Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
/*
* prtime.c --
*
* NSPR date and time functions
*
*/
#include "prinit.h"
#include "prtime.h"
#include "prlock.h"
#include "prprf.h"
#include "prlog.h"
#include <string.h>
#include <ctype.h>
#include <errno.h> /* for EINVAL */
#include <time.h>
/*
* The COUNT_LEAPS macro counts the number of leap years passed by
* till the start of the given year Y. At the start of the year 4
* A.D. the number of leap years passed by is 0, while at the start of
* the year 5 A.D. this count is 1. The number of years divisible by
* 100 but not divisible by 400 (the non-leap years) is deducted from
* the count to get the correct number of leap years.
*
* The COUNT_DAYS macro counts the number of days since 01/01/01 till the
* start of the given year Y. The number of days at the start of the year
* 1 is 0 while the number of days at the start of the year 2 is 365
* (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
* midnight 00:00:00.
*/
#define COUNT_LEAPS(Y) (((Y) - 1) / 4 - ((Y) - 1) / 100 + ((Y) - 1) / 400)
#define COUNT_DAYS(Y) (((Y) - 1) * 365 + COUNT_LEAPS(Y))
#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
/*
* Static variables used by functions in this file
*/
/*
* The following array contains the day of year for the last day of
* each month, where index 1 is January, and day 0 is January 1.
*/
static const int lastDayOfMonth[2][13] = {
{-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
{-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}};
/*
* The number of days in a month
*/
static const PRInt8 nDays[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
/*
* Declarations for internal functions defined later in this file.
*/
static void ComputeGMT(PRTime time, PRExplodedTime* gmt);
static int IsLeapYear(PRInt16 year);
static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset);
/*
*------------------------------------------------------------------------
*
* ComputeGMT --
*
* Caveats:
* - we ignore leap seconds
*
*------------------------------------------------------------------------
*/
static void ComputeGMT(PRTime time, PRExplodedTime* gmt) {
PRInt32 tmp, rem;
PRInt32 numDays;
PRInt64 numDays64, rem64;
int isLeap;
PRInt64 sec;
PRInt64 usec;
PRInt64 usecPerSec;
PRInt64 secPerDay;
/*
* We first do the usec, sec, min, hour thing so that we do not
* have to do LL arithmetic.
*/
LL_I2L(usecPerSec, 1000000L);
LL_DIV(sec, time, usecPerSec);
LL_MOD(usec, time, usecPerSec);
LL_L2I(gmt->tm_usec, usec);
/* Correct for weird mod semantics so the remainder is always positive */
if (gmt->tm_usec < 0) {
PRInt64 one;
LL_I2L(one, 1L);
LL_SUB(sec, sec, one);
gmt->tm_usec += 1000000L;
}
LL_I2L(secPerDay, 86400L);
LL_DIV(numDays64, sec, secPerDay);
LL_MOD(rem64, sec, secPerDay);
/* We are sure both of these numbers can fit into PRInt32 */
LL_L2I(numDays, numDays64);
LL_L2I(rem, rem64);
if (rem < 0) {
numDays--;
rem += 86400L;
}
/* Compute day of week. Epoch started on a Thursday. */
gmt->tm_wday = (numDays + 4) % 7;
if (gmt->tm_wday < 0) {
gmt->tm_wday += 7;
}
/* Compute the time of day. */
gmt->tm_hour = rem / 3600;
rem %= 3600;
gmt->tm_min = rem / 60;
gmt->tm_sec = rem % 60;
/*
* Compute the year by finding the 400 year period, then working
* down from there.
*
* Since numDays is originally the number of days since January 1, 1970,
* we must change it to be the number of days from January 1, 0001.
*/
numDays += 719162; /* 719162 = days from year 1 up to 1970 */
tmp = numDays / 146097; /* 146097 = days in 400 years */
rem = numDays % 146097;
gmt->tm_year = tmp * 400 + 1;
/* Compute the 100 year period. */
tmp = rem / 36524; /* 36524 = days in 100 years */
rem %= 36524;
if (tmp == 4) { /* the 400th year is a leap year */
tmp = 3;
rem = 36524;
}
gmt->tm_year += tmp * 100;
/* Compute the 4 year period. */
tmp = rem / 1461; /* 1461 = days in 4 years */
rem %= 1461;
gmt->tm_year += tmp * 4;
/* Compute which year in the 4. */
tmp = rem / 365;
rem %= 365;
if (tmp == 4) { /* the 4th year is a leap year */
tmp = 3;
rem = 365;
}
gmt->tm_year += tmp;
gmt->tm_yday = rem;
isLeap = IsLeapYear(gmt->tm_year);
/* Compute the month and day of month. */
for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
}
gmt->tm_month = --tmp;
gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
gmt->tm_params.tp_gmt_offset = 0;
gmt->tm_params.tp_dst_offset = 0;
}
/*
*------------------------------------------------------------------------
*
* PR_ExplodeTime --
*
* Cf. struct tm *gmtime(const time_t *tp) and
* struct tm *localtime(const time_t *tp)
*
*------------------------------------------------------------------------
*/
PR_IMPLEMENT(void)
PR_ExplodeTime(PRTime usecs, PRTimeParamFn params, PRExplodedTime* exploded) {
ComputeGMT(usecs, exploded);
exploded->tm_params = params(exploded);
ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset +
exploded->tm_params.tp_dst_offset);
}
/*
*------------------------------------------------------------------------
*
* PR_ImplodeTime --
*
* Cf. time_t mktime(struct tm *tp)
* Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
*
*------------------------------------------------------------------------
*/
PR_IMPLEMENT(PRTime)
PR_ImplodeTime(const PRExplodedTime* exploded) {
PRExplodedTime copy;
PRTime retVal;
PRInt64 secPerDay, usecPerSec;
PRInt64 temp;
PRInt64 numSecs64;
PRInt32 numDays;
PRInt32 numSecs;
/* Normalize first. Do this on our copy */
copy = *exploded;
PR_NormalizeTime(©, PR_GMTParameters);
numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 +
copy.tm_sec;
LL_I2L(temp, numDays);
LL_I2L(secPerDay, 86400);
LL_MUL(temp, temp, secPerDay);
LL_I2L(numSecs64, numSecs);
LL_ADD(numSecs64, numSecs64, temp);
/* apply the GMT and DST offsets */
LL_I2L(temp, copy.tm_params.tp_gmt_offset);
LL_SUB(numSecs64, numSecs64, temp);
LL_I2L(temp, copy.tm_params.tp_dst_offset);
LL_SUB(numSecs64, numSecs64, temp);
LL_I2L(usecPerSec, 1000000L);
LL_MUL(temp, numSecs64, usecPerSec);
LL_I2L(retVal, copy.tm_usec);
LL_ADD(retVal, retVal, temp);
return retVal;
}
/*
*-------------------------------------------------------------------------
*
* IsLeapYear --
*
* Returns 1 if the year is a leap year, 0 otherwise.
*
*-------------------------------------------------------------------------
*/
static int IsLeapYear(PRInt16 year) {
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {
return 1;
}
return 0;
}
/*
* 'secOffset' should be less than 86400 (i.e., a day).
* 'time' should point to a normalized PRExplodedTime.
*/
static void ApplySecOffset(PRExplodedTime* time, PRInt32 secOffset) {
time->tm_sec += secOffset;
/* Note that in this implementation we do not count leap seconds */
if (time->tm_sec < 0 || time->tm_sec >= 60) {
time->tm_min += time->tm_sec / 60;
time->tm_sec %= 60;
if (time->tm_sec < 0) {
time->tm_sec += 60;
time->tm_min--;
}
}
if (time->tm_min < 0 || time->tm_min >= 60) {
time->tm_hour += time->tm_min / 60;
time->tm_min %= 60;
if (time->tm_min < 0) {
time->tm_min += 60;
time->tm_hour--;
}
}
if (time->tm_hour < 0) {
/* Decrement mday, yday, and wday */
time->tm_hour += 24;
time->tm_mday--;
time->tm_yday--;
if (time->tm_mday < 1) {
time->tm_month--;
if (time->tm_month < 0) {
time->tm_month = 11;
time->tm_year--;
if (IsLeapYear(time->tm_year)) {
time->tm_yday = 365;
} else {
time->tm_yday = 364;
}
}
time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
}
time->tm_wday--;
if (time->tm_wday < 0) {
time->tm_wday = 6;
}
} else if (time->tm_hour > 23) {
/* Increment mday, yday, and wday */
time->tm_hour -= 24;
time->tm_mday++;
time->tm_yday++;
if (time->tm_mday > nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
time->tm_mday = 1;
time->tm_month++;
if (time->tm_month > 11) {
time->tm_month = 0;
time->tm_year++;
time->tm_yday = 0;
}
}
time->tm_wday++;
if (time->tm_wday > 6) {
time->tm_wday = 0;
}
}
}
PR_IMPLEMENT(void)
PR_NormalizeTime(PRExplodedTime* time, PRTimeParamFn params) {
int daysInMonth;
PRInt32 numDays;
/* Get back to GMT */
time->tm_sec -= time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset;
time->tm_params.tp_gmt_offset = 0;
time->tm_params.tp_dst_offset = 0;
/* Now normalize GMT */
if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
time->tm_sec += time->tm_usec / 1000000;
time->tm_usec %= 1000000;
if (time->tm_usec < 0) {
time->tm_usec += 1000000;
time->tm_sec--;
}
}
/* Note that we do not count leap seconds in this implementation */
if (time->tm_sec < 0 || time->tm_sec >= 60) {
time->tm_min += time->tm_sec / 60;
time->tm_sec %= 60;
if (time->tm_sec < 0) {
time->tm_sec += 60;
time->tm_min--;
}
}
if (time->tm_min < 0 || time->tm_min >= 60) {
time->tm_hour += time->tm_min / 60;
time->tm_min %= 60;
if (time->tm_min < 0) {
time->tm_min += 60;
time->tm_hour--;
}
}
if (time->tm_hour < 0 || time->tm_hour >= 24) {
time->tm_mday += time->tm_hour / 24;
time->tm_hour %= 24;
if (time->tm_hour < 0) {
time->tm_hour += 24;
time->tm_mday--;
}
}
/* Normalize month and year before mday */
if (time->tm_month < 0 || time->tm_month >= 12) {
time->tm_year += time->tm_month / 12;
time->tm_month %= 12;
if (time->tm_month < 0) {
time->tm_month += 12;
time->tm_year--;
}
}
/* Now that month and year are in proper range, normalize mday */
if (time->tm_mday < 1) {
/* mday too small */
do {
/* the previous month */
time->tm_month--;
if (time->tm_month < 0) {
time->tm_month = 11;
time->tm_year--;
}
time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
} while (time->tm_mday < 1);
} else {
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
while (time->tm_mday > daysInMonth) {
/* mday too large */
time->tm_mday -= daysInMonth;
time->tm_month++;
if (time->tm_month > 11) {
time->tm_month = 0;
time->tm_year++;
}
daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
}
}
/* Recompute yday and wday */
time->tm_yday =
time->tm_mday + lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
time->tm_wday = (numDays + 4) % 7;
if (time->tm_wday < 0) {
time->tm_wday += 7;
}
/* Recompute time parameters */
time->tm_params = params(time);
ApplySecOffset(time,
time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset);
}
/*
*-------------------------------------------------------------------------
*
* PR_LocalTimeParameters --
*
* returns the time parameters for the local time zone
*
* The following uses localtime() from the standard C library.
* (time.h) This is our fallback implementation. Unix, PC, and BeOS
* use this version. A platform may have its own machine-dependent
* implementation of this function.
*
*-------------------------------------------------------------------------
*/
#if defined(HAVE_INT_LOCALTIME_R)
/*
* In this case we could define the macro as
* #define MT_safe_localtime(timer, result) \
* (localtime_r(timer, result) == 0 ? result : NULL)
* I chose to compare the return value of localtime_r with -1 so
* that I can catch the cases where localtime_r returns a pointer
* to struct tm. The macro definition above would not be able to
* detect such mistakes because it is legal to compare a pointer
* with 0.
*/
# define MT_safe_localtime(timer, result) \
(localtime_r(timer, result) == -1 ? NULL : result)
#elif defined(HAVE_POINTER_LOCALTIME_R)
# define MT_safe_localtime localtime_r
#elif defined(_MSC_VER)
/* Visual C++ has had localtime_s() since Visual C++ 2005. */
static struct tm* MT_safe_localtime(const time_t* clock, struct tm* result) {
errno_t err = localtime_s(result, clock);
if (err != 0) {
errno = err;
return NULL;
}
return result;
}
#else
# define HAVE_LOCALTIME_MONITOR \
1 /* We use 'monitor' to serialize our calls \
* to localtime(). */
static PRLock* monitor = NULL;
static struct tm* MT_safe_localtime(const time_t* clock, struct tm* result) {
struct tm* tmPtr;
int needLock = PR_Initialized(); /* We need to use a lock to protect
* against NSPR threads only when the
* NSPR thread system is activated. */
if (needLock) {
PR_Lock(monitor);
}
/*
* Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
* represents a time before midnight January 1, 1970. In
* that case, we also return a NULL pointer and the struct tm
* object pointed to by 'result' is not modified.
*
*/
tmPtr = localtime(clock);
if (tmPtr) {
*result = *tmPtr;
} else {
result = NULL;
}
if (needLock) {
PR_Unlock(monitor);
}
return result;
}
#endif /* definition of MT_safe_localtime() */
void _PR_InitTime(void) {
#ifdef HAVE_LOCALTIME_MONITOR
monitor = PR_NewLock();
#endif
#ifdef WINCE
_MD_InitTime();
#endif
}
void _PR_CleanupTime(void) {
#ifdef HAVE_LOCALTIME_MONITOR
if (monitor) {
PR_DestroyLock(monitor);
monitor = NULL;
}
#endif
#ifdef WINCE
_MD_CleanupTime();
#endif
}
#if defined(XP_UNIX) || defined(XP_PC)
PR_IMPLEMENT(PRTimeParameters)
PR_LocalTimeParameters(const PRExplodedTime* gmt) {
PRTimeParameters retVal;
struct tm localTime;
struct tm* localTimeResult;
time_t secs;
PRTime secs64;
PRInt64 usecPerSec;
PRInt64 usecPerSec_1;
PRInt64 maxInt32;
PRInt64 minInt32;
PRInt32 dayOffset;
PRInt32 offset2Jan1970;
PRInt32 offsetNew;
int isdst2Jan1970;
/*
* Calculate the GMT offset. First, figure out what is
* 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
* seconds, since the epoch) in local time. Then we calculate
* the difference between local time and GMT in seconds:
* gmt_offset = local_time - GMT
*
* Caveat: the validity of this calculation depends on two
* assumptions:
* 1. Daylight saving time was not in effect on Jan. 2, 1970.
* 2. The time zone of the geographic location has not changed
* since Jan. 2, 1970.
*/
secs = 86400L;
localTimeResult = MT_safe_localtime(&secs, &localTime);
PR_ASSERT(localTimeResult != NULL);
if (localTimeResult == NULL) {
/* Shouldn't happen. Use safe fallback for optimized builds. */
return PR_GMTParameters(gmt);
}
/* GMT is 00:00:00, 2nd of Jan. */
offset2Jan1970 = (PRInt32)localTime.tm_sec + 60L * (PRInt32)localTime.tm_min +
3600L * (PRInt32)localTime.tm_hour +
86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
isdst2Jan1970 = localTime.tm_isdst;
/*
* Now compute DST offset. We calculate the overall offset
* of local time from GMT, similar to above. The overall
* offset has two components: gmt offset and dst offset.
* We subtract gmt offset from the overall offset to get
* the dst offset.
* overall_offset = local_time - GMT
* overall_offset = gmt_offset + dst_offset
* ==> dst_offset = local_time - GMT - gmt_offset
*/
secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */
LL_I2L(usecPerSec, PR_USEC_PER_SEC);
LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1);
/* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */
if (LL_GE_ZERO(secs64)) {
LL_DIV(secs64, secs64, usecPerSec);
} else {
LL_NEG(secs64, secs64);
LL_ADD(secs64, secs64, usecPerSec_1);
LL_DIV(secs64, secs64, usecPerSec);
LL_NEG(secs64, secs64);
}
LL_I2L(maxInt32, PR_INT32_MAX);
LL_I2L(minInt32, PR_INT32_MIN);
if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
/* secs64 is too large or too small for time_t (32-bit integer) */
retVal.tp_gmt_offset = offset2Jan1970;
retVal.tp_dst_offset = 0;
return retVal;
}
LL_L2I(secs, secs64);
/*
* On Windows, localtime() (and our MT_safe_localtime() too)
* returns a NULL pointer for time before midnight January 1,
* 1970 GMT. In that case, we just use the GMT offset for
* Jan 2, 1970 and assume that DST was not in effect.
*/
if (MT_safe_localtime(&secs, &localTime) == NULL) {
retVal.tp_gmt_offset = offset2Jan1970;
retVal.tp_dst_offset = 0;
return retVal;
}
/*
* dayOffset is the offset between local time and GMT in
* the day component, which can only be -1, 0, or 1. We
* use the day of the week to compute dayOffset.
*/
dayOffset = (PRInt32)localTime.tm_wday - gmt->tm_wday;
/*
* Need to adjust for wrapping around of day of the week from
* 6 back to 0.
*/
if (dayOffset == -6) {
/* Local time is Sunday (0) and GMT is Saturday (6) */
dayOffset = 1;
} else if (dayOffset == 6) {
/* Local time is Saturday (6) and GMT is Sunday (0) */
dayOffset = -1;
}
offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec +
60L * ((PRInt32)localTime.tm_min - gmt->tm_min) +
3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) +
86400L * (PRInt32)dayOffset;
if (localTime.tm_isdst <= 0) {
/* DST is not in effect */
retVal.tp_gmt_offset = offsetNew;
retVal.tp_dst_offset = 0;
} else {
/* DST is in effect */
if (isdst2Jan1970 <= 0) {
/*
* DST was not in effect back in 2 Jan. 1970.
* Use the offset back then as the GMT offset,
* assuming the time zone has not changed since then.
*/
retVal.tp_gmt_offset = offset2Jan1970;
retVal.tp_dst_offset = offsetNew - offset2Jan1970;
} else {
/*
* DST was also in effect back in 2 Jan. 1970.
* Then our clever trick (or rather, ugly hack) fails.
* We will just assume DST offset is an hour.
*/
retVal.tp_gmt_offset = offsetNew - 3600;
retVal.tp_dst_offset = 3600;
}
}
return retVal;
}
#endif /* defined(XP_UNIX) || defined(XP_PC) */
/*
*------------------------------------------------------------------------
*
* PR_USPacificTimeParameters --
*
* The time parameters function for the US Pacific Time Zone.
*
*------------------------------------------------------------------------
*/
/*
* Returns the mday of the first sunday of the month, where
* mday and wday are for a given day in the month.
* mdays start with 1 (e.g. 1..31).
* wdays start with 0 and are in the range 0..6. 0 = Sunday.
*/
#define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1)
/*
* Returns the mday for the N'th Sunday of the month, where
* mday and wday are for a given day in the month.
* mdays start with 1 (e.g. 1..31).
* wdays start with 0 and are in the range 0..6. 0 = Sunday.
* N has the following values: 0 = first, 1 = second (etc), -1 = last.
* ndays is the number of days in that month, the same value as the
* mday of the last day of the month.
*/
static PRInt32 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) {
PRInt32 firstSun = firstSunday(mday, wday);
if (N < 0) {
N = (ndays - firstSun) / 7;
}
return firstSun + (7 * N);
}
typedef struct DSTParams {
PRInt8 dst_start_month; /* 0 = January */
PRInt8 dst_start_Nth_Sunday; /* N as defined above */
PRInt8 dst_start_month_ndays; /* ndays as defined above */
PRInt8 dst_end_month; /* 0 = January */
PRInt8 dst_end_Nth_Sunday; /* N as defined above */
PRInt8 dst_end_month_ndays; /* ndays as defined above */
} DSTParams;
static const DSTParams dstParams[2] = {
/* year < 2007: First April Sunday - Last October Sunday */
{3, 0, 30, 9, -1, 31},
/* year >= 2007: Second March Sunday - First November Sunday */
{2, 1, 31, 10, 0, 30}};
PR_IMPLEMENT(PRTimeParameters)
PR_USPacificTimeParameters(const PRExplodedTime* gmt) {
const DSTParams* dst;
PRTimeParameters retVal;
PRExplodedTime st;
/*
* Based on geographic location and GMT, figure out offset of
* standard time from GMT. In this example implementation, we
* assume the local time zone is US Pacific Time.
*/
retVal.tp_gmt_offset = -8L * 3600L;
/*
* Make a copy of GMT. Note that the tm_params field of this copy
* is ignored.
*/
st.tm_usec = gmt->tm_usec;
st.tm_sec = gmt->tm_sec;
st.tm_min = gmt->tm_min;
st.tm_hour = gmt->tm_hour;
st.tm_mday = gmt->tm_mday;
st.tm_month = gmt->tm_month;
st.tm_year = gmt->tm_year;
st.tm_wday = gmt->tm_wday;
st.tm_yday = gmt->tm_yday;
/* Apply the offset to GMT to obtain the local standard time */
ApplySecOffset(&st, retVal.tp_gmt_offset);
if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */
dst = &dstParams[0];
} else { /* Second March Sunday - First November Sunday */
dst = &dstParams[1];
}
/*
* Apply the rules on standard time or GMT to obtain daylight saving
* time offset. In this implementation, we use the US DST rule.
*/
if (st.tm_month < dst->dst_start_month) {
retVal.tp_dst_offset = 0L;
} else if (st.tm_month == dst->dst_start_month) {
int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_start_Nth_Sunday,
dst->dst_start_month_ndays);
if (st.tm_mday < NthSun) { /* Before starting Sunday */
retVal.tp_dst_offset = 0L;
} else if (st.tm_mday == NthSun) { /* Starting Sunday */
/* 01:59:59 PST -> 03:00:00 PDT */
if (st.tm_hour < 2) {
retVal.tp_dst_offset = 0L;
} else {
retVal.tp_dst_offset = 3600L;
}
} else { /* After starting Sunday */
retVal.tp_dst_offset = 3600L;
}
} else if (st.tm_month < dst->dst_end_month) {
retVal.tp_dst_offset = 3600L;
} else if (st.tm_month == dst->dst_end_month) {
int NthSun = NthSunday(st.tm_mday, st.tm_wday, dst->dst_end_Nth_Sunday,
dst->dst_end_month_ndays);
if (st.tm_mday < NthSun) { /* Before ending Sunday */
retVal.tp_dst_offset = 3600L;
} else if (st.tm_mday == NthSun) { /* Ending Sunday */
/* 01:59:59 PDT -> 01:00:00 PST */
if (st.tm_hour < 1) {
retVal.tp_dst_offset = 3600L;
} else {
retVal.tp_dst_offset = 0L;
}
} else { /* After ending Sunday */
retVal.tp_dst_offset = 0L;
}
} else {
retVal.tp_dst_offset = 0L;
}
return retVal;
}
/*
*------------------------------------------------------------------------
*
* PR_GMTParameters --
*
* Returns the PRTimeParameters for Greenwich Mean Time.
* Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
*
*------------------------------------------------------------------------
*/
PR_IMPLEMENT(PRTimeParameters)
PR_GMTParameters(const PRExplodedTime* gmt) {
PRTimeParameters retVal = {0, 0};
return retVal;
}
/*
* The following code implements PR_ParseTimeString(). It is based on
* ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
*/
/*
* We only recognize the abbreviations of a small subset of time zones
* in North America, Europe, and Japan.
*
* PST/PDT: Pacific Standard/Daylight Time
* MST/MDT: Mountain Standard/Daylight Time
* CST/CDT: Central Standard/Daylight Time
* EST/EDT: Eastern Standard/Daylight Time
* AST: Atlantic Standard Time
* NST: Newfoundland Standard Time
* GMT: Greenwich Mean Time
* BST: British Summer Time
* MET: Middle Europe Time
* EET: Eastern Europe Time
* JST: Japan Standard Time
*/
typedef enum {
TT_UNKNOWN,
TT_SUN,
TT_MON,
TT_TUE,
TT_WED,
TT_THU,
TT_FRI,
TT_SAT,
TT_JAN,
TT_FEB,
TT_MAR,
TT_APR,
TT_MAY,
TT_JUN,
TT_JUL,
TT_AUG,
TT_SEP,
TT_OCT,
TT_NOV,
TT_DEC,
TT_PST,
TT_PDT,
TT_MST,
TT_MDT,
TT_CST,
TT_CDT,
TT_EST,
TT_EDT,
TT_AST,
TT_NST,
TT_GMT,
TT_BST,
TT_MET,
TT_EET,
TT_JST
} TIME_TOKEN;
/*
* This parses a time/date string into a PRTime
* (microseconds after "1-Jan-1970 00:00:00 GMT").
* It returns PR_SUCCESS on success, and PR_FAILURE
* if the time/date string can't be parsed.
*
* Many formats are handled, including:
*
* 14 Apr 89 03:20:12
* 14 Apr 89 03:20 GMT
* Fri, 17 Mar 89 4:01:33
* Fri, 17 Mar 89 4:01 GMT
* Mon Jan 16 16:12 PDT 1989
* Mon Jan 16 16:12 +0130 1989
* 6 May 1992 16:41-JST (Wednesday)
* 22-AUG-1993 10:59:12.82
* 22-AUG-1993 10:59pm
* 22-AUG-1993 12:59am
* 22-AUG-1993 12:59 PM
* Friday, August 04, 1995 3:54 PM
* 06/21/95 04:24:34 PM
* 20/06/95 21:07
* 95-06-08 19:32:48 EDT
*
* If the input string doesn't contain a description of the timezone,
* we consult the `default_to_gmt' to decide whether the string should
* be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
* The correct value for this argument depends on what standard specified
* the time string which you are parsing.
*/
PR_IMPLEMENT(PRStatus)
PR_ParseTimeStringToExplodedTime(const char* string, PRBool default_to_gmt,
PRExplodedTime* result) {
TIME_TOKEN dotw = TT_UNKNOWN;
TIME_TOKEN month = TT_UNKNOWN;
TIME_TOKEN zone = TT_UNKNOWN;
int zone_offset = -1;
int dst_offset = 0;
int date = -1;
PRInt32 year = -1;
int hour = -1;
int min = -1;
int sec = -1;
struct tm* localTimeResult;
const char* rest = string;
int iterations = 0;
PR_ASSERT(string && result);
if (!string || !result) {
return PR_FAILURE;
}
while (*rest) {
if (iterations++ > 1000) {
return PR_FAILURE;
}
switch (*rest) {
case 'a':
case 'A':
if (month == TT_UNKNOWN && (rest[1] == 'p' || rest[1] == 'P') &&
(rest[2] == 'r' || rest[2] == 'R')) {
month = TT_APR;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_AST;
} else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'g' || rest[2] == 'G')) {
month = TT_AUG;
}
break;
case 'b':
case 'B':
if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_BST;
}
break;
case 'c':
case 'C':
if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_CDT;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_CST;
}
break;
case 'd':
case 'D':
if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'c' || rest[2] == 'C')) {
month = TT_DEC;
}
break;
case 'e':
case 'E':
if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_EDT;
} else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_EET;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_EST;
}
break;
case 'f':
case 'F':
if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'b' || rest[2] == 'B')) {
month = TT_FEB;
} else if (dotw == TT_UNKNOWN && (rest[1] == 'r' || rest[1] == 'R') &&
(rest[2] == 'i' || rest[2] == 'I')) {
dotw = TT_FRI;
}
break;
case 'g':
case 'G':
if (zone == TT_UNKNOWN && (rest[1] == 'm' || rest[1] == 'M') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_GMT;
}
break;
case 'j':
case 'J':
if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'n' || rest[2] == 'N')) {
month = TT_JAN;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_JST;
} else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'l' || rest[2] == 'L')) {
month = TT_JUL;
} else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'n' || rest[2] == 'N')) {
month = TT_JUN;
}
break;
case 'm':
case 'M':
if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'r' || rest[2] == 'R')) {
month = TT_MAR;
} else if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 'y' || rest[2] == 'Y')) {
month = TT_MAY;
} else if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_MDT;
} else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_MET;
} else if (dotw == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') &&
(rest[2] == 'n' || rest[2] == 'N')) {
dotw = TT_MON;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_MST;
}
break;
case 'n':
case 'N':
if (month == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') &&
(rest[2] == 'v' || rest[2] == 'V')) {
month = TT_NOV;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_NST;
}
break;
case 'o':
case 'O':
if (month == TT_UNKNOWN && (rest[1] == 'c' || rest[1] == 'C') &&
(rest[2] == 't' || rest[2] == 'T')) {
month = TT_OCT;
}
break;
case 'p':
case 'P':
if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_PDT;
} else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') &&
(rest[2] == 't' || rest[2] == 'T')) {
zone = TT_PST;
}
break;
case 's':
case 'S':
if (dotw == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') &&
(rest[2] == 't' || rest[2] == 'T')) {
dotw = TT_SAT;
} else if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'p' || rest[2] == 'P')) {
month = TT_SEP;
} else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'n' || rest[2] == 'N')) {
dotw = TT_SUN;
}
break;
case 't':
case 'T':
if (dotw == TT_UNKNOWN && (rest[1] == 'h' || rest[1] == 'H') &&
(rest[2] == 'u' || rest[2] == 'U')) {
dotw = TT_THU;
} else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') &&
(rest[2] == 'e' || rest[2] == 'E')) {
dotw = TT_TUE;
}
break;
case 'u':
case 'U':
if (zone == TT_UNKNOWN && (rest[1] == 't' || rest[1] == 'T') &&
!(rest[2] >= 'A' && rest[2] <= 'Z') &&
!(rest[2] >= 'a' && rest[2] <= 'z'))
/* UT is the same as GMT but UTx is not. */
{
zone = TT_GMT;
}
break;
case 'w':
case 'W':
if (dotw == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') &&
(rest[2] == 'd' || rest[2] == 'D')) {
dotw = TT_WED;
}
break;
case '+':
case '-': {
const char* end;
int sign;
if (zone_offset != -1) {
/* already got one... */
rest++;
break;
}
if (zone != TT_UNKNOWN && zone != TT_GMT) {
/* GMT+0300 is legal, but PST+0300 is not. */
rest++;
break;
}
sign = ((*rest == '+') ? 1 : -1);
rest++; /* move over sign */
end = rest;
while (*end >= '0' && *end <= '9') {
end++;
}
if (rest == end) { /* no digits here */
break;
}
if ((end - rest) == 4) /* offset in HHMM */
zone_offset = (((((rest[0] - '0') * 10) + (rest[1] - '0')) * 60) +
(((rest[2] - '0') * 10) + (rest[3] - '0')));
else if ((end - rest) == 2)
/* offset in hours */
{
zone_offset = (((rest[0] - '0') * 10) + (rest[1] - '0')) * 60;
} else if ((end - rest) == 1)
/* offset in hours */
{
zone_offset = (rest[0] - '0') * 60;
} else
/* 3 or >4 */
{
break;
}
zone_offset *= sign;
zone = TT_GMT;
break;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int tmp_hour = -1;
int tmp_min = -1;
int tmp_sec = -1;
const char* end = rest + 1;
while (*end >= '0' && *end <= '9') {
end++;
}
/* end is now the first character after a range of digits. */
if (*end == ':') {
if (hour >= 0 && min >= 0) { /* already got it */
break;
}
/* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
{
break;
}
if ((end - rest) == 2)
tmp_hour = ((rest[0] - '0') * 10 + (rest[1] - '0'));
else {
tmp_hour = (rest[0] - '0');
}
/* move over the colon, and parse minutes */
rest = ++end;
while (*end >= '0' && *end <= '9') {
end++;
}
if (end == rest)
/* no digits after first colon? */
{
break;
}
if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
{
break;
}
if ((end - rest) == 2)
tmp_min = ((rest[0] - '0') * 10 + (rest[1] - '0'));
else {
tmp_min = (rest[0] - '0');
}
/* now go for seconds */
rest = end;
if (*rest == ':') {
rest++;
}
end = rest;
while (*end >= '0' && *end <= '9') {
end++;
}
if (end == rest) /* no digits after second colon - that's ok. */
;
else if ((end - rest) > 2)
/* it is [0-9][0-9][0-9]+: */
{
break;
}
if ((end - rest) == 2)
tmp_sec = ((rest[0] - '0') * 10 + (rest[1] - '0'));
else {
tmp_sec = (rest[0] - '0');
}
/* If we made it here, we've parsed hour and min,
and possibly sec, so it worked as a unit. */
/* skip over whitespace and see if there's an AM or PM
directly following the time.
*/
if (tmp_hour <= 12) {
const char* s = end;
while (*s && (*s == ' ' || *s == '\t')) {
s++;
}
if ((s[0] == 'p' || s[0] == 'P') && (s[1] == 'm' || s[1] == 'M'))
/* 10:05pm == 22:05, and 12:05pm == 12:05 */
{
tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
} else if (tmp_hour == 12 && (s[0] == 'a' || s[0] == 'A') &&
(s[1] == 'm' || s[1] == 'M'))
/* 12:05am == 00:05 */
{
tmp_hour = 0;
}
}
hour = tmp_hour;
min = tmp_min;
sec = tmp_sec;
rest = end;
break;
}
if ((*end == '/' || *end == '-') && end[1] >= '0' && end[1] <= '9') {
/* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
or even 95-06-05...
#### But it doesn't handle 1995-06-22.
*/
int n1, n2, n3;
const char* s;
if (month != TT_UNKNOWN)
/* if we saw a month name, this can't be. */
{
break;
}
s = rest;
n1 = (*s++ - '0'); /* first 1 or 2 digits */
if (*s >= '0' && *s <= '9') {
n1 = n1 * 10 + (*s++ - '0');
}
if (*s != '/' && *s != '-') { /* slash */
break;
}
s++;
if (*s < '0' || *s > '9') { /* second 1 or 2 digits */
break;
}
n2 = (*s++ - '0');
if (*s >= '0' && *s <= '9') {
n2 = n2 * 10 + (*s++ - '0');
}
if (*s != '/' && *s != '-') { /* slash */
break;
}
s++;
if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */
break;
}
n3 = (*s++ - '0');
if (*s >= '0' && *s <= '9') {
n3 = n3 * 10 + (*s++ - '0');
}
if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
{
n3 = n3 * 10 + (*s++ - '0');
if (*s < '0' || *s > '9') {
break;
}
n3 = n3 * 10 + (*s++ - '0');
if (*s >= '0' && *s <= '9') {
n3 = n3 * 10 + (*s++ - '0');
}
}
if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
(*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z')) {
break;
}
/* Ok, we parsed three 1-2 digit numbers, with / or -
between them. Now decide what the hell they are
(DD/MM/YY or MM/DD/YY or YY/MM/DD.)
*/
if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
{
if (n2 > 12) {
break;
}
if (n3 > 31) {
break;
}
year = n1;
if (year < 70) {
year += 2000;
} else if (year < 100) {
year += 1900;
}
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
date = n3;
rest = s;
break;
}
if (n1 > 12 && n2 > 12) /* illegal */
{
rest = s;
break;
}
if (n3 < 70) {
n3 += 2000;
} else if (n3 < 100) {
n3 += 1900;
}
if (n1 > 12) /* must be DD/MM/YY */
{
date = n1;
month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
year = n3;
} else /* assume MM/DD/YY */
{
/* #### In the ambiguous case, should we consult the
locale to find out the local default? */
month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
date = n2;
year = n3;
}
rest = s;
} else if ((*end >= 'A' && *end <= 'Z') || (*end >= 'a' && *end <= 'z'))
/* Digits followed by non-punctuation - what's that? */
;
else if ((end - rest) == 5) /* five digits is a year */
year = (year < 0 ? ((rest[0] - '0') * 10000L +
(rest[1] - '0') * 1000L + (rest[2] - '0') * 100L +
(rest[3] - '0') * 10L + (rest[4] - '0'))
: year);
else if ((end - rest) == 4) /* four digits is a year */
year = (year < 0 ? ((rest[0] - '0') * 1000L + (rest[1] - '0') * 100L +
(rest[2] - '0') * 10L + (rest[3] - '0'))
: year);
else if ((end - rest) == 2) /* two digits - date or year */
{
int n = ((rest[0] - '0') * 10 + (rest[1] - '0'));
/* If we don't have a date (day of the month) and we see a number
less than 32, then assume that is the date.
Otherwise, if we have a date and not a year, assume this is
the year. If it is less than 70, then assume it refers to the 21st
century. If it is two digits (>= 70), assume it refers to
this century. Otherwise, assume it refers to an unambiguous year.
The world will surely end soon.
*/
if (date < 0 && n < 32) {
date = n;
} else if (year < 0) {
if (n < 70) {
year = 2000 + n;
} else if (n < 100) {
year = 1900 + n;
} else {
year = n;
}
}
/* else what the hell is this. */
} else if ((end - rest) == 1) { /* one digit - date */
date = (date < 0 ? (rest[0] - '0') : date);
}
/* else, three or more than five digits - what's that? */
break;
}
}
/* Skip to the end of this token, whether we parsed it or not.
Tokens are delimited by whitespace, or ,;-/
But explicitly not :+-.
*/
while (*rest && *rest != ' ' && *rest != '\t' && *rest != ',' &&
*rest != ';' && *rest != '-' && *rest != '+' && *rest != '/' &&
*rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') {
rest++;
}
/* skip over uninteresting chars. */
SKIP_MORE:
while (*rest && (*rest == ' ' || *rest == '\t' || *rest == ',' ||
*rest == ';' || *rest == '/' || *rest == '(' ||
*rest == ')' || *rest == '[' || *rest == ']')) {
rest++;
}
/* "-" is ignored at the beginning of a token if we have not yet
parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
the character after the dash is not a digit. */
if (*rest == '-' &&
((rest > string && isalpha((unsigned char)rest[-1]) && year < 0) ||
rest[1] < '0' || rest[1] > '9')) {
rest++;
goto SKIP_MORE;
}
}
if (zone != TT_UNKNOWN && zone_offset == -1) {
switch (zone) {
case TT_PST:
zone_offset = -8 * 60;
break;
case TT_PDT:
zone_offset = -8 * 60;
dst_offset = 1 * 60;
break;
case TT_MST:
zone_offset = -7 * 60;
break;
case TT_MDT:
zone_offset = -7 * 60;
dst_offset = 1 * 60;
break;
case TT_CST:
zone_offset = -6 * 60;
break;
case TT_CDT:
zone_offset = -6 * 60;
dst_offset = 1 * 60;
break;
case TT_EST:
zone_offset = -5 * 60;
break;
case TT_EDT:
zone_offset = -5 * 60;
dst_offset = 1 * 60;
break;
case TT_AST:
zone_offset = -4 * 60;
break;
case TT_NST:
zone_offset = -3 * 60 - 30;
break;
case TT_GMT:
zone_offset = 0 * 60;
break;
case TT_BST:
zone_offset = 0 * 60;
dst_offset = 1 * 60;
break;
case TT_MET:
zone_offset = 1 * 60;
break;
case TT_EET:
zone_offset = 2 * 60;
break;
case TT_JST:
zone_offset = 9 * 60;
break;
default:
PR_ASSERT(0);
break;
}
}
/* If we didn't find a year, month, or day-of-the-month, we can't
possibly parse this, and in fact, mktime() will do something random
(I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
a numerologically significant date... */
if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) {
return PR_FAILURE;
}
memset(result, 0, sizeof(*result));
if (sec != -1) {
result->tm_sec = sec;
}
if (min != -1) {
result->tm_min = min;
}
if (hour != -1) {
result->tm_hour = hour;
}
if (date != -1) {
result->tm_mday = date;
}
if (month != TT_UNKNOWN) {
result->tm_month = (((int)month) - ((int)TT_JAN));
}
if (year != -1) {
result->tm_year = year;
}
if (dotw != TT_UNKNOWN) {
result->tm_wday = (((int)dotw) - ((int)TT_SUN));
}
/*
* Mainly to compute wday and yday, but normalized time is also required
* by the check below that works around a Visual C++ 2005 mktime problem.
*/
PR_NormalizeTime(result, PR_GMTParameters);
/* The remaining work is to set the gmt and dst offsets in tm_params. */
if (zone == TT_UNKNOWN && default_to_gmt) {
/* No zone was specified, so pretend the zone was GMT. */
zone = TT_GMT;
zone_offset = 0;
}
if (zone_offset == -1) {
/* no zone was specified, and we're to assume that everything
is local. */
struct tm localTime;
time_t secs;
PR_ASSERT(result->tm_month > -1 && result->tm_mday > 0 &&
result->tm_hour > -1 && result->tm_min > -1 &&
result->tm_sec > -1);
/*
* To obtain time_t from a tm structure representing the local
* time, we call mktime(). However, we need to see if we are
* on 1-Jan-1970 or before. If we are, we can't call mktime()
* because mktime() will crash on win16. In that case, we
* calculate zone_offset based on the zone offset at
* 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
* date we are parsing to transform the date to GMT. We also
* do so if mktime() returns (time_t) -1 (time out of range).
*/
/* month, day, hours, mins and secs are always non-negative
so we dont need to worry about them. */
if (result->tm_year >= 1970) {
PRInt64 usec_per_sec;
localTime.tm_sec = result->tm_sec;
localTime.tm_min = result->tm_min;
localTime.tm_hour = result->tm_hour;
localTime.tm_mday = result->tm_mday;
localTime.tm_mon = result->tm_month;
localTime.tm_year = result->tm_year - 1900;
/* Set this to -1 to tell mktime "I don't care". If you set
it to 0 or 1, you are making assertions about whether the
date you are handing it is in daylight savings mode or not;
and if you're wrong, it will "fix" it for you. */
localTime.tm_isdst = -1;
#if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
/*
* mktime will return (time_t) -1 if the input is a date
* after 23:59:59, December 31, 3000, US Pacific Time (not
* UTC as documented):
* But if the year is 3001, mktime also invokes the invalid
* parameter handler, causing the application to crash. This
* problem has been reported in
* We avoid this crash by not calling mktime if the date is
* out of range. To use a simple test that works in any time
* zone, we consider year 3000 out of range as well. (See
*/
if (result->tm_year >= 3000) {
/* Emulate what mktime would have done. */
errno = EINVAL;
secs = (time_t)-1;
} else {
secs = mktime(&localTime);
}
#else
secs = mktime(&localTime);
#endif
if (secs != (time_t)-1) {
PRTime usecs64;
LL_I2L(usecs64, secs);
LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
LL_MUL(usecs64, usecs64, usec_per_sec);
PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result);
return PR_SUCCESS;
}
}
/* So mktime() can't handle this case. We assume the
zone_offset for the date we are parsing is the same as
the zone offset on 00:00:00 2 Jan 1970 GMT. */
secs = 86400;
localTimeResult = MT_safe_localtime(&secs, &localTime);
PR_ASSERT(localTimeResult != NULL);
if (localTimeResult == NULL) {
return PR_FAILURE;
}
zone_offset = localTime.tm_min + 60 * localTime.tm_hour +
1440 * (localTime.tm_mday - 2);
}
result->tm_params.tp_gmt_offset = zone_offset * 60;
result->tm_params.tp_dst_offset = dst_offset * 60;
return PR_SUCCESS;
}
PR_IMPLEMENT(PRStatus)
PR_ParseTimeString(const char* string, PRBool default_to_gmt, PRTime* result) {
PRExplodedTime tm;
PRStatus rv;
rv = PR_ParseTimeStringToExplodedTime(string, default_to_gmt, &tm);
if (rv != PR_SUCCESS) {
return rv;
}
*result = PR_ImplodeTime(&tm);
return PR_SUCCESS;
}
/*
*******************************************************************
*******************************************************************
**
** OLD COMPATIBILITY FUNCTIONS
**
*******************************************************************
*******************************************************************
*/
/*
*-----------------------------------------------------------------------
*
* PR_FormatTime --
*
* Format a time value into a buffer. Same semantics as strftime().
*
*-----------------------------------------------------------------------
*/
PR_IMPLEMENT(PRUint32)
PR_FormatTime(char* buf, int buflen, const char* fmt,
const PRExplodedTime* time) {
size_t rv;
struct tm a;
struct tm* ap;
if (time) {
ap = &a;
a.tm_sec = time->tm_sec;
a.tm_min = time->tm_min;
a.tm_hour = time->tm_hour;
a.tm_mday = time->tm_mday;
a.tm_mon = time->tm_month;
a.tm_wday = time->tm_wday;
a.tm_year = time->tm_year - 1900;
a.tm_yday = time->tm_yday;
a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0;
/*
* On some platforms, for example SunOS 4, struct tm has two
* additional fields: tm_zone and tm_gmtoff.
*/
#if (__GLIBC__ >= 2) || defined(NETBSD) || defined(OPENBSD) || \
defined(FREEBSD) || defined(DARWIN) || defined(ANDROID)
a.tm_zone = NULL;
a.tm_gmtoff = time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset;
#endif
} else {
ap = NULL;
}
rv = strftime(buf, buflen, fmt, ap);
if (!rv && buf && buflen > 0) {
/*
* When strftime fails, the contents of buf are indeterminate.
* Some callers don't check the return value from this function,
* so store an empty string in buf in case they try to print it.
*/
buf[0] = '\0';
}
return rv;
}
/*
* The following string arrays and macros are used by PR_FormatTimeUSEnglish().
*/
static const char* abbrevDays[] = {"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"};
static const char* days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
static const char* abbrevMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
static const char* months[] = {"January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"};
/*
* Add a single character to the given buffer, incrementing the buffer pointer
* and decrementing the buffer size. Return 0 on error.
*/
#define ADDCHAR(buf, bufSize, ch) \
do { \
if (bufSize < 1) { \
*(--buf) = '\0'; \
return 0; \
} \
*buf++ = ch; \
bufSize--; \
} while (0)
/*
* Add a string to the given buffer, incrementing the buffer pointer
* and decrementing the buffer size appropriately. Return 0 on error.
*/
#define ADDSTR(buf, bufSize, str) \
do { \
PRUint32 strSize = strlen(str); \
if (strSize > bufSize) { \
if (bufSize == 0) \
*(--buf) = '\0'; \
else \
*buf = '\0'; \
return 0; \
} \
memcpy(buf, str, strSize); \
buf += strSize; \
bufSize -= strSize; \
} while (0)
/* Needed by PR_FormatTimeUSEnglish() */
static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
unsigned int firstDayOfWeek);
/***********************************************************************************
*
* Description:
* This is a dumbed down version of strftime that will format the date in US
* English regardless of the setting of the global locale. This functionality
*is needed to write things like MIME headers which must always be in US
*English.
*
**********************************************************************************/
PR_IMPLEMENT(PRUint32)
PR_FormatTimeUSEnglish(char* buf, PRUint32 bufSize, const char* format,
const PRExplodedTime* time) {
char* bufPtr = buf;
const char* fmtPtr;
char tmpBuf[40];
const int tmpBufSize = sizeof(tmpBuf);
for (fmtPtr = format; *fmtPtr != '\0'; fmtPtr++) {
if (*fmtPtr != '%') {
ADDCHAR(bufPtr, bufSize, *fmtPtr);
} else {
switch (*(++fmtPtr)) {
case '%':
/* escaped '%' character */
ADDCHAR(bufPtr, bufSize, '%');
break;
case 'a':
/* abbreviated weekday name */
ADDSTR(bufPtr, bufSize, abbrevDays[time->tm_wday]);
break;
case 'A':
/* full weekday name */
ADDSTR(bufPtr, bufSize, days[time->tm_wday]);
break;
case 'b':
/* abbreviated month name */
ADDSTR(bufPtr, bufSize, abbrevMonths[time->tm_month]);
break;
case 'B':
/* full month name */
ADDSTR(bufPtr, bufSize, months[time->tm_month]);
break;
case 'c':
/* Date and time. */
PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y",
time);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'd':
/* day of month ( 01 - 31 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_mday);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'H':
/* hour ( 00 - 23 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_hour);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'I':
/* hour ( 01 - 12 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld",
(time->tm_hour % 12) ? time->tm_hour % 12 : (PRInt32)12);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'j':
/* day number of year ( 001 - 366 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.3d", time->tm_yday + 1);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'm':
/* month number ( 01 - 12 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_month + 1);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'M':
/* minute ( 00 - 59 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_min);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'p':
/* locale's equivalent of either AM or PM */
ADDSTR(bufPtr, bufSize, (time->tm_hour < 12) ? "AM" : "PM");
break;
case 'S':
/* seconds ( 00 - 61 ), allows for leap seconds */
PR_snprintf(tmpBuf, tmpBufSize, "%.2ld", time->tm_sec);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'U':
/* week number of year ( 00 - 53 ), Sunday is the first day of
* week 1 */
PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 0));
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'w':
/* weekday number ( 0 - 6 ), Sunday = 0 */
PR_snprintf(tmpBuf, tmpBufSize, "%d", time->tm_wday);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'W':
/* Week number of year ( 00 - 53 ), Monday is the first day of
* week 1 */
PR_snprintf(tmpBuf, tmpBufSize, "%.2d", pr_WeekOfYear(time, 1));
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'x':
/* Date representation */
PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%m/%d/%y", time);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'X':
/* Time representation. */
PR_FormatTimeUSEnglish(tmpBuf, tmpBufSize, "%H:%M:%S", time);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'y':
/* year within century ( 00 - 99 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.2d", time->tm_year % 100);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'Y':
/* year as ccyy ( for example 1986 ) */
PR_snprintf(tmpBuf, tmpBufSize, "%.4d", time->tm_year);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
case 'Z':
/* Time zone name or no characters if no time zone exists.
* Since time zone name is supposed to be independant of locale, we
* defer to PR_FormatTime() for this option.
*/
PR_FormatTime(tmpBuf, tmpBufSize, "%Z", time);
ADDSTR(bufPtr, bufSize, tmpBuf);
break;
default:
/* Unknown format. Simply copy format into output buffer. */
ADDCHAR(bufPtr, bufSize, '%');
ADDCHAR(bufPtr, bufSize, *fmtPtr);
break;
}
}
}
ADDCHAR(bufPtr, bufSize, '\0');
return (PRUint32)(bufPtr - buf - 1);
}
/***********************************************************************************
*
* Description:
* Returns the week number of the year (0-53) for the given time.
*firstDayOfWeek is the day on which the week is considered to start (0=Sun,
*1=Mon, ...). Week 1 starts the first time firstDayOfWeek occurs in the year.
*In other words, a partial week at the start of the year is considered week 0.
*
**********************************************************************************/
static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
unsigned int firstDayOfWeek) {
int dayOfWeek;
int dayOfYear;
/* Get the day of the year for the given time then adjust it to represent the
* first day of the week containing the given time.
*/
dayOfWeek = time->tm_wday - firstDayOfWeek;
if (dayOfWeek < 0) {
dayOfWeek += 7;
}
dayOfYear = time->tm_yday - dayOfWeek;
if (dayOfYear <= 0) {
/* If dayOfYear is <= 0, it is in the first partial week of the year. */
return 0;
}
/* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
* are any days left over ( dayOfYear % 7 ). Because we are only counting to
* the first day of the week containing the given time, rather than to the
* actual day representing the given time, any days in week 0 will be
* "absorbed" as extra days in the given week.
*/
return (dayOfYear / 7) + ((dayOfYear % 7) == 0 ? 0 : 1);
}