Source code
Revision control
Copy as Markdown
Other Tools
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"
static inline unsigned int sadwxh_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int w, int h) {
// Only two accumulators are required for optimal instruction throughput of
// the ABD, UDOT sequence on CPUs with either 2 or 4 Neon pipes.
uint32x4_t sum[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h;
do {
int j = 0;
do {
uint8x16_t s0, s1, r0, r1, diff0, diff1;
s0 = vld1q_u8(src_ptr + j);
r0 = vld1q_u8(ref_ptr + j);
diff0 = vabdq_u8(s0, r0);
sum[0] = vdotq_u32(sum[0], diff0, vdupq_n_u8(1));
s1 = vld1q_u8(src_ptr + j + 16);
r1 = vld1q_u8(ref_ptr + j + 16);
diff1 = vabdq_u8(s1, r1);
sum[1] = vdotq_u32(sum[1], diff1, vdupq_n_u8(1));
j += 32;
} while (j < w);
src_ptr += src_stride;
ref_ptr += ref_stride;
} while (--i != 0);
return horizontal_add_u32x4(vaddq_u32(sum[0], sum[1]));
}
static inline unsigned int sad128xh_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int h) {
return sadwxh_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 128, h);
}
static inline unsigned int sad64xh_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int h) {
return sadwxh_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 64, h);
}
static inline unsigned int sad32xh_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int h) {
return sadwxh_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 32, h);
}
static inline unsigned int sad16xh_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int h) {
uint32x4_t sum[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h / 2;
do {
uint8x16_t s0, s1, r0, r1, diff0, diff1;
s0 = vld1q_u8(src_ptr);
r0 = vld1q_u8(ref_ptr);
diff0 = vabdq_u8(s0, r0);
sum[0] = vdotq_u32(sum[0], diff0, vdupq_n_u8(1));
src_ptr += src_stride;
ref_ptr += ref_stride;
s1 = vld1q_u8(src_ptr);
r1 = vld1q_u8(ref_ptr);
diff1 = vabdq_u8(s1, r1);
sum[1] = vdotq_u32(sum[1], diff1, vdupq_n_u8(1));
src_ptr += src_stride;
ref_ptr += ref_stride;
} while (--i != 0);
return horizontal_add_u32x4(vaddq_u32(sum[0], sum[1]));
}
#define SAD_WXH_NEON_DOTPROD(w, h) \
unsigned int aom_sad##w##x##h##_neon_dotprod( \
const uint8_t *src, int src_stride, const uint8_t *ref, \
int ref_stride) { \
return sad##w##xh_neon_dotprod(src, src_stride, ref, ref_stride, (h)); \
}
SAD_WXH_NEON_DOTPROD(16, 8)
SAD_WXH_NEON_DOTPROD(16, 16)
SAD_WXH_NEON_DOTPROD(16, 32)
SAD_WXH_NEON_DOTPROD(32, 16)
SAD_WXH_NEON_DOTPROD(32, 32)
SAD_WXH_NEON_DOTPROD(32, 64)
SAD_WXH_NEON_DOTPROD(64, 32)
SAD_WXH_NEON_DOTPROD(64, 64)
SAD_WXH_NEON_DOTPROD(64, 128)
SAD_WXH_NEON_DOTPROD(128, 64)
SAD_WXH_NEON_DOTPROD(128, 128)
#if !CONFIG_REALTIME_ONLY
SAD_WXH_NEON_DOTPROD(16, 4)
SAD_WXH_NEON_DOTPROD(16, 64)
SAD_WXH_NEON_DOTPROD(32, 8)
SAD_WXH_NEON_DOTPROD(64, 16)
#endif // !CONFIG_REALTIME_ONLY
#undef SAD_WXH_NEON_DOTPROD
#define SAD_SKIP_WXH_NEON_DOTPROD(w, h) \
unsigned int aom_sad_skip_##w##x##h##_neon_dotprod( \
const uint8_t *src, int src_stride, const uint8_t *ref, \
int ref_stride) { \
return 2 * sad##w##xh_neon_dotprod(src, 2 * src_stride, ref, \
2 * ref_stride, (h) / 2); \
}
SAD_SKIP_WXH_NEON_DOTPROD(16, 16)
SAD_SKIP_WXH_NEON_DOTPROD(16, 32)
SAD_SKIP_WXH_NEON_DOTPROD(32, 16)
SAD_SKIP_WXH_NEON_DOTPROD(32, 32)
SAD_SKIP_WXH_NEON_DOTPROD(32, 64)
SAD_SKIP_WXH_NEON_DOTPROD(64, 32)
SAD_SKIP_WXH_NEON_DOTPROD(64, 64)
SAD_SKIP_WXH_NEON_DOTPROD(64, 128)
SAD_SKIP_WXH_NEON_DOTPROD(128, 64)
SAD_SKIP_WXH_NEON_DOTPROD(128, 128)
#if !CONFIG_REALTIME_ONLY
SAD_SKIP_WXH_NEON_DOTPROD(16, 64)
SAD_SKIP_WXH_NEON_DOTPROD(64, 16)
#endif // !CONFIG_REALTIME_ONLY
#undef SAD_SKIP_WXH_NEON_DOTPROD
static inline unsigned int sadwxh_avg_neon_dotprod(const uint8_t *src_ptr,
int src_stride,
const uint8_t *ref_ptr,
int ref_stride, int w, int h,
const uint8_t *second_pred) {
// Only two accumulators are required for optimal instruction throughput of
// the ABD, UDOT sequence on CPUs with either 2 or 4 Neon pipes.
uint32x4_t sum[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h;
do {
int j = 0;
do {
uint8x16_t s0, s1, r0, r1, p0, p1, avg0, avg1, diff0, diff1;
s0 = vld1q_u8(src_ptr + j);
r0 = vld1q_u8(ref_ptr + j);
p0 = vld1q_u8(second_pred);
avg0 = vrhaddq_u8(r0, p0);
diff0 = vabdq_u8(s0, avg0);
sum[0] = vdotq_u32(sum[0], diff0, vdupq_n_u8(1));
s1 = vld1q_u8(src_ptr + j + 16);
r1 = vld1q_u8(ref_ptr + j + 16);
p1 = vld1q_u8(second_pred + 16);
avg1 = vrhaddq_u8(r1, p1);
diff1 = vabdq_u8(s1, avg1);
sum[1] = vdotq_u32(sum[1], diff1, vdupq_n_u8(1));
j += 32;
second_pred += 32;
} while (j < w);
src_ptr += src_stride;
ref_ptr += ref_stride;
} while (--i != 0);
return horizontal_add_u32x4(vaddq_u32(sum[0], sum[1]));
}
static inline unsigned int sad128xh_avg_neon_dotprod(
const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr,
int ref_stride, int h, const uint8_t *second_pred) {
return sadwxh_avg_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 128,
h, second_pred);
}
static inline unsigned int sad64xh_avg_neon_dotprod(
const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr,
int ref_stride, int h, const uint8_t *second_pred) {
return sadwxh_avg_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 64,
h, second_pred);
}
static inline unsigned int sad32xh_avg_neon_dotprod(
const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr,
int ref_stride, int h, const uint8_t *second_pred) {
return sadwxh_avg_neon_dotprod(src_ptr, src_stride, ref_ptr, ref_stride, 32,
h, second_pred);
}
static inline unsigned int sad16xh_avg_neon_dotprod(
const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr,
int ref_stride, int h, const uint8_t *second_pred) {
uint32x4_t sum[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h / 2;
do {
uint8x16_t s0, s1, r0, r1, p0, p1, avg0, avg1, diff0, diff1;
s0 = vld1q_u8(src_ptr);
r0 = vld1q_u8(ref_ptr);
p0 = vld1q_u8(second_pred);
avg0 = vrhaddq_u8(r0, p0);
diff0 = vabdq_u8(s0, avg0);
sum[0] = vdotq_u32(sum[0], diff0, vdupq_n_u8(1));
src_ptr += src_stride;
ref_ptr += ref_stride;
second_pred += 16;
s1 = vld1q_u8(src_ptr);
r1 = vld1q_u8(ref_ptr);
p1 = vld1q_u8(second_pred);
avg1 = vrhaddq_u8(r1, p1);
diff1 = vabdq_u8(s1, avg1);
sum[1] = vdotq_u32(sum[1], diff1, vdupq_n_u8(1));
src_ptr += src_stride;
ref_ptr += ref_stride;
second_pred += 16;
} while (--i != 0);
return horizontal_add_u32x4(vaddq_u32(sum[0], sum[1]));
}
#define SAD_WXH_AVG_NEON_DOTPROD(w, h) \
unsigned int aom_sad##w##x##h##_avg_neon_dotprod( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
const uint8_t *second_pred) { \
return sad##w##xh_avg_neon_dotprod(src, src_stride, ref, ref_stride, (h), \
second_pred); \
}
SAD_WXH_AVG_NEON_DOTPROD(16, 8)
SAD_WXH_AVG_NEON_DOTPROD(16, 16)
SAD_WXH_AVG_NEON_DOTPROD(16, 32)
SAD_WXH_AVG_NEON_DOTPROD(32, 16)
SAD_WXH_AVG_NEON_DOTPROD(32, 32)
SAD_WXH_AVG_NEON_DOTPROD(32, 64)
SAD_WXH_AVG_NEON_DOTPROD(64, 32)
SAD_WXH_AVG_NEON_DOTPROD(64, 64)
SAD_WXH_AVG_NEON_DOTPROD(64, 128)
SAD_WXH_AVG_NEON_DOTPROD(128, 64)
SAD_WXH_AVG_NEON_DOTPROD(128, 128)
#if !CONFIG_REALTIME_ONLY
SAD_WXH_AVG_NEON_DOTPROD(16, 64)
SAD_WXH_AVG_NEON_DOTPROD(32, 8)
SAD_WXH_AVG_NEON_DOTPROD(64, 16)
#endif // !CONFIG_REALTIME_ONLY
#undef SAD_WXH_AVG_NEON_DOTPROD