Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright (c) 2022, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include <string.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
static inline uint32_t sum_abs_coeff(const uint32x4_t a) {
#if AOM_ARCH_AARCH64
return vaddvq_u32(a);
#else
const uint64x2_t b = vpaddlq_u32(a);
const uint64x1_t c = vadd_u64(vget_low_u64(b), vget_high_u64(b));
return (uint32_t)vget_lane_u64(c, 0);
#endif
}
static inline uint16x4_t quantize_4(
const tran_low_t *coeff_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, int32x4_t v_quant_s32, int32x4_t v_dequant_s32,
int32x4_t v_round_s32, int32x4_t v_zbin_s32, int32x4_t v_quant_shift_s32,
int log_scale) {
const int32x4_t v_coeff = vld1q_s32(coeff_ptr);
const int32x4_t v_coeff_sign =
vreinterpretq_s32_u32(vcltq_s32(v_coeff, vdupq_n_s32(0)));
const int32x4_t v_abs_coeff = vabsq_s32(v_coeff);
// if (abs_coeff < zbins[rc != 0]),
const uint32x4_t v_zbin_mask = vcgeq_s32(v_abs_coeff, v_zbin_s32);
const int32x4_t v_log_scale = vdupq_n_s32(log_scale);
// const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
const int32x4_t v_tmp = vaddq_s32(v_abs_coeff, v_round_s32);
// const int32_t tmpw32 = tmp * wt;
const int32x4_t v_tmpw32 = vmulq_s32(v_tmp, vdupq_n_s32((1 << AOM_QM_BITS)));
// const int32_t tmp2 = (int32_t)((tmpw32 * quant64) >> 16);
const int32x4_t v_tmp2 = vqdmulhq_s32(v_tmpw32, v_quant_s32);
// const int32_t tmp3 =
// ((((tmp2 + tmpw32)<< log_scale) * (int64_t)(quant_shift << 15)) >> 32);
const int32x4_t v_tmp3 = vqdmulhq_s32(
vshlq_s32(vaddq_s32(v_tmp2, v_tmpw32), v_log_scale), v_quant_shift_s32);
// const int abs_qcoeff = vmask ? (int)tmp3 >> AOM_QM_BITS : 0;
const int32x4_t v_abs_qcoeff = vandq_s32(vreinterpretq_s32_u32(v_zbin_mask),
vshrq_n_s32(v_tmp3, AOM_QM_BITS));
// const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant_iwt) >> log_scale;
// vshlq_s32 will shift right if shift value is negative.
const int32x4_t v_abs_dqcoeff =
vshlq_s32(vmulq_s32(v_abs_qcoeff, v_dequant_s32), vnegq_s32(v_log_scale));
// qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const int32x4_t v_qcoeff =
vsubq_s32(veorq_s32(v_abs_qcoeff, v_coeff_sign), v_coeff_sign);
// dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
const int32x4_t v_dqcoeff =
vsubq_s32(veorq_s32(v_abs_dqcoeff, v_coeff_sign), v_coeff_sign);
vst1q_s32(qcoeff_ptr, v_qcoeff);
vst1q_s32(dqcoeff_ptr, v_dqcoeff);
// Used to find eob.
const uint32x4_t nz_qcoeff_mask = vcgtq_s32(v_abs_qcoeff, vdupq_n_s32(0));
return vmovn_u32(nz_qcoeff_mask);
}
static inline int16x8_t get_max_lane_eob(const int16_t *iscan,
int16x8_t v_eobmax,
uint16x8_t v_mask) {
const int16x8_t v_iscan = vld1q_s16(&iscan[0]);
const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, vdupq_n_s16(1));
const int16x8_t v_nz_iscan = vbslq_s16(v_mask, v_iscan_plus1, vdupq_n_s16(0));
return vmaxq_s16(v_eobmax, v_nz_iscan);
}
#if !CONFIG_REALTIME_ONLY
static inline void get_min_max_lane_eob(const int16_t *iscan,
int16x8_t *v_eobmin,
int16x8_t *v_eobmax, uint16x8_t v_mask,
intptr_t n_coeffs) {
const int16x8_t v_iscan = vld1q_s16(&iscan[0]);
const int16x8_t v_nz_iscan_max = vbslq_s16(v_mask, v_iscan, vdupq_n_s16(-1));
#if SKIP_EOB_FACTOR_ADJUST
const int16x8_t v_nz_iscan_min =
vbslq_s16(v_mask, v_iscan, vdupq_n_s16((int16_t)n_coeffs));
*v_eobmin = vminq_s16(*v_eobmin, v_nz_iscan_min);
#else
(void)v_eobmin;
#endif
*v_eobmax = vmaxq_s16(*v_eobmax, v_nz_iscan_max);
}
#endif // !CONFIG_REALTIME_ONLY
static inline uint16_t get_max_eob(int16x8_t v_eobmax) {
#if AOM_ARCH_AARCH64
return (uint16_t)vmaxvq_s16(v_eobmax);
#else
const int16x4_t v_eobmax_3210 =
vmax_s16(vget_low_s16(v_eobmax), vget_high_s16(v_eobmax));
const int64x1_t v_eobmax_xx32 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32);
const int16x4_t v_eobmax_tmp =
vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32));
const int64x1_t v_eobmax_xxx3 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16);
const int16x4_t v_eobmax_final =
vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3));
return (uint16_t)vget_lane_s16(v_eobmax_final, 0);
#endif
}
#if SKIP_EOB_FACTOR_ADJUST && !CONFIG_REALTIME_ONLY
static inline uint16_t get_min_eob(int16x8_t v_eobmin) {
#if AOM_ARCH_AARCH64
return (uint16_t)vminvq_s16(v_eobmin);
#else
const int16x4_t v_eobmin_3210 =
vmin_s16(vget_low_s16(v_eobmin), vget_high_s16(v_eobmin));
const int64x1_t v_eobmin_xx32 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmin_3210), 32);
const int16x4_t v_eobmin_tmp =
vmin_s16(v_eobmin_3210, vreinterpret_s16_s64(v_eobmin_xx32));
const int64x1_t v_eobmin_xxx3 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmin_tmp), 16);
const int16x4_t v_eobmin_final =
vmin_s16(v_eobmin_tmp, vreinterpret_s16_s64(v_eobmin_xxx3));
return (uint16_t)vget_lane_s16(v_eobmin_final, 0);
#endif
}
#endif // SKIP_EOB_FACTOR_ADJUST && !CONFIG_REALTIME_ONLY
static void highbd_quantize_b_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const int log_scale) {
(void)scan;
const int16x4_t v_quant = vld1_s16(quant_ptr);
const int16x4_t v_dequant = vld1_s16(dequant_ptr);
const int16x4_t v_zero = vdup_n_s16(0);
const uint16x4_t v_round_select = vcgt_s16(vdup_n_s16(log_scale), v_zero);
const int16x4_t v_round_no_scale = vld1_s16(round_ptr);
const int16x4_t v_round_log_scale =
vqrdmulh_n_s16(v_round_no_scale, (int16_t)(1 << (15 - log_scale)));
const int16x4_t v_round =
vbsl_s16(v_round_select, v_round_log_scale, v_round_no_scale);
const int16x4_t v_quant_shift = vld1_s16(quant_shift_ptr);
const int16x4_t v_zbin_no_scale = vld1_s16(zbin_ptr);
const int16x4_t v_zbin_log_scale =
vqrdmulh_n_s16(v_zbin_no_scale, (int16_t)(1 << (15 - log_scale)));
const int16x4_t v_zbin =
vbsl_s16(v_round_select, v_zbin_log_scale, v_zbin_no_scale);
int32x4_t v_round_s32 = vmovl_s16(v_round);
int32x4_t v_quant_s32 = vshlq_n_s32(vmovl_s16(v_quant), 15);
int32x4_t v_dequant_s32 = vmovl_s16(v_dequant);
int32x4_t v_quant_shift_s32 = vshlq_n_s32(vmovl_s16(v_quant_shift), 15);
int32x4_t v_zbin_s32 = vmovl_s16(v_zbin);
uint16x4_t v_mask_lo, v_mask_hi;
int16x8_t v_eobmax = vdupq_n_s16(-1);
intptr_t non_zero_count = n_coeffs;
assert(n_coeffs > 8);
// Pre-scan pass
const int32x4_t v_zbin_s32x = vdupq_lane_s32(vget_low_s32(v_zbin_s32), 1);
intptr_t i = n_coeffs;
do {
const int32x4_t v_coeff_a = vld1q_s32(coeff_ptr + i - 4);
const int32x4_t v_coeff_b = vld1q_s32(coeff_ptr + i - 8);
const int32x4_t v_abs_coeff_a = vabsq_s32(v_coeff_a);
const int32x4_t v_abs_coeff_b = vabsq_s32(v_coeff_b);
const uint32x4_t v_mask_a = vcgeq_s32(v_abs_coeff_a, v_zbin_s32x);
const uint32x4_t v_mask_b = vcgeq_s32(v_abs_coeff_b, v_zbin_s32x);
// If the coefficient is in the base ZBIN range, then discard.
if (sum_abs_coeff(v_mask_a) + sum_abs_coeff(v_mask_b) == 0) {
non_zero_count -= 8;
} else {
break;
}
i -= 8;
} while (i > 0);
const intptr_t remaining_zcoeffs = n_coeffs - non_zero_count;
memset(qcoeff_ptr + non_zero_count, 0,
remaining_zcoeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr + non_zero_count, 0,
remaining_zcoeffs * sizeof(*dqcoeff_ptr));
// DC and first 3 AC
v_mask_lo =
quantize_4(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, v_quant_s32, v_dequant_s32,
v_round_s32, v_zbin_s32, v_quant_shift_s32, log_scale);
// overwrite the DC constants with AC constants
v_round_s32 = vdupq_lane_s32(vget_low_s32(v_round_s32), 1);
v_quant_s32 = vdupq_lane_s32(vget_low_s32(v_quant_s32), 1);
v_dequant_s32 = vdupq_lane_s32(vget_low_s32(v_dequant_s32), 1);
v_quant_shift_s32 = vdupq_lane_s32(vget_low_s32(v_quant_shift_s32), 1);
v_zbin_s32 = vdupq_lane_s32(vget_low_s32(v_zbin_s32), 1);
// 4 more AC
v_mask_hi = quantize_4(coeff_ptr + 4, qcoeff_ptr + 4, dqcoeff_ptr + 4,
v_quant_s32, v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
v_eobmax =
get_max_lane_eob(iscan, v_eobmax, vcombine_u16(v_mask_lo, v_mask_hi));
intptr_t count = non_zero_count - 8;
for (; count > 0; count -= 8) {
coeff_ptr += 8;
qcoeff_ptr += 8;
dqcoeff_ptr += 8;
iscan += 8;
v_mask_lo = quantize_4(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, v_quant_s32,
v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
v_mask_hi = quantize_4(coeff_ptr + 4, qcoeff_ptr + 4, dqcoeff_ptr + 4,
v_quant_s32, v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
// Find the max lane eob for 8 coeffs.
v_eobmax =
get_max_lane_eob(iscan, v_eobmax, vcombine_u16(v_mask_lo, v_mask_hi));
}
*eob_ptr = get_max_eob(v_eobmax);
}
void aom_highbd_quantize_b_neon(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr,
const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_neon(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, 0);
}
void aom_highbd_quantize_b_32x32_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_neon(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, 1);
}
void aom_highbd_quantize_b_64x64_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_neon(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, 2);
}
#if !CONFIG_REALTIME_ONLY
static void highbd_quantize_b_adaptive_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const int log_scale) {
(void)scan;
const int16x4_t v_quant = vld1_s16(quant_ptr);
const int16x4_t v_dequant = vld1_s16(dequant_ptr);
const int16x4_t v_zero = vdup_n_s16(0);
const uint16x4_t v_round_select = vcgt_s16(vdup_n_s16(log_scale), v_zero);
const int16x4_t v_round_no_scale = vld1_s16(round_ptr);
const int16x4_t v_round_log_scale =
vqrdmulh_n_s16(v_round_no_scale, (int16_t)(1 << (15 - log_scale)));
const int16x4_t v_round =
vbsl_s16(v_round_select, v_round_log_scale, v_round_no_scale);
const int16x4_t v_quant_shift = vld1_s16(quant_shift_ptr);
const int16x4_t v_zbin_no_scale = vld1_s16(zbin_ptr);
const int16x4_t v_zbin_log_scale =
vqrdmulh_n_s16(v_zbin_no_scale, (int16_t)(1 << (15 - log_scale)));
const int16x4_t v_zbin =
vbsl_s16(v_round_select, v_zbin_log_scale, v_zbin_no_scale);
int32x4_t v_round_s32 = vmovl_s16(v_round);
int32x4_t v_quant_s32 = vshlq_n_s32(vmovl_s16(v_quant), 15);
int32x4_t v_dequant_s32 = vmovl_s16(v_dequant);
int32x4_t v_quant_shift_s32 = vshlq_n_s32(vmovl_s16(v_quant_shift), 15);
int32x4_t v_zbin_s32 = vmovl_s16(v_zbin);
uint16x4_t v_mask_lo, v_mask_hi;
int16x8_t v_eobmax = vdupq_n_s16(-1);
int16x8_t v_eobmin = vdupq_n_s16((int16_t)n_coeffs);
assert(n_coeffs > 8);
// Pre-scan pass
const int32x4_t v_zbin_s32x = vdupq_lane_s32(vget_low_s32(v_zbin_s32), 1);
const int prescan_add_1 =
ROUND_POWER_OF_TWO(dequant_ptr[1] * EOB_FACTOR, 7 + AOM_QM_BITS);
const int32x4_t v_zbin_prescan =
vaddq_s32(v_zbin_s32x, vdupq_n_s32(prescan_add_1));
intptr_t non_zero_count = n_coeffs;
intptr_t i = n_coeffs;
do {
const int32x4_t v_coeff_a = vld1q_s32(coeff_ptr + i - 4);
const int32x4_t v_coeff_b = vld1q_s32(coeff_ptr + i - 8);
const int32x4_t v_abs_coeff_a = vabsq_s32(v_coeff_a);
const int32x4_t v_abs_coeff_b = vabsq_s32(v_coeff_b);
const uint32x4_t v_mask_a = vcgeq_s32(v_abs_coeff_a, v_zbin_prescan);
const uint32x4_t v_mask_b = vcgeq_s32(v_abs_coeff_b, v_zbin_prescan);
// If the coefficient is in the base ZBIN range, then discard.
if (sum_abs_coeff(v_mask_a) + sum_abs_coeff(v_mask_b) == 0) {
non_zero_count -= 8;
} else {
break;
}
i -= 8;
} while (i > 0);
const intptr_t remaining_zcoeffs = n_coeffs - non_zero_count;
memset(qcoeff_ptr + non_zero_count, 0,
remaining_zcoeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr + non_zero_count, 0,
remaining_zcoeffs * sizeof(*dqcoeff_ptr));
// DC and first 3 AC
v_mask_lo =
quantize_4(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, v_quant_s32, v_dequant_s32,
v_round_s32, v_zbin_s32, v_quant_shift_s32, log_scale);
// overwrite the DC constants with AC constants
v_round_s32 = vdupq_lane_s32(vget_low_s32(v_round_s32), 1);
v_quant_s32 = vdupq_lane_s32(vget_low_s32(v_quant_s32), 1);
v_dequant_s32 = vdupq_lane_s32(vget_low_s32(v_dequant_s32), 1);
v_quant_shift_s32 = vdupq_lane_s32(vget_low_s32(v_quant_shift_s32), 1);
v_zbin_s32 = vdupq_lane_s32(vget_low_s32(v_zbin_s32), 1);
// 4 more AC
v_mask_hi = quantize_4(coeff_ptr + 4, qcoeff_ptr + 4, dqcoeff_ptr + 4,
v_quant_s32, v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
get_min_max_lane_eob(iscan, &v_eobmin, &v_eobmax,
vcombine_u16(v_mask_lo, v_mask_hi), n_coeffs);
intptr_t count = non_zero_count - 8;
for (; count > 0; count -= 8) {
coeff_ptr += 8;
qcoeff_ptr += 8;
dqcoeff_ptr += 8;
iscan += 8;
v_mask_lo = quantize_4(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, v_quant_s32,
v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
v_mask_hi = quantize_4(coeff_ptr + 4, qcoeff_ptr + 4, dqcoeff_ptr + 4,
v_quant_s32, v_dequant_s32, v_round_s32, v_zbin_s32,
v_quant_shift_s32, log_scale);
get_min_max_lane_eob(iscan, &v_eobmin, &v_eobmax,
vcombine_u16(v_mask_lo, v_mask_hi), n_coeffs);
}
int eob = get_max_eob(v_eobmax);
#if SKIP_EOB_FACTOR_ADJUST
const int first = get_min_eob(v_eobmin);
if (eob >= 0 && first == eob) {
const int rc = scan[eob];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 };
const qm_val_t wt = (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS) - prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
eob = -1;
}
}
}
#endif // SKIP_EOB_FACTOR_ADJUST
*eob_ptr = eob + 1;
}
void aom_highbd_quantize_b_adaptive_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_adaptive_neon(
coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 0);
}
void aom_highbd_quantize_b_32x32_adaptive_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_adaptive_neon(
coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 1);
}
void aom_highbd_quantize_b_64x64_adaptive_neon(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
highbd_quantize_b_adaptive_neon(
coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 2);
}
#endif // !CONFIG_REALTIME_ONLY