Source code
Revision control
Copy as Markdown
Other Tools
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
//! Computed types for CSS values that are related to transformations.
use super::CSSFloat;
use crate::values::animated::transform::{Perspective, Scale3D, Translate3D};
use crate::values::animated::ToAnimatedZero;
use crate::values::computed::{Angle, Integer, Length, LengthPercentage, Number, Percentage};
use crate::values::generics::transform as generic;
use crate::Zero;
use euclid::default::{Transform3D, Vector3D};
pub use crate::values::generics::transform::TransformStyle;
pub use crate::values::specified::transform::TransformBox;
/// A single operation in a computed CSS `transform`
pub type TransformOperation =
generic::GenericTransformOperation<Angle, Number, Length, Integer, LengthPercentage>;
/// A computed CSS `transform`
pub type Transform = generic::GenericTransform<TransformOperation>;
/// The computed value of a CSS `<transform-origin>`
pub type TransformOrigin =
generic::GenericTransformOrigin<LengthPercentage, LengthPercentage, Length>;
/// The computed value of the `perspective()` transform function.
pub type PerspectiveFunction = generic::PerspectiveFunction<Length>;
/// A vector to represent the direction vector (rotate axis) for Rotate3D.
pub type DirectionVector = Vector3D<CSSFloat>;
impl TransformOrigin {
/// Returns the initial computed value for `transform-origin`.
#[inline]
pub fn initial_value() -> Self {
Self::new(
LengthPercentage::new_percent(Percentage(0.5)),
LengthPercentage::new_percent(Percentage(0.5)),
Length::new(0.),
)
}
}
/// computed value of matrix3d()
pub type Matrix3D = generic::Matrix3D<Number>;
/// computed value of matrix()
pub type Matrix = generic::Matrix<Number>;
// we rustfmt_skip here because we want the matrices to look like
// matrices instead of being split across lines
#[cfg_attr(rustfmt, rustfmt_skip)]
impl Matrix3D {
/// Get an identity matrix
#[inline]
pub fn identity() -> Self {
Self {
m11: 1.0, m12: 0.0, m13: 0.0, m14: 0.0,
m21: 0.0, m22: 1.0, m23: 0.0, m24: 0.0,
m31: 0.0, m32: 0.0, m33: 1.0, m34: 0.0,
m41: 0., m42: 0., m43: 0., m44: 1.0
}
}
/// Convert to a 2D Matrix
#[inline]
pub fn into_2d(self) -> Result<Matrix, ()> {
if self.m13 == 0. && self.m23 == 0. &&
self.m31 == 0. && self.m32 == 0. &&
self.m33 == 1. && self.m34 == 0. &&
self.m14 == 0. && self.m24 == 0. &&
self.m43 == 0. && self.m44 == 1. {
Ok(Matrix {
a: self.m11, c: self.m21, e: self.m41,
b: self.m12, d: self.m22, f: self.m42,
})
} else {
Err(())
}
}
/// Return true if this has 3D components.
#[inline]
pub fn is_3d(&self) -> bool {
self.m13 != 0.0 || self.m14 != 0.0 ||
self.m23 != 0.0 || self.m24 != 0.0 ||
self.m31 != 0.0 || self.m32 != 0.0 ||
self.m33 != 1.0 || self.m34 != 0.0 ||
self.m43 != 0.0 || self.m44 != 1.0
}
/// Return determinant value.
#[inline]
pub fn determinant(&self) -> CSSFloat {
self.m14 * self.m23 * self.m32 * self.m41 -
self.m13 * self.m24 * self.m32 * self.m41 -
self.m14 * self.m22 * self.m33 * self.m41 +
self.m12 * self.m24 * self.m33 * self.m41 +
self.m13 * self.m22 * self.m34 * self.m41 -
self.m12 * self.m23 * self.m34 * self.m41 -
self.m14 * self.m23 * self.m31 * self.m42 +
self.m13 * self.m24 * self.m31 * self.m42 +
self.m14 * self.m21 * self.m33 * self.m42 -
self.m11 * self.m24 * self.m33 * self.m42 -
self.m13 * self.m21 * self.m34 * self.m42 +
self.m11 * self.m23 * self.m34 * self.m42 +
self.m14 * self.m22 * self.m31 * self.m43 -
self.m12 * self.m24 * self.m31 * self.m43 -
self.m14 * self.m21 * self.m32 * self.m43 +
self.m11 * self.m24 * self.m32 * self.m43 +
self.m12 * self.m21 * self.m34 * self.m43 -
self.m11 * self.m22 * self.m34 * self.m43 -
self.m13 * self.m22 * self.m31 * self.m44 +
self.m12 * self.m23 * self.m31 * self.m44 +
self.m13 * self.m21 * self.m32 * self.m44 -
self.m11 * self.m23 * self.m32 * self.m44 -
self.m12 * self.m21 * self.m33 * self.m44 +
self.m11 * self.m22 * self.m33 * self.m44
}
/// Transpose a matrix.
#[inline]
pub fn transpose(&self) -> Self {
Self {
m11: self.m11, m12: self.m21, m13: self.m31, m14: self.m41,
m21: self.m12, m22: self.m22, m23: self.m32, m24: self.m42,
m31: self.m13, m32: self.m23, m33: self.m33, m34: self.m43,
m41: self.m14, m42: self.m24, m43: self.m34, m44: self.m44,
}
}
/// Return inverse matrix.
pub fn inverse(&self) -> Result<Matrix3D, ()> {
let mut det = self.determinant();
if det == 0.0 {
return Err(());
}
det = 1.0 / det;
let x = Matrix3D {
m11: det *
(self.m23 * self.m34 * self.m42 - self.m24 * self.m33 * self.m42 +
self.m24 * self.m32 * self.m43 - self.m22 * self.m34 * self.m43 -
self.m23 * self.m32 * self.m44 + self.m22 * self.m33 * self.m44),
m12: det *
(self.m14 * self.m33 * self.m42 - self.m13 * self.m34 * self.m42 -
self.m14 * self.m32 * self.m43 + self.m12 * self.m34 * self.m43 +
self.m13 * self.m32 * self.m44 - self.m12 * self.m33 * self.m44),
m13: det *
(self.m13 * self.m24 * self.m42 - self.m14 * self.m23 * self.m42 +
self.m14 * self.m22 * self.m43 - self.m12 * self.m24 * self.m43 -
self.m13 * self.m22 * self.m44 + self.m12 * self.m23 * self.m44),
m14: det *
(self.m14 * self.m23 * self.m32 - self.m13 * self.m24 * self.m32 -
self.m14 * self.m22 * self.m33 + self.m12 * self.m24 * self.m33 +
self.m13 * self.m22 * self.m34 - self.m12 * self.m23 * self.m34),
m21: det *
(self.m24 * self.m33 * self.m41 - self.m23 * self.m34 * self.m41 -
self.m24 * self.m31 * self.m43 + self.m21 * self.m34 * self.m43 +
self.m23 * self.m31 * self.m44 - self.m21 * self.m33 * self.m44),
m22: det *
(self.m13 * self.m34 * self.m41 - self.m14 * self.m33 * self.m41 +
self.m14 * self.m31 * self.m43 - self.m11 * self.m34 * self.m43 -
self.m13 * self.m31 * self.m44 + self.m11 * self.m33 * self.m44),
m23: det *
(self.m14 * self.m23 * self.m41 - self.m13 * self.m24 * self.m41 -
self.m14 * self.m21 * self.m43 + self.m11 * self.m24 * self.m43 +
self.m13 * self.m21 * self.m44 - self.m11 * self.m23 * self.m44),
m24: det *
(self.m13 * self.m24 * self.m31 - self.m14 * self.m23 * self.m31 +
self.m14 * self.m21 * self.m33 - self.m11 * self.m24 * self.m33 -
self.m13 * self.m21 * self.m34 + self.m11 * self.m23 * self.m34),
m31: det *
(self.m22 * self.m34 * self.m41 - self.m24 * self.m32 * self.m41 +
self.m24 * self.m31 * self.m42 - self.m21 * self.m34 * self.m42 -
self.m22 * self.m31 * self.m44 + self.m21 * self.m32 * self.m44),
m32: det *
(self.m14 * self.m32 * self.m41 - self.m12 * self.m34 * self.m41 -
self.m14 * self.m31 * self.m42 + self.m11 * self.m34 * self.m42 +
self.m12 * self.m31 * self.m44 - self.m11 * self.m32 * self.m44),
m33: det *
(self.m12 * self.m24 * self.m41 - self.m14 * self.m22 * self.m41 +
self.m14 * self.m21 * self.m42 - self.m11 * self.m24 * self.m42 -
self.m12 * self.m21 * self.m44 + self.m11 * self.m22 * self.m44),
m34: det *
(self.m14 * self.m22 * self.m31 - self.m12 * self.m24 * self.m31 -
self.m14 * self.m21 * self.m32 + self.m11 * self.m24 * self.m32 +
self.m12 * self.m21 * self.m34 - self.m11 * self.m22 * self.m34),
m41: det *
(self.m23 * self.m32 * self.m41 - self.m22 * self.m33 * self.m41 -
self.m23 * self.m31 * self.m42 + self.m21 * self.m33 * self.m42 +
self.m22 * self.m31 * self.m43 - self.m21 * self.m32 * self.m43),
m42: det *
(self.m12 * self.m33 * self.m41 - self.m13 * self.m32 * self.m41 +
self.m13 * self.m31 * self.m42 - self.m11 * self.m33 * self.m42 -
self.m12 * self.m31 * self.m43 + self.m11 * self.m32 * self.m43),
m43: det *
(self.m13 * self.m22 * self.m41 - self.m12 * self.m23 * self.m41 -
self.m13 * self.m21 * self.m42 + self.m11 * self.m23 * self.m42 +
self.m12 * self.m21 * self.m43 - self.m11 * self.m22 * self.m43),
m44: det *
(self.m12 * self.m23 * self.m31 - self.m13 * self.m22 * self.m31 +
self.m13 * self.m21 * self.m32 - self.m11 * self.m23 * self.m32 -
self.m12 * self.m21 * self.m33 + self.m11 * self.m22 * self.m33),
};
Ok(x)
}
/// Multiply `pin * self`.
#[inline]
pub fn pre_mul_point4(&self, pin: &[f32; 4]) -> [f32; 4] {
[
pin[0] * self.m11 + pin[1] * self.m21 + pin[2] * self.m31 + pin[3] * self.m41,
pin[0] * self.m12 + pin[1] * self.m22 + pin[2] * self.m32 + pin[3] * self.m42,
pin[0] * self.m13 + pin[1] * self.m23 + pin[2] * self.m33 + pin[3] * self.m43,
pin[0] * self.m14 + pin[1] * self.m24 + pin[2] * self.m34 + pin[3] * self.m44,
]
}
/// Return the multiplication of two 4x4 matrices.
#[inline]
pub fn multiply(&self, other: &Self) -> Self {
Matrix3D {
m11: self.m11 * other.m11 + self.m12 * other.m21 +
self.m13 * other.m31 + self.m14 * other.m41,
m12: self.m11 * other.m12 + self.m12 * other.m22 +
self.m13 * other.m32 + self.m14 * other.m42,
m13: self.m11 * other.m13 + self.m12 * other.m23 +
self.m13 * other.m33 + self.m14 * other.m43,
m14: self.m11 * other.m14 + self.m12 * other.m24 +
self.m13 * other.m34 + self.m14 * other.m44,
m21: self.m21 * other.m11 + self.m22 * other.m21 +
self.m23 * other.m31 + self.m24 * other.m41,
m22: self.m21 * other.m12 + self.m22 * other.m22 +
self.m23 * other.m32 + self.m24 * other.m42,
m23: self.m21 * other.m13 + self.m22 * other.m23 +
self.m23 * other.m33 + self.m24 * other.m43,
m24: self.m21 * other.m14 + self.m22 * other.m24 +
self.m23 * other.m34 + self.m24 * other.m44,
m31: self.m31 * other.m11 + self.m32 * other.m21 +
self.m33 * other.m31 + self.m34 * other.m41,
m32: self.m31 * other.m12 + self.m32 * other.m22 +
self.m33 * other.m32 + self.m34 * other.m42,
m33: self.m31 * other.m13 + self.m32 * other.m23 +
self.m33 * other.m33 + self.m34 * other.m43,
m34: self.m31 * other.m14 + self.m32 * other.m24 +
self.m33 * other.m34 + self.m34 * other.m44,
m41: self.m41 * other.m11 + self.m42 * other.m21 +
self.m43 * other.m31 + self.m44 * other.m41,
m42: self.m41 * other.m12 + self.m42 * other.m22 +
self.m43 * other.m32 + self.m44 * other.m42,
m43: self.m41 * other.m13 + self.m42 * other.m23 +
self.m43 * other.m33 + self.m44 * other.m43,
m44: self.m41 * other.m14 + self.m42 * other.m24 +
self.m43 * other.m34 + self.m44 * other.m44,
}
}
/// Scale the matrix by a factor.
#[inline]
pub fn scale_by_factor(&mut self, scaling_factor: CSSFloat) {
self.m11 *= scaling_factor;
self.m12 *= scaling_factor;
self.m13 *= scaling_factor;
self.m14 *= scaling_factor;
self.m21 *= scaling_factor;
self.m22 *= scaling_factor;
self.m23 *= scaling_factor;
self.m24 *= scaling_factor;
self.m31 *= scaling_factor;
self.m32 *= scaling_factor;
self.m33 *= scaling_factor;
self.m34 *= scaling_factor;
self.m41 *= scaling_factor;
self.m42 *= scaling_factor;
self.m43 *= scaling_factor;
self.m44 *= scaling_factor;
}
/// Return the matrix 3x3 part (top-left corner).
/// This is used by retrieving the scale and shear factors
/// during decomposing a 3d matrix.
#[inline]
pub fn get_matrix_3x3_part(&self) -> [[f32; 3]; 3] {
[
[ self.m11, self.m12, self.m13 ],
[ self.m21, self.m22, self.m23 ],
[ self.m31, self.m32, self.m33 ],
]
}
/// Set perspective on the matrix.
#[inline]
pub fn set_perspective(&mut self, perspective: &Perspective) {
self.m14 = perspective.0;
self.m24 = perspective.1;
self.m34 = perspective.2;
self.m44 = perspective.3;
}
/// Apply translate on the matrix.
#[inline]
pub fn apply_translate(&mut self, translate: &Translate3D) {
self.m41 += translate.0 * self.m11 + translate.1 * self.m21 + translate.2 * self.m31;
self.m42 += translate.0 * self.m12 + translate.1 * self.m22 + translate.2 * self.m32;
self.m43 += translate.0 * self.m13 + translate.1 * self.m23 + translate.2 * self.m33;
self.m44 += translate.0 * self.m14 + translate.1 * self.m24 + translate.2 * self.m34;
}
/// Apply scale on the matrix.
#[inline]
pub fn apply_scale(&mut self, scale: &Scale3D) {
self.m11 *= scale.0;
self.m12 *= scale.0;
self.m13 *= scale.0;
self.m14 *= scale.0;
self.m21 *= scale.1;
self.m22 *= scale.1;
self.m23 *= scale.1;
self.m24 *= scale.1;
self.m31 *= scale.2;
self.m32 *= scale.2;
self.m33 *= scale.2;
self.m34 *= scale.2;
}
}
#[cfg_attr(rustfmt, rustfmt_skip)]
impl Matrix {
#[inline]
/// Get an identity matrix
pub fn identity() -> Self {
Self {
a: 1., c: 0., /* 0 0*/
b: 0., d: 1., /* 0 0*/
/* 0 0 1 0 */
e: 0., f: 0., /* 0 1 */
}
}
}
#[cfg_attr(rustfmt, rustfmt_skip)]
impl From<Matrix> for Matrix3D {
fn from(m: Matrix) -> Self {
Self {
m11: m.a, m12: m.b, m13: 0.0, m14: 0.0,
m21: m.c, m22: m.d, m23: 0.0, m24: 0.0,
m31: 0.0, m32: 0.0, m33: 1.0, m34: 0.0,
m41: m.e, m42: m.f, m43: 0.0, m44: 1.0
}
}
}
#[cfg_attr(rustfmt, rustfmt_skip)]
impl From<Transform3D<CSSFloat>> for Matrix3D {
#[inline]
fn from(m: Transform3D<CSSFloat>) -> Self {
Matrix3D {
m11: m.m11, m12: m.m12, m13: m.m13, m14: m.m14,
m21: m.m21, m22: m.m22, m23: m.m23, m24: m.m24,
m31: m.m31, m32: m.m32, m33: m.m33, m34: m.m34,
m41: m.m41, m42: m.m42, m43: m.m43, m44: m.m44
}
}
}
impl TransformOperation {
/// Convert to a Translate3D.
///
/// Must be called on a Translate function
pub fn to_translate_3d(&self) -> Self {
match *self {
generic::TransformOperation::Translate3D(..) => self.clone(),
generic::TransformOperation::TranslateX(ref x) => {
generic::TransformOperation::Translate3D(
x.clone(),
LengthPercentage::zero(),
Length::zero(),
)
},
generic::TransformOperation::Translate(ref x, ref y) => {
generic::TransformOperation::Translate3D(x.clone(), y.clone(), Length::zero())
},
generic::TransformOperation::TranslateY(ref y) => {
generic::TransformOperation::Translate3D(
LengthPercentage::zero(),
y.clone(),
Length::zero(),
)
},
generic::TransformOperation::TranslateZ(ref z) => {
generic::TransformOperation::Translate3D(
LengthPercentage::zero(),
LengthPercentage::zero(),
z.clone(),
)
},
_ => unreachable!(),
}
}
/// Convert to a Rotate3D.
///
/// Must be called on a Rotate function.
pub fn to_rotate_3d(&self) -> Self {
match *self {
generic::TransformOperation::Rotate3D(..) => self.clone(),
generic::TransformOperation::RotateZ(ref angle) |
generic::TransformOperation::Rotate(ref angle) => {
generic::TransformOperation::Rotate3D(0., 0., 1., angle.clone())
},
generic::TransformOperation::RotateX(ref angle) => {
generic::TransformOperation::Rotate3D(1., 0., 0., angle.clone())
},
generic::TransformOperation::RotateY(ref angle) => {
generic::TransformOperation::Rotate3D(0., 1., 0., angle.clone())
},
_ => unreachable!(),
}
}
/// Convert to a Scale3D.
///
/// Must be called on a Scale function
pub fn to_scale_3d(&self) -> Self {
match *self {
generic::TransformOperation::Scale3D(..) => self.clone(),
generic::TransformOperation::Scale(x, y) => {
generic::TransformOperation::Scale3D(x, y, 1.)
},
generic::TransformOperation::ScaleX(x) => {
generic::TransformOperation::Scale3D(x, 1., 1.)
},
generic::TransformOperation::ScaleY(y) => {
generic::TransformOperation::Scale3D(1., y, 1.)
},
generic::TransformOperation::ScaleZ(z) => {
generic::TransformOperation::Scale3D(1., 1., z)
},
_ => unreachable!(),
}
}
}
/// Build an equivalent 'identity transform function list' based
/// on an existing transform list.
impl ToAnimatedZero for TransformOperation {
fn to_animated_zero(&self) -> Result<Self, ()> {
match *self {
generic::TransformOperation::Matrix3D(..) => {
Ok(generic::TransformOperation::Matrix3D(Matrix3D::identity()))
},
generic::TransformOperation::Matrix(..) => {
Ok(generic::TransformOperation::Matrix(Matrix::identity()))
},
generic::TransformOperation::Skew(sx, sy) => Ok(generic::TransformOperation::Skew(
sx.to_animated_zero()?,
sy.to_animated_zero()?,
)),
generic::TransformOperation::SkewX(s) => {
Ok(generic::TransformOperation::SkewX(s.to_animated_zero()?))
},
generic::TransformOperation::SkewY(s) => {
Ok(generic::TransformOperation::SkewY(s.to_animated_zero()?))
},
generic::TransformOperation::Translate3D(ref tx, ref ty, ref tz) => {
Ok(generic::TransformOperation::Translate3D(
tx.to_animated_zero()?,
ty.to_animated_zero()?,
tz.to_animated_zero()?,
))
},
generic::TransformOperation::Translate(ref tx, ref ty) => {
Ok(generic::TransformOperation::Translate(
tx.to_animated_zero()?,
ty.to_animated_zero()?,
))
},
generic::TransformOperation::TranslateX(ref t) => Ok(
generic::TransformOperation::TranslateX(t.to_animated_zero()?),
),
generic::TransformOperation::TranslateY(ref t) => Ok(
generic::TransformOperation::TranslateY(t.to_animated_zero()?),
),
generic::TransformOperation::TranslateZ(ref t) => Ok(
generic::TransformOperation::TranslateZ(t.to_animated_zero()?),
),
generic::TransformOperation::Scale3D(..) => {
Ok(generic::TransformOperation::Scale3D(1.0, 1.0, 1.0))
},
generic::TransformOperation::Scale(_, _) => {
Ok(generic::TransformOperation::Scale(1.0, 1.0))
},
generic::TransformOperation::ScaleX(..) => Ok(generic::TransformOperation::ScaleX(1.0)),
generic::TransformOperation::ScaleY(..) => Ok(generic::TransformOperation::ScaleY(1.0)),
generic::TransformOperation::ScaleZ(..) => Ok(generic::TransformOperation::ScaleZ(1.0)),
generic::TransformOperation::Rotate3D(x, y, z, a) => {
let (x, y, z, _) = generic::get_normalized_vector_and_angle(x, y, z, a);
Ok(generic::TransformOperation::Rotate3D(
x,
y,
z,
Angle::zero(),
))
},
generic::TransformOperation::RotateX(_) => {
Ok(generic::TransformOperation::RotateX(Angle::zero()))
},
generic::TransformOperation::RotateY(_) => {
Ok(generic::TransformOperation::RotateY(Angle::zero()))
},
generic::TransformOperation::RotateZ(_) => {
Ok(generic::TransformOperation::RotateZ(Angle::zero()))
},
generic::TransformOperation::Rotate(_) => {
Ok(generic::TransformOperation::Rotate(Angle::zero()))
},
generic::TransformOperation::Perspective(_) => Ok(
generic::TransformOperation::Perspective(generic::PerspectiveFunction::None),
),
generic::TransformOperation::AccumulateMatrix { .. } |
generic::TransformOperation::InterpolateMatrix { .. } => {
// AccumulateMatrix/InterpolateMatrix: We do interpolation on
// AccumulateMatrix/InterpolateMatrix by reading it as a ComputedMatrix
// (with layout information), and then do matrix interpolation.
//
// Therefore, we use an identity matrix to represent the identity transform list.
Ok(generic::TransformOperation::Matrix3D(Matrix3D::identity()))
},
}
}
}
impl ToAnimatedZero for Transform {
#[inline]
fn to_animated_zero(&self) -> Result<Self, ()> {
Ok(generic::Transform(
self.0
.iter()
.map(|op| op.to_animated_zero())
.collect::<Result<crate::OwnedSlice<_>, _>>()?,
))
}
}
/// A computed CSS `rotate`
pub type Rotate = generic::GenericRotate<Number, Angle>;
/// A computed CSS `translate`
pub type Translate = generic::GenericTranslate<LengthPercentage, Length>;
/// A computed CSS `scale`
pub type Scale = generic::GenericScale<Number>;