Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "CertVerifier.h"
#include <stdint.h>
#include "AppTrustDomain.h"
#include "CTKnownLogs.h"
#include "CTLogVerifier.h"
#include "ExtendedValidation.h"
#include "MultiLogCTVerifier.h"
#include "NSSCertDBTrustDomain.h"
#include "NSSErrorsService.h"
#include "cert.h"
#include "mozilla/Assertions.h"
#include "mozilla/Casting.h"
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/Logging.h"
#include "mozilla/StaticPrefs_security.h"
#include "mozilla/SyncRunnable.h"
#include "mozpkix/pkix.h"
#include "mozpkix/pkixcheck.h"
#include "mozpkix/pkixnss.h"
#include "mozpkix/pkixutil.h"
#include "nsNSSComponent.h"
#include "nsNetCID.h"
#include "nsPromiseFlatString.h"
#include "nsServiceManagerUtils.h"
#include "pk11pub.h"
#include "secmod.h"
using namespace mozilla::ct;
using namespace mozilla::pkix;
using namespace mozilla::psm;
mozilla::LazyLogModule gCertVerifierLog("certverifier");
namespace mozilla {
namespace psm {
const CertVerifier::Flags CertVerifier::FLAG_LOCAL_ONLY = 1;
const CertVerifier::Flags CertVerifier::FLAG_MUST_BE_EV = 2;
const CertVerifier::Flags CertVerifier::FLAG_TLS_IGNORE_STATUS_REQUEST = 4;
static const unsigned int MIN_RSA_BITS = 2048;
static const unsigned int MIN_RSA_BITS_WEAK = 1024;
void CertificateTransparencyInfo::Reset() {
enabled = false;
verifyResult.Reset();
policyCompliance.reset();
}
CertVerifier::CertVerifier(OcspDownloadConfig odc, OcspStrictConfig osc,
mozilla::TimeDuration ocspTimeoutSoft,
mozilla::TimeDuration ocspTimeoutHard,
uint32_t certShortLifetimeInDays,
NetscapeStepUpPolicy netscapeStepUpPolicy,
CertificateTransparencyConfig&& ctConfig,
CRLiteMode crliteMode,
const nsTArray<EnterpriseCert>& thirdPartyCerts)
: mOCSPDownloadConfig(odc),
mOCSPStrict(osc == ocspStrict),
mOCSPTimeoutSoft(ocspTimeoutSoft),
mOCSPTimeoutHard(ocspTimeoutHard),
mCertShortLifetimeInDays(certShortLifetimeInDays),
mNetscapeStepUpPolicy(netscapeStepUpPolicy),
mCTConfig(std::move(ctConfig)),
mCRLiteMode(crliteMode),
mSignatureCache(
signature_cache_new(
StaticPrefs::security_pki_cert_signature_cache_size()),
signature_cache_free),
mTrustCache(
trust_cache_new(StaticPrefs::security_pki_cert_trust_cache_size()),
trust_cache_free) {
LoadKnownCTLogs();
mThirdPartyCerts = thirdPartyCerts.Clone();
for (const auto& root : mThirdPartyCerts) {
Input input;
if (root.GetInput(input) == Success) {
// mThirdPartyCerts consists of roots and intermediates.
if (root.GetIsRoot()) {
mThirdPartyRootInputs.AppendElement(input);
} else {
mThirdPartyIntermediateInputs.AppendElement(input);
}
}
}
}
CertVerifier::~CertVerifier() = default;
Result IsDelegatedCredentialAcceptable(const DelegatedCredentialInfo& dcInfo) {
bool isEcdsa = dcInfo.scheme == ssl_sig_ecdsa_secp256r1_sha256 ||
dcInfo.scheme == ssl_sig_ecdsa_secp384r1_sha384 ||
dcInfo.scheme == ssl_sig_ecdsa_secp521r1_sha512;
// Firefox currently does not advertise any RSA schemes for use
// with Delegated Credentials. As a secondary (on top of NSS)
// check, disallow any RSA SPKI here. When ssl_sig_rsa_pss_pss_*
// schemes are supported, check the modulus size and allow RSA here.
if (!isEcdsa) {
return Result::ERROR_INVALID_KEY;
}
return Result::Success;
}
// The term "builtin root" traditionally refers to a root CA certificate that
// has been added to the NSS trust store, because it has been approved
// for inclusion according to the Mozilla CA policy, and might be accepted
// by Mozilla applications as an issuer for certificates seen on the public web.
Result IsCertBuiltInRoot(Input certInput, bool& result) {
result = false;
if (NS_FAILED(BlockUntilLoadableCertsLoaded())) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
#ifdef DEBUG
nsCOMPtr<nsINSSComponent> component(do_GetService(PSM_COMPONENT_CONTRACTID));
if (!component) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
nsTArray<uint8_t> certBytes;
certBytes.AppendElements(certInput.UnsafeGetData(), certInput.GetLength());
if (NS_FAILED(component->IsCertTestBuiltInRoot(certBytes, &result))) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
if (result) {
return Success;
}
#endif // DEBUG
SECItem certItem(UnsafeMapInputToSECItem(certInput));
AutoSECMODListReadLock lock;
for (SECMODModuleList* list = SECMOD_GetDefaultModuleList(); list;
list = list->next) {
for (int i = 0; i < list->module->slotCount; i++) {
PK11SlotInfo* slot = list->module->slots[i];
// We're searching for the "builtin root module", which is a module that
// contains an object with a CKA_CLASS of CKO_NETSCAPE_BUILTIN_ROOT_LIST.
// We use PK11_HasRootCerts() to identify a module with that property.
// In the past, we exclusively used the PKCS#11 module named nssckbi,
// which is provided by the NSS library.
// Nowadays, some distributions use a replacement module, which contains
// the builtin roots, but which also contains additional CA certificates,
// such as CAs trusted in a local deployment.
// We want to be able to distinguish between these two categories,
// because a CA, which may issue certificates for the public web,
// is expected to comply with additional requirements.
// If the certificate has attribute CKA_NSS_MOZILLA_CA_POLICY set to true,
// then we treat it as a "builtin root".
if (!PK11_IsPresent(slot) || !PK11_HasRootCerts(slot)) {
continue;
}
CK_OBJECT_HANDLE handle =
PK11_FindEncodedCertInSlot(slot, &certItem, nullptr);
if (handle == CK_INVALID_HANDLE) {
continue;
}
if (PK11_HasAttributeSet(slot, handle, CKA_NSS_MOZILLA_CA_POLICY,
false)) {
// Attribute was found, and is set to true
result = true;
break;
}
}
}
return Success;
}
static Result BuildCertChainForOneKeyUsage(
NSSCertDBTrustDomain& trustDomain, Input certDER, Time time, KeyUsage ku1,
KeyUsage ku2, KeyUsage ku3, KeyPurposeId eku,
const CertPolicyId& requiredPolicy, const Input* stapledOCSPResponse,
/*optional out*/ CertVerifier::OCSPStaplingStatus* ocspStaplingStatus) {
trustDomain.ResetAccumulatedState();
Result rv =
BuildCertChain(trustDomain, certDER, time, EndEntityOrCA::MustBeEndEntity,
ku1, eku, requiredPolicy, stapledOCSPResponse);
if (rv == Result::ERROR_INADEQUATE_KEY_USAGE) {
trustDomain.ResetAccumulatedState();
rv = BuildCertChain(trustDomain, certDER, time,
EndEntityOrCA::MustBeEndEntity, ku2, eku,
requiredPolicy, stapledOCSPResponse);
if (rv == Result::ERROR_INADEQUATE_KEY_USAGE) {
trustDomain.ResetAccumulatedState();
rv = BuildCertChain(trustDomain, certDER, time,
EndEntityOrCA::MustBeEndEntity, ku3, eku,
requiredPolicy, stapledOCSPResponse);
if (rv != Success) {
rv = Result::ERROR_INADEQUATE_KEY_USAGE;
}
}
}
if (ocspStaplingStatus) {
*ocspStaplingStatus = trustDomain.GetOCSPStaplingStatus();
}
return rv;
}
void CertVerifier::LoadKnownCTLogs() {
if (mCTConfig.mMode == CertificateTransparencyMode::Disabled) {
return;
}
mCTVerifier = MakeUnique<MultiLogCTVerifier>();
for (const CTLogInfo& log : kCTLogList) {
Input publicKey;
Result rv = publicKey.Init(
BitwiseCast<const uint8_t*, const char*>(log.key), log.keyLength);
if (rv != Success) {
MOZ_ASSERT_UNREACHABLE("Failed reading a log key for a known CT Log");
continue;
}
const CTLogOperatorInfo& logOperator =
kCTLogOperatorList[log.operatorIndex];
CTLogVerifier logVerifier(logOperator.id, log.state, log.timestamp);
rv = logVerifier.Init(publicKey);
if (rv != Success) {
MOZ_ASSERT_UNREACHABLE("Failed initializing a known CT Log");
continue;
}
mCTVerifier->AddLog(std::move(logVerifier));
}
}
bool HostnameMatchesPolicy(const char* hostname, const nsCString& policy) {
// Some contexts don't have a hostname (mostly tests), in which case the
// policy doesn't apply.
if (!hostname) {
return false;
}
nsDependentCString hostnameString(hostname);
// The policy is a comma-separated list of entries of the form
// '.example.com', 'example.com', or an IP address.
for (const auto& entry : policy.Split(',')) {
if (entry.IsEmpty()) {
continue;
}
// For '.example.com' entries, exact matches match the policy.
if (entry[0] == '.' &&
Substring(entry, 1).EqualsIgnoreCase(hostnameString)) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("not enforcing CT for '%s' (matches policy '%s')", hostname,
policy.get()));
return true;
}
// For 'example.com' entries, exact matches or subdomains match the policy
// (IP addresses match here too).
if (StringEndsWith(hostnameString, entry) &&
(hostnameString.Length() == entry.Length() ||
hostnameString[hostnameString.Length() - entry.Length() - 1] == '.')) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("not enforcing CT for '%s' (matches policy '%s')", hostname,
policy.get()));
return true;
}
}
return false;
}
bool CertificateListHasSPKIHashIn(
const nsTArray<nsTArray<uint8_t>>& certificates,
const nsTArray<CopyableTArray<uint8_t>>& spkiHashes) {
if (spkiHashes.IsEmpty()) {
return false;
}
for (const auto& certificate : certificates) {
Input certificateInput;
if (certificateInput.Init(certificate.Elements(), certificate.Length()) !=
Success) {
return false;
}
// No path building is happening here, so this parameter doesn't matter.
EndEntityOrCA notUsedForPathBuilding = EndEntityOrCA::MustBeEndEntity;
BackCert decodedCertificate(certificateInput, notUsedForPathBuilding,
nullptr);
if (decodedCertificate.Init() != Success) {
return false;
}
Input spki(decodedCertificate.GetSubjectPublicKeyInfo());
uint8_t spkiHash[SHA256_LENGTH];
if (DigestBufNSS(spki, DigestAlgorithm::sha256, spkiHash,
sizeof(spkiHash)) != Success) {
return false;
}
Span spkiHashSpan(reinterpret_cast<const uint8_t*>(spkiHash),
sizeof(spkiHash));
for (const auto& candidateSPKIHash : spkiHashes) {
if (Span(candidateSPKIHash) == spkiHashSpan) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("found SPKI hash match - not enforcing CT"));
return true;
}
}
}
return false;
}
Result CertVerifier::VerifyCertificateTransparencyPolicy(
NSSCertDBTrustDomain& trustDomain,
const nsTArray<nsTArray<uint8_t>>& builtChain, Input sctsFromTLS, Time time,
const char* hostname,
/*optional out*/ CertificateTransparencyInfo* ctInfo) {
if (builtChain.IsEmpty()) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
if (ctInfo) {
ctInfo->Reset();
}
if (mCTConfig.mMode == CertificateTransparencyMode::Disabled ||
!trustDomain.GetIsBuiltChainRootBuiltInRoot()) {
return Success;
}
if (time > TimeFromEpochInSeconds(kCTExpirationTime / PR_USEC_PER_SEC)) {
MOZ_LOG(gCertVerifierLog, LogLevel::Warning,
("skipping CT - built-in information has expired"));
return Success;
}
if (ctInfo) {
ctInfo->enabled = true;
}
Result rv = VerifyCertificateTransparencyPolicyInner(
trustDomain, builtChain, sctsFromTLS, time, ctInfo);
if (rv == Result::ERROR_INSUFFICIENT_CERTIFICATE_TRANSPARENCY &&
(mCTConfig.mMode != CertificateTransparencyMode::Enforce ||
HostnameMatchesPolicy(hostname, mCTConfig.mSkipForHosts) ||
CertificateListHasSPKIHashIn(builtChain,
mCTConfig.mSkipForSPKIHashes))) {
return Success;
}
return rv;
}
Result CertVerifier::VerifyCertificateTransparencyPolicyInner(
NSSCertDBTrustDomain& trustDomain,
const nsTArray<nsTArray<uint8_t>>& builtChain, Input sctsFromTLS, Time time,
/*optional out*/ CertificateTransparencyInfo* ctInfo) {
Input embeddedSCTs = trustDomain.GetSCTListFromCertificate();
if (embeddedSCTs.GetLength() > 0) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("Got embedded SCT data of length %zu\n",
static_cast<size_t>(embeddedSCTs.GetLength())));
}
Input sctsFromOCSP = trustDomain.GetSCTListFromOCSPStapling();
if (sctsFromOCSP.GetLength() > 0) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("Got OCSP SCT data of length %zu\n",
static_cast<size_t>(sctsFromOCSP.GetLength())));
}
if (sctsFromTLS.GetLength() > 0) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("Got TLS SCT data of length %zu\n",
static_cast<size_t>(sctsFromTLS.GetLength())));
}
if (builtChain.Length() == 1) {
// Issuer certificate is required for SCT verification.
// If we've arrived here, we probably have a "trust chain" with only one
// certificate (i.e. a self-signed end-entity that has been set as a trust
// anchor either by a third party modifying our trust DB or via the
// enterprise roots feature). If this is the case, certificate transparency
// information will probably not be present, and it certainly won't verify
// correctly. To simplify things, we return an empty CTVerifyResult and a
// "not enough SCTs" CTPolicyCompliance result.
if (ctInfo) {
CTVerifyResult emptyResult;
ctInfo->verifyResult = std::move(emptyResult);
ctInfo->policyCompliance.emplace(CTPolicyCompliance::NotEnoughScts);
}
return Result::ERROR_INSUFFICIENT_CERTIFICATE_TRANSPARENCY;
}
const nsTArray<uint8_t>& endEntityBytes = builtChain.ElementAt(0);
Input endEntityInput;
Result rv =
endEntityInput.Init(endEntityBytes.Elements(), endEntityBytes.Length());
if (rv != Success) {
return rv;
}
const nsTArray<uint8_t>& issuerBytes = builtChain.ElementAt(1);
Input issuerInput;
rv = issuerInput.Init(issuerBytes.Elements(), issuerBytes.Length());
if (rv != Success) {
return rv;
}
BackCert issuerBackCert(issuerInput, EndEntityOrCA::MustBeCA, nullptr);
rv = issuerBackCert.Init();
if (rv != Success) {
return rv;
}
Input issuerPublicKeyInput = issuerBackCert.GetSubjectPublicKeyInfo();
CTVerifyResult result;
rv = mCTVerifier->Verify(endEntityInput, issuerPublicKeyInput, embeddedSCTs,
sctsFromOCSP, sctsFromTLS, time, result);
if (rv != Success) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("SCT verification failed with fatal error %" PRId32 "\n",
static_cast<uint32_t>(rv)));
return rv;
}
if (MOZ_LOG_TEST(gCertVerifierLog, LogLevel::Debug)) {
size_t validCount = 0;
size_t retiredLogCount = 0;
for (const VerifiedSCT& verifiedSct : result.verifiedScts) {
switch (verifiedSct.logState) {
case CTLogState::Admissible:
validCount++;
break;
case CTLogState::Retired:
retiredLogCount++;
break;
}
}
MOZ_LOG(gCertVerifierLog, LogLevel::Debug,
("SCT verification result: "
"valid=%zu unknownLog=%zu retiredLog=%zu "
"invalidSignature=%zu invalidTimestamp=%zu "
"decodingErrors=%zu\n",
validCount, result.sctsFromUnknownLogs, retiredLogCount,
result.sctsWithInvalidSignatures, result.sctsWithInvalidTimestamps,
result.decodingErrors));
}
BackCert endEntityBackCert(endEntityInput, EndEntityOrCA::MustBeEndEntity,
nullptr);
rv = endEntityBackCert.Init();
if (rv != Success) {
return rv;
}
Time notBefore(Time::uninitialized);
Time notAfter(Time::uninitialized);
rv = ParseValidity(endEntityBackCert.GetValidity(), ¬Before, ¬After);
if (rv != Success) {
return rv;
}
Duration certLifetime(notBefore, notAfter);
CTPolicyCompliance ctPolicyCompliance =
CheckCTPolicyCompliance(result.verifiedScts, certLifetime);
if (ctInfo) {
ctInfo->verifyResult = std::move(result);
ctInfo->policyCompliance.emplace(ctPolicyCompliance);
}
if (ctPolicyCompliance != CTPolicyCompliance::Compliant) {
return Result::ERROR_INSUFFICIENT_CERTIFICATE_TRANSPARENCY;
}
return Success;
}
Result CertVerifier::VerifyCert(
const nsTArray<uint8_t>& certBytes, SECCertificateUsage usage, Time time,
void* pinArg, const char* hostname,
/*out*/ nsTArray<nsTArray<uint8_t>>& builtChain,
/*optional*/ const Flags flags,
/*optional*/ const Maybe<nsTArray<nsTArray<uint8_t>>>& extraCertificates,
/*optional*/ const Maybe<nsTArray<uint8_t>>& stapledOCSPResponseArg,
/*optional*/ const Maybe<nsTArray<uint8_t>>& sctsFromTLS,
/*optional*/ const OriginAttributes& originAttributes,
/*optional out*/ EVStatus* evStatus,
/*optional out*/ OCSPStaplingStatus* ocspStaplingStatus,
/*optional out*/ KeySizeStatus* keySizeStatus,
/*optional out*/ PinningTelemetryInfo* pinningTelemetryInfo,
/*optional out*/ CertificateTransparencyInfo* ctInfo,
/*optional out*/ bool* isBuiltChainRootBuiltInRoot,
/*optional out*/ bool* madeOCSPRequests,
/*optional out*/ IssuerSources* issuerSources) {
MOZ_LOG(gCertVerifierLog, LogLevel::Debug, ("Top of VerifyCert\n"));
MOZ_ASSERT(usage == certificateUsageSSLServer || !(flags & FLAG_MUST_BE_EV));
MOZ_ASSERT(usage == certificateUsageSSLServer || !keySizeStatus);
if (NS_FAILED(BlockUntilLoadableCertsLoaded())) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
if (NS_FAILED(CheckForSmartCardChanges())) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
if (evStatus) {
*evStatus = EVStatus::NotEV;
}
if (ocspStaplingStatus) {
if (usage != certificateUsageSSLServer) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
*ocspStaplingStatus = OCSP_STAPLING_NEVER_CHECKED;
}
if (keySizeStatus) {
if (usage != certificateUsageSSLServer) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
*keySizeStatus = KeySizeStatus::NeverChecked;
}
if (usage != certificateUsageSSLServer && (flags & FLAG_MUST_BE_EV)) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
if (isBuiltChainRootBuiltInRoot) {
*isBuiltChainRootBuiltInRoot = false;
}
if (madeOCSPRequests) {
*madeOCSPRequests = false;
}
if (issuerSources) {
issuerSources->clear();
}
Input certDER;
Result rv = certDER.Init(certBytes.Elements(), certBytes.Length());
if (rv != Success) {
return rv;
}
// We configure the OCSP fetching modes separately for EV and non-EV
// verifications.
NSSCertDBTrustDomain::OCSPFetching defaultOCSPFetching =
(mOCSPDownloadConfig == ocspOff) || (mOCSPDownloadConfig == ocspEVOnly) ||
(flags & FLAG_LOCAL_ONLY)
? NSSCertDBTrustDomain::NeverFetchOCSP
: !mOCSPStrict ? NSSCertDBTrustDomain::FetchOCSPForDVSoftFail
: NSSCertDBTrustDomain::FetchOCSPForDVHardFail;
Input stapledOCSPResponseInput;
const Input* stapledOCSPResponse = nullptr;
if (stapledOCSPResponseArg) {
rv = stapledOCSPResponseInput.Init(stapledOCSPResponseArg->Elements(),
stapledOCSPResponseArg->Length());
if (rv != Success) {
// The stapled OCSP response was too big.
return Result::ERROR_OCSP_MALFORMED_RESPONSE;
}
stapledOCSPResponse = &stapledOCSPResponseInput;
}
Input sctsFromTLSInput;
if (sctsFromTLS) {
rv = sctsFromTLSInput.Init(sctsFromTLS->Elements(), sctsFromTLS->Length());
if (rv != Success && sctsFromTLSInput.GetLength() != 0) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
}
switch (usage) {
case certificateUsageSSLClient: {
// XXX: We don't really have a trust bit for SSL client authentication so
// just use trustEmail as it is the closest alternative.
NSSCertDBTrustDomain trustDomain(
trustEmail, defaultOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, MIN_RSA_BITS_WEAK,
ValidityCheckingMode::CheckingOff, NetscapeStepUpPolicy::NeverMatch,
mCRLiteMode, originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain, nullptr,
nullptr);
rv = BuildCertChain(
trustDomain, certDER, time, EndEntityOrCA::MustBeEndEntity,
KeyUsage::digitalSignature, KeyPurposeId::id_kp_clientAuth,
CertPolicyId::anyPolicy, stapledOCSPResponse);
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
break;
}
case certificateUsageSSLServer: {
// TODO: When verifying a certificate in an SSL handshake, we should
// restrict the acceptable key usage based on the key exchange method
// chosen by the server.
// Try to validate for EV first.
NSSCertDBTrustDomain::OCSPFetching evOCSPFetching =
(mOCSPDownloadConfig == ocspOff) || (flags & FLAG_LOCAL_ONLY)
? NSSCertDBTrustDomain::LocalOnlyOCSPForEV
: NSSCertDBTrustDomain::FetchOCSPForEV;
nsTArray<CertPolicyId> evPolicies;
GetKnownEVPolicies(certBytes, evPolicies);
rv = Result::ERROR_UNKNOWN_ERROR;
for (const auto& evPolicy : evPolicies) {
NSSCertDBTrustDomain trustDomain(
trustSSL, evOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, MIN_RSA_BITS,
ValidityCheckingMode::CheckForEV, mNetscapeStepUpPolicy,
mCRLiteMode, originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain,
pinningTelemetryInfo, hostname);
rv = BuildCertChainForOneKeyUsage(
trustDomain, certDER, time,
KeyUsage::digitalSignature, // (EC)DHE
KeyUsage::keyEncipherment, // RSA
KeyUsage::keyAgreement, // (EC)DH
KeyPurposeId::id_kp_serverAuth, evPolicy, stapledOCSPResponse,
ocspStaplingStatus);
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
if (issuerSources) {
*issuerSources = trustDomain.GetIssuerSources();
}
if (rv == Success) {
rv = VerifyCertificateTransparencyPolicy(trustDomain, builtChain,
sctsFromTLSInput, time,
hostname, ctInfo);
}
if (rv == Success) {
if (evStatus) {
*evStatus = EVStatus::EV;
}
if (isBuiltChainRootBuiltInRoot) {
*isBuiltChainRootBuiltInRoot =
trustDomain.GetIsBuiltChainRootBuiltInRoot();
}
break;
}
}
if (rv == Success) {
break;
}
if (flags & FLAG_MUST_BE_EV) {
rv = Result::ERROR_POLICY_VALIDATION_FAILED;
break;
}
// Now try non-EV.
unsigned int keySizeOptions[] = {MIN_RSA_BITS, MIN_RSA_BITS_WEAK};
KeySizeStatus keySizeStatuses[] = {KeySizeStatus::LargeMinimumSucceeded,
KeySizeStatus::CompatibilityRisk};
static_assert(std::size(keySizeOptions) == std::size(keySizeStatuses),
"keySize array lengths differ");
size_t keySizeOptionsCount = std::size(keySizeStatuses);
for (size_t i = 0; i < keySizeOptionsCount && rv != Success; i++) {
// invalidate any telemetry info relating to failed chains
if (pinningTelemetryInfo) {
pinningTelemetryInfo->Reset();
}
NSSCertDBTrustDomain trustDomain(
trustSSL, defaultOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, keySizeOptions[i],
ValidityCheckingMode::CheckingOff, mNetscapeStepUpPolicy,
mCRLiteMode, originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain,
pinningTelemetryInfo, hostname);
rv = BuildCertChainForOneKeyUsage(
trustDomain, certDER, time,
KeyUsage::digitalSignature, //(EC)DHE
KeyUsage::keyEncipherment, // RSA
KeyUsage::keyAgreement, //(EC)DH
KeyPurposeId::id_kp_serverAuth, CertPolicyId::anyPolicy,
stapledOCSPResponse, ocspStaplingStatus);
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
if (issuerSources) {
*issuerSources = trustDomain.GetIssuerSources();
}
if (rv != Success && !IsFatalError(rv) &&
rv != Result::ERROR_REVOKED_CERTIFICATE &&
trustDomain.GetIsErrorDueToDistrustedCAPolicy()) {
// distrusted-by-policy, and none of them ending in a trusted root,
// then we might show a different error (UNKNOWN_ISSUER) than we
// intend, confusing users.
rv = Result::ERROR_ADDITIONAL_POLICY_CONSTRAINT_FAILED;
}
if (rv == Success) {
rv = VerifyCertificateTransparencyPolicy(trustDomain, builtChain,
sctsFromTLSInput, time,
hostname, ctInfo);
}
if (rv == Success) {
if (keySizeStatus) {
*keySizeStatus = keySizeStatuses[i];
}
if (isBuiltChainRootBuiltInRoot) {
*isBuiltChainRootBuiltInRoot =
trustDomain.GetIsBuiltChainRootBuiltInRoot();
}
break;
}
}
if (rv != Success && keySizeStatus) {
*keySizeStatus = KeySizeStatus::AlreadyBad;
}
break;
}
case certificateUsageSSLCA: {
NSSCertDBTrustDomain trustDomain(
trustSSL, defaultOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, MIN_RSA_BITS_WEAK,
ValidityCheckingMode::CheckingOff, mNetscapeStepUpPolicy, mCRLiteMode,
originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain, nullptr,
nullptr);
rv = BuildCertChain(trustDomain, certDER, time, EndEntityOrCA::MustBeCA,
KeyUsage::keyCertSign, KeyPurposeId::id_kp_serverAuth,
CertPolicyId::anyPolicy, stapledOCSPResponse);
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
break;
}
case certificateUsageEmailSigner: {
NSSCertDBTrustDomain trustDomain(
trustEmail, defaultOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, MIN_RSA_BITS_WEAK,
ValidityCheckingMode::CheckingOff, NetscapeStepUpPolicy::NeverMatch,
mCRLiteMode, originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain, nullptr,
nullptr);
rv = BuildCertChain(
trustDomain, certDER, time, EndEntityOrCA::MustBeEndEntity,
KeyUsage::digitalSignature, KeyPurposeId::id_kp_emailProtection,
CertPolicyId::anyPolicy, stapledOCSPResponse);
if (rv == Result::ERROR_INADEQUATE_KEY_USAGE) {
rv = BuildCertChain(
trustDomain, certDER, time, EndEntityOrCA::MustBeEndEntity,
KeyUsage::nonRepudiation, KeyPurposeId::id_kp_emailProtection,
CertPolicyId::anyPolicy, stapledOCSPResponse);
}
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
break;
}
case certificateUsageEmailRecipient: {
// TODO: The higher level S/MIME processing should pass in which key
// usage it is trying to verify for, and base its algorithm choices
// based on the result of the verification(s).
NSSCertDBTrustDomain trustDomain(
trustEmail, defaultOCSPFetching, mOCSPCache, mSignatureCache.get(),
mTrustCache.get(), pinArg, mOCSPTimeoutSoft, mOCSPTimeoutHard,
mCertShortLifetimeInDays, MIN_RSA_BITS_WEAK,
ValidityCheckingMode::CheckingOff, NetscapeStepUpPolicy::NeverMatch,
mCRLiteMode, originAttributes, mThirdPartyRootInputs,
mThirdPartyIntermediateInputs, extraCertificates, builtChain, nullptr,
nullptr);
rv = BuildCertChain(trustDomain, certDER, time,
EndEntityOrCA::MustBeEndEntity,
KeyUsage::keyEncipherment, // RSA
KeyPurposeId::id_kp_emailProtection,
CertPolicyId::anyPolicy, stapledOCSPResponse);
if (rv == Result::ERROR_INADEQUATE_KEY_USAGE) {
rv = BuildCertChain(trustDomain, certDER, time,
EndEntityOrCA::MustBeEndEntity,
KeyUsage::keyAgreement, // ECDH/DH
KeyPurposeId::id_kp_emailProtection,
CertPolicyId::anyPolicy, stapledOCSPResponse);
}
if (madeOCSPRequests) {
*madeOCSPRequests |=
trustDomain.GetOCSPFetchStatus() == OCSPFetchStatus::Fetched;
}
break;
}
default:
rv = Result::FATAL_ERROR_INVALID_ARGS;
}
if (rv != Success) {
return rv;
}
return Success;
}
static bool CertIsSelfSigned(const BackCert& backCert, void* pinarg) {
if (!InputsAreEqual(backCert.GetIssuer(), backCert.GetSubject())) {
return false;
}
nsTArray<Span<const uint8_t>> emptyCertList;
// AppTrustDomain is only used for its signature verification callbacks
// (AppTrustDomain::Verify{ECDSA,RSAPKCS1,RSAPSS}SignedData).
mozilla::psm::AppTrustDomain trustDomain(std::move(emptyCertList));
Result rv = VerifySignedData(trustDomain, backCert.GetSignedData(),
backCert.GetSubjectPublicKeyInfo());
return rv == Success;
}
static Result CheckCertHostnameHelper(Input peerCertInput,
const nsACString& hostname,
bool rootIsBuiltIn) {
Input hostnameInput;
Result rv = hostnameInput.Init(
BitwiseCast<const uint8_t*, const char*>(hostname.BeginReading()),
hostname.Length());
if (rv != Success) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
SkipInvalidSANsForNonBuiltInRootsPolicy nameMatchingPolicy(rootIsBuiltIn);
rv = CheckCertHostname(peerCertInput, hostnameInput, nameMatchingPolicy);
// Treat malformed name information as a domain mismatch.
if (rv == Result::ERROR_BAD_DER) {
return Result::ERROR_BAD_CERT_DOMAIN;
}
return rv;
}
Result CertVerifier::VerifySSLServerCert(
const nsTArray<uint8_t>& peerCertBytes, Time time,
/*optional*/ void* pinarg, const nsACString& hostname,
/*out*/ nsTArray<nsTArray<uint8_t>>& builtChain,
/*optional*/ Flags flags,
/*optional*/ const Maybe<nsTArray<nsTArray<uint8_t>>>& extraCertificates,
/*optional*/ const Maybe<nsTArray<uint8_t>>& stapledOCSPResponse,
/*optional*/ const Maybe<nsTArray<uint8_t>>& sctsFromTLS,
/*optional*/ const Maybe<DelegatedCredentialInfo>& dcInfo,
/*optional*/ const OriginAttributes& originAttributes,
/*optional out*/ EVStatus* evStatus,
/*optional out*/ OCSPStaplingStatus* ocspStaplingStatus,
/*optional out*/ KeySizeStatus* keySizeStatus,
/*optional out*/ PinningTelemetryInfo* pinningTelemetryInfo,
/*optional out*/ CertificateTransparencyInfo* ctInfo,
/*optional out*/ bool* isBuiltChainRootBuiltInRoot,
/*optional out*/ bool* madeOCSPRequests,
/*optional out*/ IssuerSources* issuerSources) {
// XXX: MOZ_ASSERT(pinarg);
MOZ_ASSERT(!hostname.IsEmpty());
if (isBuiltChainRootBuiltInRoot) {
*isBuiltChainRootBuiltInRoot = false;
}
if (evStatus) {
*evStatus = EVStatus::NotEV;
}
if (hostname.IsEmpty()) {
return Result::FATAL_ERROR_INVALID_ARGS;
}
// CreateCertErrorRunnable assumes that CheckCertHostname is only called
// if VerifyCert succeeded.
Input peerCertInput;
Result rv =
peerCertInput.Init(peerCertBytes.Elements(), peerCertBytes.Length());
if (rv != Success) {
return rv;
}
bool isBuiltChainRootBuiltInRootLocal;
rv = VerifyCert(
peerCertBytes, certificateUsageSSLServer, time, pinarg,
PromiseFlatCString(hostname).get(), builtChain, flags, extraCertificates,
stapledOCSPResponse, sctsFromTLS, originAttributes, evStatus,
ocspStaplingStatus, keySizeStatus, pinningTelemetryInfo, ctInfo,
&isBuiltChainRootBuiltInRootLocal, madeOCSPRequests, issuerSources);
if (rv != Success) {
// we don't use the certificate for path building, so this parameter doesn't
// matter
EndEntityOrCA notUsedForPaths = EndEntityOrCA::MustBeEndEntity;
BackCert peerBackCert(peerCertInput, notUsedForPaths, nullptr);
if (peerBackCert.Init() != Success) {
return rv;
}
if ((rv == Result::ERROR_UNKNOWN_ISSUER ||
rv == Result::ERROR_BAD_SIGNATURE ||
rv == Result::ERROR_INADEQUATE_KEY_USAGE) &&
CertIsSelfSigned(peerBackCert, pinarg)) {
// In this case we didn't find any issuer for the certificate, or we did
// find other certificates with the same subject but different keys, and
// the certificate is self-signed.
return Result::ERROR_SELF_SIGNED_CERT;
}
if (rv == Result::ERROR_UNKNOWN_ISSUER) {
// In this case we didn't get any valid path for the cert. Let's see if
// the issuer is the same as the issuer for our canary probe. If yes, this
// connection is connecting via a misconfigured proxy.
// Note: The MitM canary might not be set. In this case we consider this
// an unknown issuer error.
nsCOMPtr<nsINSSComponent> component(
do_GetService(PSM_COMPONENT_CONTRACTID));
if (!component) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
// IssuerMatchesMitmCanary succeeds if the issuer matches the canary and
// the feature is enabled.
Input issuerNameInput = peerBackCert.GetIssuer();
SECItem issuerNameItem = UnsafeMapInputToSECItem(issuerNameInput);
UniquePORTString issuerName(CERT_DerNameToAscii(&issuerNameItem));
if (!issuerName) {
return Result::ERROR_BAD_DER;
}
nsresult rv = component->IssuerMatchesMitmCanary(issuerName.get());
if (NS_SUCCEEDED(rv)) {
return Result::ERROR_MITM_DETECTED;
}
}
// If the certificate is expired or not yet valid, first check whether or
// not it is valid for the indicated hostname, because that would be a more
// serious error.
if (rv == Result::ERROR_EXPIRED_CERTIFICATE ||
rv == Result::ERROR_NOT_YET_VALID_CERTIFICATE ||
rv == Result::ERROR_INVALID_DER_TIME) {
Result hostnameResult =
CheckCertHostnameHelper(peerCertInput, hostname, false);
if (hostnameResult != Success) {
return hostnameResult;
}
}
return rv;
}
if (dcInfo) {
rv = IsDelegatedCredentialAcceptable(*dcInfo);
if (rv != Success) {
return rv;
}
}
Input stapledOCSPResponseInput;
Input* responseInputPtr = nullptr;
if (stapledOCSPResponse) {
rv = stapledOCSPResponseInput.Init(stapledOCSPResponse->Elements(),
stapledOCSPResponse->Length());
if (rv != Success) {
// The stapled OCSP response was too big.
return Result::ERROR_OCSP_MALFORMED_RESPONSE;
}
responseInputPtr = &stapledOCSPResponseInput;
}
if (!(flags & FLAG_TLS_IGNORE_STATUS_REQUEST)) {
rv = CheckTLSFeaturesAreSatisfied(peerCertInput, responseInputPtr);
if (rv != Success) {
return rv;
}
}
rv = CheckCertHostnameHelper(peerCertInput, hostname,
isBuiltChainRootBuiltInRootLocal);
if ((rv == Success || rv == Result::ERROR_BAD_CERT_DOMAIN) &&
isBuiltChainRootBuiltInRoot) {
*isBuiltChainRootBuiltInRoot = isBuiltChainRootBuiltInRootLocal;
}
if (rv != Success) {
return rv;
}
return Success;
}
// Take the (data, signature, subjectPublicKeyInfo, publicKeyAlgorithm,
// digestAlgorithm) tuple that defines a signature and derive a hash that
// uniquely identifies it. This is done by prefixing each variable-length
// component (data, signature, and subjectPublicKeyInfo) with
// sizeof(pkix::Input::size_type) bytes (currently 2) indicating the length of
// that component and concatenating them together, followed by one byte for the
// digestAlgorithm. The concatenation is then hashed with sha512.
// It should be computationally infeasible to find two distinct sets of inputs
// that have the same sha512 hash (and if it were possible, then it would be
// possible to break the signature scheme itself).
void HashSignatureParams(pkix::Input data, pkix::Input signature,
pkix::Input subjectPublicKeyInfo,
pkix::der::PublicKeyAlgorithm publicKeyAlgorithm,
pkix::DigestAlgorithm digestAlgorithm,
/*out*/ Maybe<nsTArray<uint8_t>>& sha512Hash) {
sha512Hash.reset();
Digest digest;
if (NS_FAILED(digest.Begin(SEC_OID_SHA512))) {
return;
}
pkix::Input::size_type dataLength = data.GetLength();
if (NS_FAILED(digest.Update(reinterpret_cast<const uint8_t*>(&dataLength),
sizeof(dataLength)))) {
return;
}
if (NS_FAILED(digest.Update(data.UnsafeGetData(), dataLength))) {
return;
}
pkix::Input::size_type signatureLength = signature.GetLength();
if (NS_FAILED(
digest.Update(reinterpret_cast<const uint8_t*>(&signatureLength),
sizeof(signatureLength)))) {
return;
}
if (NS_FAILED(digest.Update(signature.UnsafeGetData(), signatureLength))) {
return;
}
pkix::Input::size_type spkiLength = subjectPublicKeyInfo.GetLength();
if (NS_FAILED(digest.Update(reinterpret_cast<const uint8_t*>(&spkiLength),
sizeof(spkiLength)))) {
return;
}
if (NS_FAILED(
digest.Update(subjectPublicKeyInfo.UnsafeGetData(), spkiLength))) {
return;
}
if (NS_FAILED(
digest.Update(reinterpret_cast<const uint8_t*>(&publicKeyAlgorithm),
sizeof(publicKeyAlgorithm)))) {
return;
}
if (NS_FAILED(
digest.Update(reinterpret_cast<const uint8_t*>(&digestAlgorithm),
sizeof(digestAlgorithm)))) {
return;
}
nsTArray<uint8_t> result;
if (NS_FAILED(digest.End(result))) {
return;
}
sha512Hash.emplace(std::move(result));
}
Result VerifySignedDataWithCache(
der::PublicKeyAlgorithm publicKeyAlg,
mozilla::glean::impl::DenominatorMetric telemetryDenominator,
mozilla::glean::impl::NumeratorMetric telemetryNumerator, Input data,
DigestAlgorithm digestAlgorithm, Input signature,
Input subjectPublicKeyInfo, SignatureCache* signatureCache, void* pinArg) {
telemetryDenominator.Add(1);
Maybe<nsTArray<uint8_t>> sha512Hash;
HashSignatureParams(data, signature, subjectPublicKeyInfo, publicKeyAlg,
digestAlgorithm, sha512Hash);
// If hashing the signature parameters succeeded, see if this signature is in
// the signature cache.
if (sha512Hash.isSome() &&
signature_cache_get(signatureCache, sha512Hash.ref().Elements())) {
telemetryNumerator.AddToNumerator(1);
return Success;
}
Result result;
switch (publicKeyAlg) {
case der::PublicKeyAlgorithm::ECDSA:
result = VerifyECDSASignedDataNSS(data, digestAlgorithm, signature,
subjectPublicKeyInfo, pinArg);
break;
case der::PublicKeyAlgorithm::RSA_PKCS1:
result = VerifyRSAPKCS1SignedDataNSS(data, digestAlgorithm, signature,
subjectPublicKeyInfo, pinArg);
break;
case der::PublicKeyAlgorithm::RSA_PSS:
result = VerifyRSAPSSSignedDataNSS(data, digestAlgorithm, signature,
subjectPublicKeyInfo, pinArg);
break;
default:
MOZ_ASSERT_UNREACHABLE("unhandled public key algorithm");
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
// Add this signature to the signature cache.
if (sha512Hash.isSome() && result == Success) {
signature_cache_insert(signatureCache, sha512Hash.ref().Elements());
}
return result;
}
} // namespace psm
} // namespace mozilla