (width * height);
}
static inline uint64_t aom_var_2d_u16_8xh_neon(uint8_t *src, int src_stride,
int width, int height) {
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src);
uint64_t sum = 0;
uint64_t sse = 0;
uint32x4_t sum_u32 = vdupq_n_u32(0);
uint64x2_t sse_u64[2] = { vdupq_n_u64(0), vdupq_n_u64(0) };
int h = height;
do {
int w = width;
uint16_t *src_ptr = src_u16;
do {
uint16x8_t s0 = vld1q_u16(src_ptr);
sum_u32 = vpadalq_u16(sum_u32, s0);
uint32x4_t sse_u32_lo = vmull_u16(vget_low_u16(s0), vget_low_u16(s0));
uint32x4_t sse_u32_hi = vmull_u16(vget_high_u16(s0), vget_high_u16(s0));
sse_u64[0] = vpadalq_u32(sse_u64[0], sse_u32_lo);
sse_u64[1] = vpadalq_u32(sse_u64[1], sse_u32_hi);
src_ptr += 8;
w -= 8;
} while (w >= 8);
// Process remaining columns in the row using C.
while (w > 0) {
int idx = width - w;
const uint16_t v = src_u16[idx];
sum += v;
sse += v * v;
w--;
}
src_u16 += src_stride;
} while (--h != 0);
sum += horizontal_long_add_u32x4(sum_u32);
sse += horizontal_add_u64x2(vaddq_u64(sse_u64[0], sse_u64[1]));
return sse - sum * sum / (width * height);
}
uint64_t aom_var_2d_u16_neon(uint8_t *src, int src_stride, int width,
int height) {
if (width >= 8) {
return aom_var_2d_u16_8xh_neon(src, src_stride, width, height);
}
if (width >= 4) {
return aom_var_2d_u16_4xh_neon(src, src_stride, width, height);
}
return aom_var_2d_u16_c(src, src_stride, width, height);
}
#endif // CONFIG_AV1_HIGHBITDEPTH