Source code

Revision control

Copy as Markdown

Other Tools

/* vim:set ts=2 sw=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsSocketTransport2.h"
#include "nsServerSocket.h"
#include "nsProxyRelease.h"
#include "nsError.h"
#include "nsNetCID.h"
#include "prnetdb.h"
#include "prio.h"
#include "nsThreadUtils.h"
#include "mozilla/Attributes.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/net/DNS.h"
#include "mozilla/Unused.h"
#include "nsServiceManagerUtils.h"
#include "nsIFile.h"
#if defined(XP_WIN)
# include "private/pprio.h"
# include <winsock2.h>
# include <mstcpip.h>
# ifndef IPV6_V6ONLY
# define IPV6_V6ONLY 27
# endif
#endif
namespace mozilla {
namespace net {
//-----------------------------------------------------------------------------
using nsServerSocketFunc = void (nsServerSocket::*)();
static nsresult PostEvent(nsServerSocket* s, nsServerSocketFunc func) {
nsCOMPtr<nsIRunnable> ev = NewRunnableMethod("net::PostEvent", s, func);
if (!gSocketTransportService) return NS_ERROR_FAILURE;
return gSocketTransportService->Dispatch(ev, NS_DISPATCH_NORMAL);
}
//-----------------------------------------------------------------------------
// nsServerSocket
//-----------------------------------------------------------------------------
nsServerSocket::nsServerSocket() {
// we want to be able to access the STS directly, and it may not have been
// constructed yet. the STS constructor sets gSocketTransportService.
if (!gSocketTransportService) {
// This call can fail if we're offline, for example.
nsCOMPtr<nsISocketTransportService> sts =
do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID);
}
// make sure the STS sticks around as long as we do
NS_IF_ADDREF(gSocketTransportService);
}
nsServerSocket::~nsServerSocket() {
Close(); // just in case :)
// release our reference to the STS
nsSocketTransportService* serv = gSocketTransportService;
NS_IF_RELEASE(serv);
}
void nsServerSocket::OnMsgClose() {
SOCKET_LOG(("nsServerSocket::OnMsgClose [this=%p]\n", this));
if (NS_FAILED(mCondition)) return;
// tear down socket. this signals the STS to detach our socket handler.
mCondition = NS_BINDING_ABORTED;
// if we are attached, then we'll close the socket in our OnSocketDetached.
// otherwise, call OnSocketDetached from here.
if (!mAttached) OnSocketDetached(mFD);
}
void nsServerSocket::OnMsgAttach() {
SOCKET_LOG(("nsServerSocket::OnMsgAttach [this=%p]\n", this));
if (NS_FAILED(mCondition)) return;
mCondition = TryAttach();
// if we hit an error while trying to attach then bail...
if (NS_FAILED(mCondition)) {
NS_ASSERTION(!mAttached, "should not be attached already");
OnSocketDetached(mFD);
}
}
nsresult nsServerSocket::TryAttach() {
nsresult rv;
if (!gSocketTransportService) return NS_ERROR_FAILURE;
//
// find out if it is going to be ok to attach another socket to the STS.
// if not then we have to wait for the STS to tell us that it is ok.
// the notification is asynchronous, which means that when we could be
// in a race to call AttachSocket once notified. for this reason, when
// we get notified, we just re-enter this function. as a result, we are
// sure to ask again before calling AttachSocket. in this way we deal
// with the race condition. though it isn't the most elegant solution,
// it is far simpler than trying to build a system that would guarantee
// FIFO ordering (which wouldn't even be that valuable IMO). see bug
// 194402 for more info.
//
if (!gSocketTransportService->CanAttachSocket()) {
nsCOMPtr<nsIRunnable> event = NewRunnableMethod(
"net::nsServerSocket::OnMsgAttach", this, &nsServerSocket::OnMsgAttach);
if (!event) return NS_ERROR_OUT_OF_MEMORY;
nsresult rv = gSocketTransportService->NotifyWhenCanAttachSocket(event);
if (NS_FAILED(rv)) return rv;
}
//
// ok, we can now attach our socket to the STS for polling
//
rv = gSocketTransportService->AttachSocket(mFD, this);
if (NS_FAILED(rv)) return rv;
mAttached = true;
//
// now, configure our poll flags for listening...
//
mPollFlags = (PR_POLL_READ | PR_POLL_EXCEPT);
return NS_OK;
}
void nsServerSocket::CreateClientTransport(PRFileDesc* aClientFD,
const NetAddr& aClientAddr) {
RefPtr<nsSocketTransport> trans = new nsSocketTransport;
if (NS_WARN_IF(!trans)) {
mCondition = NS_ERROR_OUT_OF_MEMORY;
return;
}
nsresult rv = trans->InitWithConnectedSocket(aClientFD, &aClientAddr);
if (NS_WARN_IF(NS_FAILED(rv))) {
mCondition = rv;
return;
}
mListener->OnSocketAccepted(this, trans);
}
//-----------------------------------------------------------------------------
// nsServerSocket::nsASocketHandler
//-----------------------------------------------------------------------------
void nsServerSocket::OnSocketReady(PRFileDesc* fd, int16_t outFlags) {
NS_ASSERTION(NS_SUCCEEDED(mCondition), "oops");
NS_ASSERTION(mFD == fd, "wrong file descriptor");
NS_ASSERTION(outFlags != -1, "unexpected timeout condition reached");
if (outFlags & (PR_POLL_ERR | PR_POLL_HUP | PR_POLL_NVAL)) {
NS_WARNING("error polling on listening socket");
mCondition = NS_ERROR_UNEXPECTED;
return;
}
PRFileDesc* clientFD;
PRNetAddr prClientAddr;
// NSPR doesn't tell us the peer address's length (as provided by the
// 'accept' system call), so we can't distinguish between named,
// unnamed, and abstract peer addresses. Clear prClientAddr first, so
// that the path will at least be reliably empty for unnamed and
// abstract addresses, and not garbage when the peer is unnamed.
memset(&prClientAddr, 0, sizeof(prClientAddr));
clientFD = PR_Accept(mFD, &prClientAddr, PR_INTERVAL_NO_WAIT);
if (!clientFD) {
NS_WARNING("PR_Accept failed");
mCondition = NS_ERROR_UNEXPECTED;
return;
}
PR_SetFDInheritable(clientFD, false);
NetAddr clientAddr(&prClientAddr);
// Accept succeeded, create socket transport and notify consumer
CreateClientTransport(clientFD, clientAddr);
}
void nsServerSocket::OnSocketDetached(PRFileDesc* fd) {
// force a failure condition if none set; maybe the STS is shutting down :-/
if (NS_SUCCEEDED(mCondition)) mCondition = NS_ERROR_ABORT;
if (mFD) {
NS_ASSERTION(mFD == fd, "wrong file descriptor");
PR_Close(mFD);
mFD = nullptr;
}
if (mListener) {
mListener->OnStopListening(this, mCondition);
// need to atomically clear mListener. see our Close() method.
RefPtr<nsIServerSocketListener> listener = nullptr;
{
MutexAutoLock lock(mLock);
listener = ToRefPtr(std::move(mListener));
}
// XXX we need to proxy the release to the listener's target thread to work
// around bug 337492.
if (listener) {
NS_ProxyRelease("nsServerSocket::mListener", mListenerTarget,
listener.forget());
}
}
}
void nsServerSocket::IsLocal(bool* aIsLocal) {
#if defined(XP_UNIX)
// Unix-domain sockets are always local.
if (mAddr.raw.family == PR_AF_LOCAL) {
*aIsLocal = true;
return;
}
#endif
// If bound to loopback, this server socket only accepts local connections.
*aIsLocal = PR_IsNetAddrType(&mAddr, PR_IpAddrLoopback);
}
void nsServerSocket::KeepWhenOffline(bool* aKeepWhenOffline) {
*aKeepWhenOffline = mKeepWhenOffline;
}
//-----------------------------------------------------------------------------
// nsServerSocket::nsISupports
//-----------------------------------------------------------------------------
NS_IMPL_ISUPPORTS(nsServerSocket, nsIServerSocket)
//-----------------------------------------------------------------------------
// nsServerSocket::nsIServerSocket
//-----------------------------------------------------------------------------
NS_IMETHODIMP
nsServerSocket::Init(int32_t aPort, bool aLoopbackOnly, int32_t aBackLog) {
return InitSpecialConnection(aPort, aLoopbackOnly ? LoopbackOnly : 0,
aBackLog);
}
NS_IMETHODIMP
nsServerSocket::InitIPv6(int32_t aPort, bool aLoopbackOnly, int32_t aBackLog) {
PRNetAddrValue val;
PRNetAddr addr;
if (aPort < 0) {
aPort = 0;
}
if (aLoopbackOnly) {
val = PR_IpAddrLoopback;
} else {
val = PR_IpAddrAny;
}
PR_SetNetAddr(val, PR_AF_INET6, aPort, &addr);
mKeepWhenOffline = false;
return InitWithAddress(&addr, aBackLog);
}
NS_IMETHODIMP
nsServerSocket::InitDualStack(int32_t aPort, int32_t aBackLog) {
if (aPort < 0) {
aPort = 0;
}
PRNetAddr addr;
PR_SetNetAddr(PR_IpAddrAny, PR_AF_INET6, aPort, &addr);
return InitWithAddressInternal(&addr, aBackLog, true);
}
NS_IMETHODIMP
nsServerSocket::InitWithFilename(nsIFile* aPath, uint32_t aPermissions,
int32_t aBacklog) {
#if defined(XP_UNIX)
nsresult rv;
nsAutoCString path;
rv = aPath->GetNativePath(path);
if (NS_FAILED(rv)) return rv;
// Create a Unix domain PRNetAddr referring to the given path.
PRNetAddr addr;
if (path.Length() > sizeof(addr.local.path) - 1) {
return NS_ERROR_FILE_NAME_TOO_LONG;
}
addr.local.family = PR_AF_LOCAL;
memcpy(addr.local.path, path.get(), path.Length());
addr.local.path[path.Length()] = '\0';
rv = InitWithAddress(&addr, aBacklog);
if (NS_FAILED(rv)) return rv;
return aPath->SetPermissions(aPermissions);
#else
return NS_ERROR_SOCKET_ADDRESS_NOT_SUPPORTED;
#endif
}
NS_IMETHODIMP
nsServerSocket::InitWithAbstractAddress(const nsACString& aName,
int32_t aBacklog) {
// Abstract socket address is supported on Linux and Android only.
// If not Linux, we should return error.
#if defined(XP_LINUX)
// Create an abstract socket address PRNetAddr referring to the name
PRNetAddr addr;
if (aName.Length() > sizeof(addr.local.path) - 2) {
return NS_ERROR_FILE_NAME_TOO_LONG;
}
addr.local.family = PR_AF_LOCAL;
addr.local.path[0] = 0;
memcpy(addr.local.path + 1, aName.BeginReading(), aName.Length());
addr.local.path[aName.Length() + 1] = 0;
return InitWithAddress(&addr, aBacklog);
#else
return NS_ERROR_SOCKET_ADDRESS_NOT_SUPPORTED;
#endif
}
NS_IMETHODIMP
nsServerSocket::InitSpecialConnection(int32_t aPort, nsServerSocketFlag aFlags,
int32_t aBackLog) {
PRNetAddrValue val;
PRNetAddr addr;
if (aPort < 0) aPort = 0;
if (aFlags & nsIServerSocket::LoopbackOnly) {
val = PR_IpAddrLoopback;
} else {
val = PR_IpAddrAny;
}
PR_SetNetAddr(val, PR_AF_INET, aPort, &addr);
mKeepWhenOffline = ((aFlags & nsIServerSocket::KeepWhenOffline) != 0);
return InitWithAddress(&addr, aBackLog);
}
NS_IMETHODIMP
nsServerSocket::InitWithAddress(const PRNetAddr* aAddr, int32_t aBackLog) {
return InitWithAddressInternal(aAddr, aBackLog);
}
nsresult nsServerSocket::InitWithAddressInternal(const PRNetAddr* aAddr,
int32_t aBackLog,
bool aDualStack) {
NS_ENSURE_TRUE(mFD == nullptr, NS_ERROR_ALREADY_INITIALIZED);
nsresult rv;
//
// configure listening socket...
//
mFD = PR_OpenTCPSocket(aAddr->raw.family);
if (!mFD) {
NS_WARNING("unable to create server socket");
return ErrorAccordingToNSPR(PR_GetError());
}
#if defined(XP_WIN)
// To create a Dual-Stack Socket, we have to disable IPV6_V6ONLY.
if (aDualStack) {
PROsfd osfd = PR_FileDesc2NativeHandle(mFD);
if (osfd != -1) {
int disable = 0;
setsockopt(osfd, IPPROTO_IPV6, IPV6_V6ONLY, (char*)&disable,
sizeof(disable));
}
}
#else
mozilla::Unused << aDualStack;
#endif
PR_SetFDInheritable(mFD, false);
PRSocketOptionData opt;
opt.option = PR_SockOpt_Reuseaddr;
opt.value.reuse_addr = true;
PR_SetSocketOption(mFD, &opt);
opt.option = PR_SockOpt_Nonblocking;
opt.value.non_blocking = true;
PR_SetSocketOption(mFD, &opt);
if (PR_Bind(mFD, aAddr) != PR_SUCCESS) {
NS_WARNING("failed to bind socket");
goto fail;
}
if (aBackLog < 0) aBackLog = 5; // seems like a reasonable default
if (PR_Listen(mFD, aBackLog) != PR_SUCCESS) {
NS_WARNING("cannot listen on socket");
goto fail;
}
// get the resulting socket address, which may be different than what
// we passed to bind.
if (PR_GetSockName(mFD, &mAddr) != PR_SUCCESS) {
NS_WARNING("cannot get socket name");
goto fail;
}
// Set any additional socket defaults needed by child classes
rv = SetSocketDefaults();
if (NS_WARN_IF(NS_FAILED(rv))) {
goto fail;
}
// wait until AsyncListen is called before polling the socket for
// client connections.
return NS_OK;
fail:
rv = ErrorAccordingToNSPR(PR_GetError());
Close();
return rv;
}
NS_IMETHODIMP
nsServerSocket::Close() {
{
MutexAutoLock lock(mLock);
// we want to proxy the close operation to the socket thread if a listener
// has been set. otherwise, we should just close the socket here...
if (!mListener) {
if (mFD) {
PR_Close(mFD);
mFD = nullptr;
}
return NS_OK;
}
}
return PostEvent(this, &nsServerSocket::OnMsgClose);
}
namespace {
class ServerSocketListenerProxy final : public nsIServerSocketListener {
~ServerSocketListenerProxy() = default;
public:
explicit ServerSocketListenerProxy(nsIServerSocketListener* aListener)
: mListener(new nsMainThreadPtrHolder<nsIServerSocketListener>(
"ServerSocketListenerProxy::mListener", aListener)),
mTarget(GetCurrentSerialEventTarget()) {}
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSISERVERSOCKETLISTENER
class OnSocketAcceptedRunnable : public Runnable {
public:
OnSocketAcceptedRunnable(
const nsMainThreadPtrHandle<nsIServerSocketListener>& aListener,
nsIServerSocket* aServ, nsISocketTransport* aTransport)
: Runnable("net::ServerSocketListenerProxy::OnSocketAcceptedRunnable"),
mListener(aListener),
mServ(aServ),
mTransport(aTransport) {}
NS_DECL_NSIRUNNABLE
private:
nsMainThreadPtrHandle<nsIServerSocketListener> mListener;
nsCOMPtr<nsIServerSocket> mServ;
nsCOMPtr<nsISocketTransport> mTransport;
};
class OnStopListeningRunnable : public Runnable {
public:
OnStopListeningRunnable(
const nsMainThreadPtrHandle<nsIServerSocketListener>& aListener,
nsIServerSocket* aServ, nsresult aStatus)
: Runnable("net::ServerSocketListenerProxy::OnStopListeningRunnable"),
mListener(aListener),
mServ(aServ),
mStatus(aStatus) {}
NS_DECL_NSIRUNNABLE
private:
nsMainThreadPtrHandle<nsIServerSocketListener> mListener;
nsCOMPtr<nsIServerSocket> mServ;
nsresult mStatus;
};
private:
nsMainThreadPtrHandle<nsIServerSocketListener> mListener;
nsCOMPtr<nsIEventTarget> mTarget;
};
NS_IMPL_ISUPPORTS(ServerSocketListenerProxy, nsIServerSocketListener)
NS_IMETHODIMP
ServerSocketListenerProxy::OnSocketAccepted(nsIServerSocket* aServ,
nsISocketTransport* aTransport) {
RefPtr<OnSocketAcceptedRunnable> r =
new OnSocketAcceptedRunnable(mListener, aServ, aTransport);
return mTarget->Dispatch(r, NS_DISPATCH_NORMAL);
}
NS_IMETHODIMP
ServerSocketListenerProxy::OnStopListening(nsIServerSocket* aServ,
nsresult aStatus) {
RefPtr<OnStopListeningRunnable> r =
new OnStopListeningRunnable(mListener, aServ, aStatus);
return mTarget->Dispatch(r, NS_DISPATCH_NORMAL);
}
NS_IMETHODIMP
ServerSocketListenerProxy::OnSocketAcceptedRunnable::Run() {
mListener->OnSocketAccepted(mServ, mTransport);
return NS_OK;
}
NS_IMETHODIMP
ServerSocketListenerProxy::OnStopListeningRunnable::Run() {
mListener->OnStopListening(mServ, mStatus);
return NS_OK;
}
} // namespace
NS_IMETHODIMP
nsServerSocket::AsyncListen(nsIServerSocketListener* aListener) {
// ensuring mFD implies ensuring mLock
NS_ENSURE_TRUE(mFD, NS_ERROR_NOT_INITIALIZED);
NS_ENSURE_TRUE(mListener == nullptr, NS_ERROR_IN_PROGRESS);
{
MutexAutoLock lock(mLock);
mListener = new ServerSocketListenerProxy(aListener);
mListenerTarget = GetCurrentSerialEventTarget();
}
// Child classes may need to do additional setup just before listening begins
nsresult rv = OnSocketListen();
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
return PostEvent(this, &nsServerSocket::OnMsgAttach);
}
NS_IMETHODIMP
nsServerSocket::GetPort(int32_t* aResult) {
// no need to enter the lock here
uint16_t port;
if (mAddr.raw.family == PR_AF_INET) {
port = mAddr.inet.port;
} else if (mAddr.raw.family == PR_AF_INET6) {
port = mAddr.ipv6.port;
} else {
return NS_ERROR_FAILURE;
}
*aResult = static_cast<int32_t>(NetworkEndian::readUint16(&port));
return NS_OK;
}
NS_IMETHODIMP
nsServerSocket::GetAddress(PRNetAddr* aResult) {
// no need to enter the lock here
memcpy(aResult, &mAddr, sizeof(mAddr));
return NS_OK;
}
} // namespace net
} // namespace mozilla