Source code

Revision control

Copy as Markdown

Other Tools

/****************************************************************************
*
* ftsdf.c
*
* Signed Distance Field support for outline fonts (body).
*
* Copyright (C) 2020-2024 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* Written by Anuj Verma.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/ftoutln.h>
#include <freetype/fttrigon.h>
#include <freetype/ftbitmap.h>
#include "ftsdf.h"
#include "ftsdferrs.h"
/**************************************************************************
*
* A brief technical overview of how the SDF rasterizer works
* ----------------------------------------------------------
*
* [Notes]:
* * SDF stands for Signed Distance Field everywhere.
*
* * This renderer generates SDF directly from outlines. There is
* another renderer called 'bsdf', which converts bitmaps to SDF; see
* file `ftbsdf.c` for more.
*
* * The basic idea of generating the SDF is taken from Viktor Chlumsky's
* research paper. The paper explains both single and multi-channel
* SDF, however, this implementation only generates single-channel SDF.
*
* Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance
* Fields. Master's thesis. Czech Technical University in Prague,
* Faculty of InformationTechnology, 2015.
*
* For more information: https://github.com/Chlumsky/msdfgen
*
* ========================================================================
*
* Generating SDF from outlines is pretty straightforward.
*
* (1) We have a set of contours that make the outline of a shape/glyph.
* Each contour comprises of several edges, with three types of edges.
*
* * line segments
* * conic Bezier curves
* * cubic Bezier curves
*
* (2) Apart from the outlines we also have a two-dimensional grid, namely
* the bitmap that is used to represent the final SDF data.
*
* (3) In order to generate SDF, our task is to find shortest signed
* distance from each grid point to the outline. The 'signed
* distance' means that if the grid point is filled by any contour
* then its sign is positive, otherwise it is negative. The pseudo
* code is as follows.
*
* ```
* foreach grid_point (x, y):
* {
* int min_dist = INT_MAX;
*
* foreach contour in outline:
* {
* foreach edge in contour:
* {
* // get shortest distance from point (x, y) to the edge
* d = get_min_dist(x, y, edge);
*
* if (d < min_dist)
* min_dist = d;
* }
*
* bitmap[x, y] = min_dist;
* }
* }
* ```
*
* (4) After running this algorithm the bitmap contains information about
* the shortest distance from each point to the outline of the shape.
* Of course, while this is the most straightforward way of generating
* SDF, we use various optimizations in our implementation. See the
* `sdf_generate_*' functions in this file for all details.
*
* The optimization currently used by default is subdivision; see
* function `sdf_generate_subdivision` for more.
*
* Also, to see how we compute the shortest distance from a point to
* each type of edge, check out the `get_min_distance_*' functions.
*
*/
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT sdf
/**************************************************************************
*
* definitions
*
*/
/*
* If set to 1, the rasterizer uses Newton-Raphson's method for finding
* the shortest distance from a point to a conic curve.
*
* If set to 0, an analytical method gets used instead, which computes the
* roots of a cubic polynomial to find the shortest distance. However,
* the analytical method can currently underflow; we thus use Newton's
* method by default.
*/
#ifndef USE_NEWTON_FOR_CONIC
#define USE_NEWTON_FOR_CONIC 1
#endif
/*
* The number of intervals a Bezier curve gets sampled and checked to find
* the shortest distance.
*/
#define MAX_NEWTON_DIVISIONS 4
/*
* The number of steps of Newton's iterations in each interval of the
* Bezier curve. Basically, we run Newton's approximation
*
* x -= Q(t) / Q'(t)
*
* for each division to get the shortest distance.
*/
#define MAX_NEWTON_STEPS 4
/*
* The epsilon distance (in 16.16 fractional units) used for corner
* resolving. If the difference of two distances is less than this value
* they will be checked for a corner if they are ambiguous.
*/
#define CORNER_CHECK_EPSILON 32
#if 0
/*
* Coarse grid dimension. Will probably be removed in the future because
* coarse grid optimization is the slowest algorithm.
*/
#define CG_DIMEN 8
#endif
/**************************************************************************
*
* macros
*
*/
#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \
MUL_26D6( p.y, q.y ) )
/**************************************************************************
*
* structures and enums
*
*/
/**************************************************************************
*
* @Struct:
* SDF_TRaster
*
* @Description:
* This struct is used in place of @FT_Raster and is stored within the
* internal FreeType renderer struct. While rasterizing it is passed to
* the @FT_Raster_RenderFunc function, which then can be used however we
* want.
*
* @Fields:
* memory ::
* Used internally to allocate intermediate memory while raterizing.
*
*/
typedef struct SDF_TRaster_
{
FT_Memory memory;
} SDF_TRaster, *SDF_PRaster;
/**************************************************************************
*
* @Enum:
* SDF_Edge_Type
*
* @Description:
* Enumeration of all curve types present in fonts.
*
* @Fields:
* SDF_EDGE_UNDEFINED ::
* Undefined edge, simply used to initialize and detect errors.
*
* SDF_EDGE_LINE ::
* Line segment with start and end point.
*
* SDF_EDGE_CONIC ::
* A conic/quadratic Bezier curve with start, end, and one control
* point.
*
* SDF_EDGE_CUBIC ::
* A cubic Bezier curve with start, end, and two control points.
*
*/
typedef enum SDF_Edge_Type_
{
SDF_EDGE_UNDEFINED = 0,
SDF_EDGE_LINE = 1,
SDF_EDGE_CONIC = 2,
SDF_EDGE_CUBIC = 3
} SDF_Edge_Type;
/**************************************************************************
*
* @Enum:
* SDF_Contour_Orientation
*
* @Description:
* Enumeration of all orientation values of a contour. We determine the
* orientation by calculating the area covered by a contour. Contrary
* to values returned by @FT_Outline_Get_Orientation,
* `SDF_Contour_Orientation` is independent of the fill rule, which can
* be different for different font formats.
*
* @Fields:
* SDF_ORIENTATION_NONE ::
* Undefined orientation, used for initialization and error detection.
*
* SDF_ORIENTATION_CW ::
* Clockwise orientation (positive area covered).
*
* SDF_ORIENTATION_CCW ::
* Counter-clockwise orientation (negative area covered).
*
* @Note:
* See @FT_Outline_Get_Orientation for more details.
*
*/
typedef enum SDF_Contour_Orientation_
{
SDF_ORIENTATION_NONE = 0,
SDF_ORIENTATION_CW = 1,
SDF_ORIENTATION_CCW = 2
} SDF_Contour_Orientation;
/**************************************************************************
*
* @Struct:
* SDF_Edge
*
* @Description:
* Represent an edge of a contour.
*
* @Fields:
* start_pos ::
* Start position of an edge. Valid for all types of edges.
*
* end_pos ::
* Etart position of an edge. Valid for all types of edges.
*
* control_a ::
* A control point of the edge. Valid only for `SDF_EDGE_CONIC`
* and `SDF_EDGE_CUBIC`.
*
* control_b ::
* Another control point of the edge. Valid only for
* `SDF_EDGE_CONIC`.
*
* edge_type ::
* Type of the edge, see @SDF_Edge_Type for all possible edge types.
*
* next ::
* Used to create a singly linked list, which can be interpreted
* as a contour.
*
*/
typedef struct SDF_Edge_
{
FT_26D6_Vec start_pos;
FT_26D6_Vec end_pos;
FT_26D6_Vec control_a;
FT_26D6_Vec control_b;
SDF_Edge_Type edge_type;
struct SDF_Edge_* next;
} SDF_Edge;
/**************************************************************************
*
* @Struct:
* SDF_Contour
*
* @Description:
* Represent a complete contour, which contains a list of edges.
*
* @Fields:
* last_pos ::
* Contains the value of `end_pos' of the last edge in the list of
* edges. Useful while decomposing the outline with
* @FT_Outline_Decompose.
*
* edges ::
* Linked list of all the edges that make the contour.
*
* next ::
* Used to create a singly linked list, which can be interpreted as a
* complete shape or @FT_Outline.
*
*/
typedef struct SDF_Contour_
{
FT_26D6_Vec last_pos;
SDF_Edge* edges;
struct SDF_Contour_* next;
} SDF_Contour;
/**************************************************************************
*
* @Struct:
* SDF_Shape
*
* @Description:
* Represent a complete shape, which is the decomposition of
* @FT_Outline.
*
* @Fields:
* memory ::
* Used internally to allocate memory.
*
* contours ::
* Linked list of all the contours that make the shape.
*
*/
typedef struct SDF_Shape_
{
FT_Memory memory;
SDF_Contour* contours;
} SDF_Shape;
/**************************************************************************
*
* @Struct:
* SDF_Signed_Distance
*
* @Description:
* Represent signed distance of a point, i.e., the distance of the edge
* nearest to the point.
*
* @Fields:
* distance ::
* Distance of the point from the nearest edge. Can be squared or
* absolute depending on the `USE_SQUARED_DISTANCES` macro defined in
* file `ftsdfcommon.h`.
*
* cross ::
* Cross product of the shortest distance vector (i.e., the vector
* from the point to the nearest edge) and the direction of the edge
* at the nearest point. This is used to resolve ambiguities of
* `sign`.
*
* sign ::
* A value used to indicate whether the distance vector is outside or
* inside the contour corresponding to the edge.
*
* @Note:
* `sign` may or may not be correct, therefore it must be checked
* properly in case there is an ambiguity.
*
*/
typedef struct SDF_Signed_Distance_
{
FT_16D16 distance;
FT_16D16 cross;
FT_Char sign;
} SDF_Signed_Distance;
/**************************************************************************
*
* @Struct:
* SDF_Params
*
* @Description:
* Yet another internal parameters required by the rasterizer.
*
* @Fields:
* orientation ::
* This is not the @SDF_Contour_Orientation value but @FT_Orientation,
* which determines whether clockwise-oriented outlines are to be
* filled or counter-clockwise-oriented ones.
*
* flip_sign ::
* If set to true, flip the sign. By default the points filled by the
* outline are positive.
*
* flip_y ::
* If set to true the output bitmap is upside-down. Can be useful
* because OpenGL and DirectX use different coordinate systems for
* textures.
*
* overload_sign ::
* In the subdivision and bounding box optimization, the default
* outside sign is taken as -1. This parameter can be used to modify
* that behaviour. For example, while generating SDF for a single
* counter-clockwise contour, the outside sign should be 1.
*
*/
typedef struct SDF_Params_
{
FT_Orientation orientation;
FT_Bool flip_sign;
FT_Bool flip_y;
FT_Int overload_sign;
} SDF_Params;
/**************************************************************************
*
* constants, initializer, and destructor
*
*/
static
const FT_Vector zero_vector = { 0, 0 };
static
const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 },
{ 0, 0 }, { 0, 0 },
SDF_EDGE_UNDEFINED, NULL };
static
const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL };
static
const SDF_Shape null_shape = { NULL, NULL };
static
const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 };
/* Create a new @SDF_Edge on the heap and assigns the `edge` */
/* pointer to the newly allocated memory. */
static FT_Error
sdf_edge_new( FT_Memory memory,
SDF_Edge** edge )
{
FT_Error error = FT_Err_Ok;
SDF_Edge* ptr = NULL;
if ( !memory || !edge )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QNEW( ptr ) )
{
*ptr = null_edge;
*edge = ptr;
}
Exit:
return error;
}
/* Free the allocated `edge` variable. */
static void
sdf_edge_done( FT_Memory memory,
SDF_Edge** edge )
{
if ( !memory || !edge || !*edge )
return;
FT_FREE( *edge );
}
/* Create a new @SDF_Contour on the heap and assign */
/* the `contour` pointer to the newly allocated memory. */
static FT_Error
sdf_contour_new( FT_Memory memory,
SDF_Contour** contour )
{
FT_Error error = FT_Err_Ok;
SDF_Contour* ptr = NULL;
if ( !memory || !contour )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QNEW( ptr ) )
{
*ptr = null_contour;
*contour = ptr;
}
Exit:
return error;
}
/* Free the allocated `contour` variable. */
/* Also free the list of edges. */
static void
sdf_contour_done( FT_Memory memory,
SDF_Contour** contour )
{
SDF_Edge* edges;
SDF_Edge* temp;
if ( !memory || !contour || !*contour )
return;
edges = (*contour)->edges;
/* release all edges */
while ( edges )
{
temp = edges;
edges = edges->next;
sdf_edge_done( memory, &temp );
}
FT_FREE( *contour );
}
/* Create a new @SDF_Shape on the heap and assign */
/* the `shape` pointer to the newly allocated memory. */
static FT_Error
sdf_shape_new( FT_Memory memory,
SDF_Shape** shape )
{
FT_Error error = FT_Err_Ok;
SDF_Shape* ptr = NULL;
if ( !memory || !shape )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( !FT_QNEW( ptr ) )
{
*ptr = null_shape;
ptr->memory = memory;
*shape = ptr;
}
Exit:
return error;
}
/* Free the allocated `shape` variable. */
/* Also free the list of contours. */
static void
sdf_shape_done( SDF_Shape** shape )
{
FT_Memory memory;
SDF_Contour* contours;
SDF_Contour* temp;
if ( !shape || !*shape )
return;
memory = (*shape)->memory;
contours = (*shape)->contours;
if ( !memory )
return;
/* release all contours */
while ( contours )
{
temp = contours;
contours = contours->next;
sdf_contour_done( memory, &temp );
}
/* release the allocated shape struct */
FT_FREE( *shape );
}
/**************************************************************************
*
* shape decomposition functions
*
*/
/* This function is called when starting a new contour at `to`, */
/* which gets added to the shape's list. */
static FT_Error
sdf_move_to( const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
FT_CALL( sdf_contour_new( memory, &contour ) );
contour->last_pos = *to;
contour->next = shape->contours;
shape->contours = contour;
Exit:
return error;
}
/* This function is called when there is a line in the */
/* contour. The line starts at the previous edge point and */
/* stops at `to`. */
static FT_Error
sdf_line_to( const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
if ( contour->last_pos.x == to->x &&
contour->last_pos.y == to->y )
goto Exit;
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_LINE;
edge->start_pos = contour->last_pos;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* This function is called when there is a conic Bezier curve */
/* in the contour. The curve starts at the previous edge point */
/* and stops at `to`, with control point `control_1`. */
static FT_Error
sdf_conic_to( const FT_26D6_Vec* control_1,
const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !control_1 || !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
/* If the control point coincides with any of the end points */
/* then it is a line and should be treated as one to avoid */
/* unnecessary complexity later in the algorithm. */
if ( ( contour->last_pos.x == control_1->x &&
contour->last_pos.y == control_1->y ) ||
( control_1->x == to->x &&
control_1->y == to->y ) )
{
sdf_line_to( to, user );
goto Exit;
}
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_CONIC;
edge->start_pos = contour->last_pos;
edge->control_a = *control_1;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* This function is called when there is a cubic Bezier curve */
/* in the contour. The curve starts at the previous edge point */
/* and stops at `to`, with two control points `control_1` and */
/* `control_2`. */
static FT_Error
sdf_cubic_to( const FT_26D6_Vec* control_1,
const FT_26D6_Vec* control_2,
const FT_26D6_Vec* to,
void* user )
{
SDF_Shape* shape = ( SDF_Shape* )user;
SDF_Edge* edge = NULL;
SDF_Contour* contour = NULL;
FT_Error error = FT_Err_Ok;
FT_Memory memory = shape->memory;
if ( !control_2 || !control_1 || !to || !user )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contour = shape->contours;
FT_CALL( sdf_edge_new( memory, &edge ) );
edge->edge_type = SDF_EDGE_CUBIC;
edge->start_pos = contour->last_pos;
edge->control_a = *control_1;
edge->control_b = *control_2;
edge->end_pos = *to;
edge->next = contour->edges;
contour->edges = edge;
contour->last_pos = *to;
Exit:
return error;
}
/* Construct the structure to hold all four outline */
/* decomposition functions. */
FT_DEFINE_OUTLINE_FUNCS(
sdf_decompose_funcs,
(FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */
(FT_Outline_LineTo_Func) sdf_line_to, /* line_to */
(FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */
(FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */
0, /* shift */
0 /* delta */
)
/* Decompose `outline` and put it into the `shape` structure. */
static FT_Error
sdf_outline_decompose( FT_Outline* outline,
SDF_Shape* shape )
{
FT_Error error = FT_Err_Ok;
if ( !outline || !shape )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
error = FT_Outline_Decompose( outline,
&sdf_decompose_funcs,
(void*)shape );
Exit:
return error;
}
/**************************************************************************
*
* utility functions
*
*/
/* Return the control box of an edge. The control box is a rectangle */
/* in which all the control points can fit tightly. */
static FT_CBox
get_control_box( SDF_Edge edge )
{
FT_CBox cbox = { 0, 0, 0, 0 };
FT_Bool is_set = 0;
switch ( edge.edge_type )
{
case SDF_EDGE_CUBIC:
cbox.xMin = edge.control_b.x;
cbox.xMax = edge.control_b.x;
cbox.yMin = edge.control_b.y;
cbox.yMax = edge.control_b.y;
is_set = 1;
FALL_THROUGH;
case SDF_EDGE_CONIC:
if ( is_set )
{
cbox.xMin = edge.control_a.x < cbox.xMin
? edge.control_a.x
: cbox.xMin;
cbox.xMax = edge.control_a.x > cbox.xMax
? edge.control_a.x
: cbox.xMax;
cbox.yMin = edge.control_a.y < cbox.yMin
? edge.control_a.y
: cbox.yMin;
cbox.yMax = edge.control_a.y > cbox.yMax
? edge.control_a.y
: cbox.yMax;
}
else
{
cbox.xMin = edge.control_a.x;
cbox.xMax = edge.control_a.x;
cbox.yMin = edge.control_a.y;
cbox.yMax = edge.control_a.y;
is_set = 1;
}
FALL_THROUGH;
case SDF_EDGE_LINE:
if ( is_set )
{
cbox.xMin = edge.start_pos.x < cbox.xMin
? edge.start_pos.x
: cbox.xMin;
cbox.xMax = edge.start_pos.x > cbox.xMax
? edge.start_pos.x
: cbox.xMax;
cbox.yMin = edge.start_pos.y < cbox.yMin
? edge.start_pos.y
: cbox.yMin;
cbox.yMax = edge.start_pos.y > cbox.yMax
? edge.start_pos.y
: cbox.yMax;
}
else
{
cbox.xMin = edge.start_pos.x;
cbox.xMax = edge.start_pos.x;
cbox.yMin = edge.start_pos.y;
cbox.yMax = edge.start_pos.y;
}
cbox.xMin = edge.end_pos.x < cbox.xMin
? edge.end_pos.x
: cbox.xMin;
cbox.xMax = edge.end_pos.x > cbox.xMax
? edge.end_pos.x
: cbox.xMax;
cbox.yMin = edge.end_pos.y < cbox.yMin
? edge.end_pos.y
: cbox.yMin;
cbox.yMax = edge.end_pos.y > cbox.yMax
? edge.end_pos.y
: cbox.yMax;
break;
default:
break;
}
return cbox;
}
/* Return orientation of a single contour. */
/* Note that the orientation is independent of the fill rule! */
/* So, for TTF a clockwise-oriented contour has to be filled */
/* and the opposite for OTF fonts. */
static SDF_Contour_Orientation
get_contour_orientation ( SDF_Contour* contour )
{
SDF_Edge* head = NULL;
FT_26D6 area = 0;
/* return none if invalid parameters */
if ( !contour || !contour->edges )
return SDF_ORIENTATION_NONE;
head = contour->edges;
/* Calculate the area of the control box for all edges. */
while ( head )
{
switch ( head->edge_type )
{
case SDF_EDGE_LINE:
area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
( head->end_pos.y + head->start_pos.y ) );
break;
case SDF_EDGE_CONIC:
area += MUL_26D6( head->control_a.x - head->start_pos.x,
head->control_a.y + head->start_pos.y );
area += MUL_26D6( head->end_pos.x - head->control_a.x,
head->end_pos.y + head->control_a.y );
break;
case SDF_EDGE_CUBIC:
area += MUL_26D6( head->control_a.x - head->start_pos.x,
head->control_a.y + head->start_pos.y );
area += MUL_26D6( head->control_b.x - head->control_a.x,
head->control_b.y + head->control_a.y );
area += MUL_26D6( head->end_pos.x - head->control_b.x,
head->end_pos.y + head->control_b.y );
break;
default:
return SDF_ORIENTATION_NONE;
}
head = head->next;
}
/* Clockwise contours cover a positive area, and counter-clockwise */
/* contours cover a negative area. */
if ( area > 0 )
return SDF_ORIENTATION_CW;
else
return SDF_ORIENTATION_CCW;
}
/* This function is exactly the same as the one */
/* in the smooth renderer. It splits a conic */
/* into two conics exactly half way at t = 0.5. */
static void
split_conic( FT_26D6_Vec* base )
{
FT_26D6 a, b;
base[4].x = base[2].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
base[3].x = b / 2;
base[2].x = ( a + b ) / 4;
base[1].x = a / 2;
base[4].y = base[2].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
base[3].y = b / 2;
base[2].y = ( a + b ) / 4;
base[1].y = a / 2;
}
/* This function is exactly the same as the one */
/* in the smooth renderer. It splits a cubic */
/* into two cubics exactly half way at t = 0.5. */
static void
split_cubic( FT_26D6_Vec* base )
{
FT_26D6 a, b, c;
base[6].x = base[3].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
c = base[2].x + base[3].x;
base[5].x = c / 2;
c += b;
base[4].x = c / 4;
base[1].x = a / 2;
a += b;
base[2].x = a / 4;
base[3].x = ( a + c ) / 8;
base[6].y = base[3].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
c = base[2].y + base[3].y;
base[5].y = c / 2;
c += b;
base[4].y = c / 4;
base[1].y = a / 2;
a += b;
base[2].y = a / 4;
base[3].y = ( a + c ) / 8;
}
/* Split a conic Bezier curve into a number of lines */
/* and add them to `out'. */
/* */
/* This function uses recursion; we thus need */
/* parameter `max_splits' for stopping. */
static FT_Error
split_sdf_conic( FT_Memory memory,
FT_26D6_Vec* control_points,
FT_UInt max_splits,
SDF_Edge** out )
{
FT_Error error = FT_Err_Ok;
FT_26D6_Vec cpos[5];
SDF_Edge* left,* right;
if ( !memory || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* split conic outline */
cpos[0] = control_points[0];
cpos[1] = control_points[1];
cpos[2] = control_points[2];
split_conic( cpos );
/* If max number of splits is done */
/* then stop and add the lines to */
/* the list. */
if ( max_splits <= 2 )
goto Append;
/* Otherwise keep splitting. */
FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
/* [NOTE]: This is not an efficient way of */
/* splitting the curve. Check the deviation */
/* instead and stop if the deviation is less */
/* than a pixel. */
goto Exit;
Append:
/* Do allocation and add the lines to the list. */
FT_CALL( sdf_edge_new( memory, &left ) );
FT_CALL( sdf_edge_new( memory, &right ) );
left->start_pos = cpos[0];
left->end_pos = cpos[2];
left->edge_type = SDF_EDGE_LINE;
right->start_pos = cpos[2];
right->end_pos = cpos[4];
right->edge_type = SDF_EDGE_LINE;
left->next = right;
right->next = (*out);
*out = left;
Exit:
return error;
}
/* Split a cubic Bezier curve into a number of lines */
/* and add them to `out`. */
/* */
/* This function uses recursion; we thus need */
/* parameter `max_splits' for stopping. */
static FT_Error
split_sdf_cubic( FT_Memory memory,
FT_26D6_Vec* control_points,
FT_UInt max_splits,
SDF_Edge** out )
{
FT_Error error = FT_Err_Ok;
FT_26D6_Vec cpos[7];
SDF_Edge* left, *right;
const FT_26D6 threshold = ONE_PIXEL / 4;
if ( !memory || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* split the cubic */
cpos[0] = control_points[0];
cpos[1] = control_points[1];
cpos[2] = control_points[2];
cpos[3] = control_points[3];
/* If the segment is flat enough we won't get any benefit by */
/* splitting it further, so we can just stop splitting. */
/* */
/* Check the deviation of the Bezier curve and stop if it is */
/* smaller than the pre-defined `threshold` value. */
if ( FT_ABS( 2 * cpos[0].x - 3 * cpos[1].x + cpos[3].x ) < threshold &&
FT_ABS( 2 * cpos[0].y - 3 * cpos[1].y + cpos[3].y ) < threshold &&
FT_ABS( cpos[0].x - 3 * cpos[2].x + 2 * cpos[3].x ) < threshold &&
FT_ABS( cpos[0].y - 3 * cpos[2].y + 2 * cpos[3].y ) < threshold )
{
split_cubic( cpos );
goto Append;
}
split_cubic( cpos );
/* If max number of splits is done */
/* then stop and add the lines to */
/* the list. */
if ( max_splits <= 2 )
goto Append;
/* Otherwise keep splitting. */
FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
/* [NOTE]: This is not an efficient way of */
/* splitting the curve. Check the deviation */
/* instead and stop if the deviation is less */
/* than a pixel. */
goto Exit;
Append:
/* Do allocation and add the lines to the list. */
FT_CALL( sdf_edge_new( memory, &left) );
FT_CALL( sdf_edge_new( memory, &right) );
left->start_pos = cpos[0];
left->end_pos = cpos[3];
left->edge_type = SDF_EDGE_LINE;
right->start_pos = cpos[3];
right->end_pos = cpos[6];
right->edge_type = SDF_EDGE_LINE;
left->next = right;
right->next = (*out);
*out = left;
Exit:
return error;
}
/* Subdivide an entire shape into line segments */
/* such that it doesn't look visually different */
/* from the original curve. */
static FT_Error
split_sdf_shape( SDF_Shape* shape )
{
FT_Error error = FT_Err_Ok;
FT_Memory memory;
SDF_Contour* contours;
SDF_Contour* new_contours = NULL;
if ( !shape || !shape->memory )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
contours = shape->contours;
memory = shape->memory;
/* for each contour */
while ( contours )
{
SDF_Edge* edges = contours->edges;
SDF_Edge* new_edges = NULL;
SDF_Contour* tempc;
/* for each edge */
while ( edges )
{
SDF_Edge* edge = edges;
SDF_Edge* temp;
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
/* Just create a duplicate edge in case */
/* it is a line. We can use the same edge. */
FT_CALL( sdf_edge_new( memory, &temp ) );
ft_memcpy( temp, edge, sizeof ( *edge ) );
temp->next = new_edges;
new_edges = temp;
break;
case SDF_EDGE_CONIC:
/* Subdivide the curve and add it to the list. */
{
FT_26D6_Vec ctrls[3];
FT_26D6 dx, dy;
FT_UInt num_splits;
ctrls[0] = edge->start_pos;
ctrls[1] = edge->control_a;
ctrls[2] = edge->end_pos;
dx = FT_ABS( ctrls[2].x + ctrls[0].x - 2 * ctrls[1].x );
dy = FT_ABS( ctrls[2].y + ctrls[0].y - 2 * ctrls[1].y );
if ( dx < dy )
dx = dy;
/* Calculate the number of necessary bisections. Each */
/* bisection causes a four-fold reduction of the deviation, */
/* hence we bisect the Bezier curve until the deviation */
/* becomes less than 1/8 of a pixel. For more details */
/* check file `ftgrays.c`. */
num_splits = 1;
while ( dx > ONE_PIXEL / 8 )
{
dx >>= 2;
num_splits <<= 1;
}
error = split_sdf_conic( memory, ctrls, num_splits, &new_edges );
}
break;
case SDF_EDGE_CUBIC:
/* Subdivide the curve and add it to the list. */
{
FT_26D6_Vec ctrls[4];
ctrls[0] = edge->start_pos;
ctrls[1] = edge->control_a;
ctrls[2] = edge->control_b;
ctrls[3] = edge->end_pos;
error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
}
break;
default:
error = FT_THROW( Invalid_Argument );
}
if ( error != FT_Err_Ok )
goto Exit;
edges = edges->next;
}
/* add to the contours list */
FT_CALL( sdf_contour_new( memory, &tempc ) );
tempc->next = new_contours;
tempc->edges = new_edges;
new_contours = tempc;
new_edges = NULL;
/* deallocate the contour */
tempc = contours;
contours = contours->next;
sdf_contour_done( memory, &tempc );
}
shape->contours = new_contours;
Exit:
return error;
}
/**************************************************************************
*
* for debugging
*
*/
#ifdef FT_DEBUG_LEVEL_TRACE
static void
sdf_shape_dump( SDF_Shape* shape )
{
FT_UInt num_contours = 0;
FT_UInt total_edges = 0;
FT_UInt total_lines = 0;
FT_UInt total_conic = 0;
FT_UInt total_cubic = 0;
SDF_Contour* contour_list;
if ( !shape )
{
FT_TRACE5(( "sdf_shape_dump: null shape\n" ));
return;
}
contour_list = shape->contours;
FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" ));
while ( contour_list )
{
FT_UInt num_edges = 0;
SDF_Edge* edge_list;
SDF_Contour* contour = contour_list;
FT_TRACE5(( " Contour %d\n", num_contours ));
edge_list = contour->edges;
while ( edge_list )
{
SDF_Edge* edge = edge_list;
FT_TRACE5(( " %3d: ", num_edges ));
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->end_pos.x, edge->end_pos.y ));
total_lines++;
break;
case SDF_EDGE_CONIC:
FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->control_a.x, edge->control_a.y,
edge->end_pos.x, edge->end_pos.y ));
total_conic++;
break;
case SDF_EDGE_CUBIC:
FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)"
" .. (%ld, %ld) .. (%ld %ld)\n",
edge->start_pos.x, edge->start_pos.y,
edge->control_a.x, edge->control_a.y,
edge->control_b.x, edge->control_b.y,
edge->end_pos.x, edge->end_pos.y ));
total_cubic++;
break;
default:
break;
}
num_edges++;
total_edges++;
edge_list = edge_list->next;
}
num_contours++;
contour_list = contour_list->next;
}
FT_TRACE5(( "\n" ));
FT_TRACE5(( " total number of contours = %d\n", num_contours ));
FT_TRACE5(( " total number of edges = %d\n", total_edges ));
FT_TRACE5(( " |__lines = %d\n", total_lines ));
FT_TRACE5(( " |__conic = %d\n", total_conic ));
FT_TRACE5(( " |__cubic = %d\n", total_cubic ));
}
#endif /* FT_DEBUG_LEVEL_TRACE */
/**************************************************************************
*
* math functions
*
*/
#if !USE_NEWTON_FOR_CONIC
/* [NOTE]: All the functions below down until rasterizer */
/* can be avoided if we decide to subdivide the */
/* curve into lines. */
/* This function uses Newton's iteration to find */
/* the cube root of a fixed-point integer. */
static FT_16D16
cube_root( FT_16D16 val )
{
/* [IMPORTANT]: This function is not good as it may */
/* not break, so use a lookup table instead. Or we */
/* can use an algorithm similar to `square_root`. */
FT_Int v, g, c;
if ( val == 0 ||
val == -FT_INT_16D16( 1 ) ||
val == FT_INT_16D16( 1 ) )
return val;
v = val < 0 ? -val : val;
g = square_root( v );
c = 0;
while ( 1 )
{
c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
g -= c;
if ( ( c < 0 ? -c : c ) < 30 )
break;
}
return val < 0 ? -g : g;
}
/* Calculate the perpendicular by using '1 - base^2'. */
/* Then use arctan to compute the angle. */
static FT_16D16
arc_cos( FT_16D16 val )
{
FT_16D16 p;
FT_16D16 b = val;
FT_16D16 one = FT_INT_16D16( 1 );
if ( b > one )
b = one;
if ( b < -one )
b = -one;
p = one - FT_MulFix( b, b );
p = square_root( p );
return FT_Atan2( b, p );
}
/* Compute roots of a quadratic polynomial, assign them to `out`, */
/* and return number of real roots. */
/* */
/* The procedure can be found at */
/* */
static FT_UShort
solve_quadratic_equation( FT_26D6 a,
FT_26D6 b,
FT_26D6 c,
FT_16D16 out[2] )
{
FT_16D16 discriminant = 0;
a = FT_26D6_16D16( a );
b = FT_26D6_16D16( b );
c = FT_26D6_16D16( c );
if ( a == 0 )
{
if ( b == 0 )
return 0;
else
{
out[0] = FT_DivFix( -c, b );
return 1;
}
}
discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
if ( discriminant < 0 )
return 0;
else if ( discriminant == 0 )
{
out[0] = FT_DivFix( -b, 2 * a );
return 1;
}
else
{
discriminant = square_root( discriminant );
out[0] = FT_DivFix( -b + discriminant, 2 * a );
out[1] = FT_DivFix( -b - discriminant, 2 * a );
return 2;
}
}
/* Compute roots of a cubic polynomial, assign them to `out`, */
/* and return number of real roots. */
/* */
/* The procedure can be found at */
/* */
static FT_UShort
solve_cubic_equation( FT_26D6 a,
FT_26D6 b,
FT_26D6 c,
FT_26D6 d,
FT_16D16 out[3] )
{
FT_16D16 q = 0; /* intermediate */
FT_16D16 r = 0; /* intermediate */
FT_16D16 a2 = b; /* x^2 coefficients */
FT_16D16 a1 = c; /* x coefficients */
FT_16D16 a0 = d; /* constant */
FT_16D16 q3 = 0;
FT_16D16 r2 = 0;
FT_16D16 a23 = 0;
FT_16D16 a22 = 0;
FT_16D16 a1x2 = 0;
/* cutoff value for `a` to be a cubic, otherwise solve quadratic */
if ( a == 0 || FT_ABS( a ) < 16 )
return solve_quadratic_equation( b, c, d, out );
if ( d == 0 )
{
out[0] = 0;
return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
}
/* normalize the coefficients; this also makes them 16.16 */
a2 = FT_DivFix( a2, a );
a1 = FT_DivFix( a1, a );
a0 = FT_DivFix( a0, a );
/* compute intermediates */
a1x2 = FT_MulFix( a1, a2 );
a22 = FT_MulFix( a2, a2 );
a23 = FT_MulFix( a22, a2 );
q = ( 3 * a1 - a22 ) / 9;
r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
/* [BUG]: `q3` and `r2` still cause underflow. */
q3 = FT_MulFix( q, q );
q3 = FT_MulFix( q3, q );
r2 = FT_MulFix( r, r );
if ( q3 < 0 && r2 < -q3 )
{
FT_16D16 t = 0;
q3 = square_root( -q3 );
t = FT_DivFix( r, q3 );
if ( t > ( 1 << 16 ) )
t = ( 1 << 16 );
if ( t < -( 1 << 16 ) )
t = -( 1 << 16 );
t = arc_cos( t );
a2 /= 3;
q = 2 * square_root( -q );
out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
return 3;
}
else if ( r2 == -q3 )
{
FT_16D16 s = 0;
s = cube_root( r );
a2 /= -3;
out[0] = a2 + ( 2 * s );
out[1] = a2 - s;
return 2;
}
else
{
FT_16D16 s = 0;
FT_16D16 t = 0;
FT_16D16 dis = 0;
if ( q3 == 0 )
dis = FT_ABS( r );
else
dis = square_root( q3 + r2 );
s = cube_root( r + dis );
t = cube_root( r - dis );
a2 /= -3;
out[0] = ( a2 + ( s + t ) );
return 1;
}
}
#endif /* !USE_NEWTON_FOR_CONIC */
/*************************************************************************/
/*************************************************************************/
/** **/
/** RASTERIZER **/
/** **/
/*************************************************************************/
/*************************************************************************/
/**************************************************************************
*
* @Function:
* resolve_corner
*
* @Description:
* At some places on the grid two edges can give opposite directions;
* this happens when the closest point is on one of the endpoint. In
* that case we need to check the proper sign.
*
* This can be visualized by an example:
*
* ```
* x
*
* o
* ^ \
* / \
* / \
* (a) / \ (b)
* / \
* / \
* / v
* ```
*
* Suppose `x` is the point whose shortest distance from an arbitrary
* contour we want to find out. It is clear that `o` is the nearest
* point on the contour. Now to determine the sign we do a cross
* product of the shortest distance vector and the edge direction, i.e.,
*
* ```
* => sign = cross(x - o, direction(a))
* ```
*
* Using the right hand thumb rule we can see that the sign will be
* positive.
*
* If we use `b', however, we have
*
* ```
* => sign = cross(x - o, direction(b))
* ```
*
* In this case the sign will be negative. To determine the correct
* sign we thus divide the plane in two halves and check which plane the
* point lies in.
*
* ```
* |
* x |
* |
* o
* ^|\
* / | \
* / | \
* (a) / | \ (b)
* / | \
* / \
* / v
* ```
*
* We can see that `x` lies in the plane of `a`, so we take the sign
* determined by `a`. This test can be easily done by calculating the
* orthogonality and taking the greater one.
*
* The orthogonality is simply the sinus of the two vectors (i.e.,
* x - o) and the corresponding direction. We efficiently pre-compute
* the orthogonality with the corresponding `get_min_distance_*`
* functions.
*
* @Input:
* sdf1 ::
* First signed distance (can be any of `a` or `b`).
*
* sdf1 ::
* Second signed distance (can be any of `a` or `b`).
*
* @Return:
* The correct signed distance, which is computed by using the above
* algorithm.
*
* @Note:
* The function does not care about the actual distance, it simply
* returns the signed distance which has a larger cross product. As a
* consequence, this function should not be used if the two distances
* are fairly apart. In that case simply use the signed distance with
* a shorter absolute distance.
*
*/
static SDF_Signed_Distance
resolve_corner( SDF_Signed_Distance sdf1,
SDF_Signed_Distance sdf2 )
{
return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
}
/**************************************************************************
*
* @Function:
* get_min_distance_line
*
* @Description:
* Find the shortest distance from the `line` segment to a given `point`
* and assign it to `out`. Use it for line segments only.
*
* @Input:
* line ::
* The line segment to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `line`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
*
*/
static FT_Error
get_min_distance_line( SDF_Edge* line,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* In order to calculate the shortest distance from a point to
* a line segment, we do the following. Let's assume that
*
* ```
* a = start point of the line segment
* b = end point of the line segment
* p = point from which shortest distance is to be calculated
* ```
*
* (1) Write the parametric equation of the line.
*
* ```
* point_on_line = a + (b - a) * t (t is the factor)
* ```
*
* (2) Find the projection of point `p` on the line. The projection
* will be perpendicular to the line, which allows us to get the
* solution by making the dot product zero.
*
* ```
* (point_on_line - a) . (p - point_on_line) = 0
*
* (point_on_line)
* (a) x-------o----------------x (b)
* |_|
* |
* |
* (p)
* ```
*
* (3) Simplification of the above equation yields the factor of
* `point_on_line`:
*
* ```
* t = ((p - a) . (b - a)) / |b - a|^2
* ```
*
* (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
* can be outside of the line segment:
*
* ```
* (point_on_line)
* (a) x------------------------x (b) -----o---
* |_|
* |
* |
* (p)
* ```
*
* (5) Finally, the distance we are interested in is
*
* ```
* |point_on_line - p|
* ```
*/
FT_Error error = FT_Err_Ok;
FT_Vector a; /* start position */
FT_Vector b; /* end position */
FT_Vector p; /* current point */
FT_26D6_Vec line_segment; /* `b` - `a` */
FT_26D6_Vec p_sub_a; /* `p` - `a` */
FT_26D6 sq_line_length; /* squared length of `line_segment` */
FT_16D16 factor; /* factor of the nearest point */
FT_26D6 cross; /* used to determine sign */
FT_16D16_Vec nearest_point; /* `point_on_line` */
FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
if ( !line || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( line->edge_type != SDF_EDGE_LINE )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
a = line->start_pos;
b = line->end_pos;
p = point;
line_segment.x = b.x - a.x;
line_segment.y = b.y - a.y;
p_sub_a.x = p.x - a.x;
p_sub_a.y = p.y - a.y;
sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
( line_segment.y * line_segment.y ) / 64;
/* currently factor is 26.6 */
factor = ( p_sub_a.x * line_segment.x ) / 64 +
( p_sub_a.y * line_segment.y ) / 64;
/* now factor is 16.16 */
factor = FT_DivFix( factor, sq_line_length );
/* clamp the factor between 0.0 and 1.0 in fixed-point */
if ( factor > FT_INT_16D16( 1 ) )
factor = FT_INT_16D16( 1 );
if ( factor < 0 )
factor = 0;
nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
factor );
nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
factor );
nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
FT_MulFix( nearest_vector.y, line_segment.x );
/* assign the output */
out->sign = cross < 0 ? 1 : -1;
out->distance = VECTOR_LENGTH_16D16( nearest_vector );
/* Instead of finding `cross` for checking corner we */
/* directly set it here. This is more efficient */
/* because if the distance is perpendicular we can */
/* directly set it to 1. */
if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 );
else
{
/* [OPTIMIZATION]: Pre-compute this direction. */
/* If not perpendicular then compute `cross`. */
FT_Vector_NormLen( &line_segment );
FT_Vector_NormLen( &nearest_vector );
out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
FT_MulFix( line_segment.y, nearest_vector.x );
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* get_min_distance_conic
*
* @Description:
* Find the shortest distance from the `conic` Bezier curve to a given
* `point` and assign it to `out`. Use it for conic/quadratic curves
* only.
*
* @Input:
* conic ::
* The conic Bezier curve to which the shortest distance is to be
* computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `conic`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
*
*/
#if !USE_NEWTON_FOR_CONIC
/*
* The function uses an analytical method to find the shortest distance
* which is faster than the Newton-Raphson method, but has underflows at
* the moment. Use Newton's method if you can see artifacts in the SDF.
*/
static FT_Error
get_min_distance_conic( SDF_Edge* conic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* The procedure to find the shortest distance from a point to a
* quadratic Bezier curve is similar to the line segment algorithm. The
* shortest distance is perpendicular to the Bezier curve; the only
* difference from line is that there can be more than one
* perpendicular, and we also have to check the endpoints, because the
* perpendicular may not be the shortest.
*
* Let's assume that
* ```
* p0 = first endpoint
* p1 = control point
* p2 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a quadratic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
* ```
*
* with `t` a factor in the range [0.0f, 1.0f]. This equation can
* be rewritten as
*
* ```
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
* ```
*
* With
*
* ```
* A = p0 - 2p1 + p2
* B = p1 - p0
* ```
*
* we have
*
* ```
* B(t) = t^2 * A + 2t * B + p0
* ```
*
* (2) The derivative of the last equation above is
*
* ```
* B'(t) = 2 *(tA + B)
* ```
*
* (3) To find the shortest distance from `p` to `B(t)` we find the
* point on the curve at which the shortest distance vector (i.e.,
* `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
* In other words, we make the dot product zero.
*
* ```
* (B(t) - p) . (B'(t)) = 0
* (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
* ```
*
* After simplifying we get a cubic equation
*
* ```
* at^3 + bt^2 + ct + d = 0
* ```
*
* with
*
* ```
* a = A.A
* b = 3A.B
* c = 2B.B + A.p0 - A.p
* d = p0.B - p.B
* ```
*
* (4) Now the roots of the equation can be computed using 'Cardano's
* Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB; /* A, B in the above comment */
FT_26D6_Vec nearest_point = { 0, 0 };
/* point on curve nearest to `point` */
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_26D6 a, b, c, d; /* cubic coefficients */
FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
FT_16D16 min_factor; /* factor at `nearest_point` */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
FT_UShort num_roots; /* number of real roots of cubic */
FT_UShort i;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( conic->edge_type != SDF_EDGE_CONIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = conic->start_pos;
p1 = conic->control_a;
p2 = conic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = p0.x - 2 * p1.x + p2.x;
aA.y = p0.y - 2 * p1.y + p2.y;
bB.x = p1.x - p0.x;
bB.y = p1.y - p0.y;
/* compute cubic coefficients */
a = VEC_26D6_DOT( aA, aA );
b = 3 * VEC_26D6_DOT( aA, bB );
c = 2 * VEC_26D6_DOT( bB, bB ) +
VEC_26D6_DOT( aA, p0 ) -
VEC_26D6_DOT( aA, p );
d = VEC_26D6_DOT( p0, bB ) -
VEC_26D6_DOT( p, bB );
/* find the roots */
num_roots = solve_cubic_equation( a, b, c, d, roots );
if ( num_roots == 0 )
{
roots[0] = 0;
roots[1] = FT_INT_16D16( 1 );
num_roots = 2;
}
/* [OPTIMIZATION]: Check the roots, clamp them and discard */
/* duplicate roots. */
/* convert these values to 16.16 for further computation */
aA.x = FT_26D6_16D16( aA.x );
aA.y = FT_26D6_16D16( aA.y );
bB.x = FT_26D6_16D16( bB.x );
bB.y = FT_26D6_16D16( bB.y );
p0.x = FT_26D6_16D16( p0.x );
p0.y = FT_26D6_16D16( p0.y );
p.x = FT_26D6_16D16( p.x );
p.y = FT_26D6_16D16( p.y );
for ( i = 0; i < num_roots; i++ )
{
FT_16D16 t = roots[i];
FT_16D16 t2 = 0;
FT_16D16 dist = 0;
FT_16D16_Vec curve_point;
FT_16D16_Vec dist_vector;
/*
* Ideally we should discard the roots which are outside the range
* [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
* Esfahbod proved the following lemma.
*
* Lemma:
*
* (1) If the closest point on the curve [0, 1] is to the endpoint at
* `t` = 1 and the cubic has no real roots at `t` = 1 then the
* cubic must have a real root at some `t` > 1.
*
* (2) Similarly, if the closest point on the curve [0, 1] is to the
* endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
* then the cubic must have a real root at some `t` < 0.
*
* Now because of this lemma we only need to clamp the roots and that
* will take care of the endpoints.
*
* For more details see
*
*/
if ( t < 0 )
t = 0;
if ( t > FT_INT_16D16( 1 ) )
t = FT_INT_16D16( 1 );
t2 = FT_MulFix( t, t );
/* B(t) = t^2 * A + 2t * B + p0 - p */
curve_point.x = FT_MulFix( aA.x, t2 ) +
2 * FT_MulFix( bB.x, t ) + p0.x;
curve_point.y = FT_MulFix( aA.y, t2 ) +
2 * FT_MulFix( bB.y, t ) + p0.y;
/* `curve_point` - `p` */
dist_vector.x = curve_point.x - p.x;
dist_vector.y = curve_point.y - p.y;
dist = VECTOR_LENGTH_16D16( dist_vector );
if ( dist < min )
{
min = dist;
nearest_point = curve_point;
min_factor = t;
}
}
/* B'(t) = 2 * (tA + B) */
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
FT_MulFix( nearest_point.y - p.y, direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
#else /* USE_NEWTON_FOR_CONIC */
/*
* The function uses Newton's approximation to find the shortest distance,
* which is a bit slower than the analytical method but doesn't cause
* underflow.
*/
static FT_Error
get_min_distance_conic( SDF_Edge* conic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* This method uses Newton-Raphson's approximation to find the shortest
* distance from a point to a conic curve. It does not involve solving
* any cubic equation, that is why there is no risk of underflow.
*
* Let's assume that
*
* ```
* p0 = first endpoint
* p1 = control point
* p3 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a quadratic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
* ```
*
* with `t` the factor in the range [0.0f, 1.0f]. The above
* equation can be rewritten as
*
* ```
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
* ```
*
* With
*
* ```
* A = p0 - 2p1 + p2
* B = 2 * (p1 - p0)
* ```
*
* we have
*
* ```
* B(t) = t^2 * A + t * B + p0
* ```
*
* (2) The derivative of the above equation is
*
* ```
* B'(t) = 2t * A + B
* ```
*
* (3) The second derivative of the above equation is
*
* ```
* B''(t) = 2A
* ```
*
* (4) The equation `P(t)` of the distance from point `p` to the curve
* can be written as
*
* ```
* P(t) = t^2 * A + t^2 * B + p0 - p
* ```
*
* With
*
* ```
* C = p0 - p
* ```
*
* we have
*
* ```
* P(t) = t^2 * A + t * B + C
* ```
*
* (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
* be written as
*
* ```
* Q(t) = P(t) . B'(t)
* ```
*
* (6) Our task is to find a value of `t` such that the above equation
* `Q(t)` becomes zero, that is, the point-to-curve vector makes
* 90~degrees with the curve. We solve this with the Newton-Raphson
* method.
*
* (7) We first assume an arbitrary value of factor `t`, which we then
* improve.
*
* ```
* t := Q(t) / Q'(t)
* ```
*
* Putting the value of `Q(t)` from the above equation gives
*
* ```
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
* t := P(t) . B'(t) /
* (P'(t) . B'(t) + P(t) . B''(t))
* ```
*
* Note that `P'(t)` is the same as `B'(t)` because the constant is
* gone due to the derivative.
*
* (8) Finally we get the equation to improve the factor as
*
* ```
* t := P(t) . B'(t) /
* (B'(t) . B'(t) + P(t) . B''(t))
* ```
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
FT_26D6_Vec nearest_point = { 0, 0 };
/* point on curve nearest to `point` */
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_16D16 min_factor = 0; /* factor at `nearest_point' */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
FT_UShort iterations;
FT_UShort steps;
if ( !conic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( conic->edge_type != SDF_EDGE_CONIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = conic->start_pos;
p1 = conic->control_a;
p2 = conic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = p0.x - 2 * p1.x + p2.x;
aA.y = p0.y - 2 * p1.y + p2.y;
bB.x = 2 * ( p1.x - p0.x );
bB.y = 2 * ( p1.y - p0.y );
cC.x = p0.x;
cC.y = p0.y;
/* do Newton's iterations */
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
FT_16D16 factor2;
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
/* B(t) = t^2 * A + t * B + p0 */
curve_point.x = FT_MulFix( aA.x, factor2 ) +
FT_MulFix( bB.x, factor ) + cC.x;
curve_point.y = FT_MulFix( aA.y, factor2 ) +
FT_MulFix( bB.y, factor ) + cC.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* P(t) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
nearest_point = curve_point;
}
/* This is Newton's approximation. */
/* */
/* t := P(t) . B'(t) / */
/* (B'(t) . B'(t) + P(t) . B''(t)) */
/* B'(t) = 2tA + B */
d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
/* B''(t) = 2A */
d2.x = 2 * aA.x;
d2.y = 2 * aA.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P(t) . B'(t) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B'(t) = 2t * A + B */
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
#endif /* USE_NEWTON_FOR_CONIC */
/**************************************************************************
*
* @Function:
* get_min_distance_cubic
*
* @Description:
* Find the shortest distance from the `cubic` Bezier curve to a given
* `point` and assigns it to `out`. Use it for cubic curves only.
*
* @Input:
* cubic ::
* The cubic Bezier curve to which the shortest distance is to be
* computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `cubic`.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function uses Newton's approximation to find the shortest
* distance. Another way would be to divide the cubic into conic or
* subdivide the curve into lines, but that is not implemented.
*
* The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
*
*/
static FT_Error
get_min_distance_cubic( SDF_Edge* cubic,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
/*
* The procedure to find the shortest distance from a point to a cubic
* Bezier curve is similar to quadratic curve algorithm. The only
* difference is that while calculating factor `t`, instead of a cubic
* polynomial equation we have to find the roots of a 5th degree
* polynomial equation. Solving this would require a significant amount
* of time, and still the results may not be accurate. We are thus
* going to directly approximate the value of `t` using the Newton-Raphson
* method.
*
* Let's assume that
*
* ```
* p0 = first endpoint
* p1 = first control point
* p2 = second control point
* p3 = second endpoint
* p = point from which shortest distance is to be calculated
* ```
*
* (1) The equation of a cubic Bezier curve can be written as
*
* ```
* B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
* 3(1 - t)t^2 * p2 + t^3 * p3
* ```
*
* The equation can be expanded and written as
*
* ```
* B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
* 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
* ```
*
* With
*
* ```
* A = -p0 + 3p1 - 3p2 + p3
* B = 3(p0 - 2p1 + p2)
* C = 3(-p0 + p1)
* ```
*
* we have
*
* ```
* B(t) = t^3 * A + t^2 * B + t * C + p0
* ```
*
* (2) The derivative of the above equation is
*
* ```
* B'(t) = 3t^2 * A + 2t * B + C
* ```
*
* (3) The second derivative of the above equation is
*
* ```
* B''(t) = 6t * A + 2B
* ```
*
* (4) The equation `P(t)` of the distance from point `p` to the curve
* can be written as
*
* ```
* P(t) = t^3 * A + t^2 * B + t * C + p0 - p
* ```
*
* With
*
* ```
* D = p0 - p
* ```
*
* we have
*
* ```
* P(t) = t^3 * A + t^2 * B + t * C + D
* ```
*
* (5) Finally the equation of the angle between `B(t)` and `P(t)` can
* be written as
*
* ```
* Q(t) = P(t) . B'(t)
* ```
*
* (6) Our task is to find a value of `t` such that the above equation
* `Q(t)` becomes zero, that is, the point-to-curve vector makes
* 90~degree with curve. We solve this with the Newton-Raphson
* method.
*
* (7) We first assume an arbitrary value of factor `t`, which we then
* improve.
*
* ```
* t := Q(t) / Q'(t)
* ```
*
* Putting the value of `Q(t)` from the above equation gives
*
* ```
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
* t := P(t) . B'(t) /
* (P'(t) . B'(t) + P(t) . B''(t))
* ```
*
* Note that `P'(t)` is the same as `B'(t)` because the constant is
* gone due to the derivative.
*
* (8) Finally we get the equation to improve the factor as
*
* ```
* t := P(t) . B'(t) /
* (B'(t) . B'( t ) + P(t) . B''(t))
* ```
*
* [note]: `B` and `B(t)` are different in the above equations.
*/
FT_Error error = FT_Err_Ok;
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */
FT_16D16_Vec nearest_point = { 0, 0 };
/* point on curve nearest to `point` */
FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
FT_26D6_Vec p; /* `point` to which shortest distance */
FT_16D16 min_factor = 0; /* factor at shortest distance */
FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
FT_16D16 cross; /* to determine the sign */
FT_16D16 min = FT_INT_MAX; /* shortest distance */
FT_UShort iterations;
FT_UShort steps;
if ( !cubic || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( cubic->edge_type != SDF_EDGE_CUBIC )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
p0 = cubic->start_pos;
p1 = cubic->control_a;
p2 = cubic->control_b;
p3 = cubic->end_pos;
p = point;
/* compute substitution coefficients */
aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
cC.x = 3 * ( p1.x - p0.x );
cC.y = 3 * ( p1.y - p0.y );
dD.x = p0.x;
dD.y = p0.y;
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
{
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
FT_16D16 factor2; /* factor^2 */
FT_16D16 factor3; /* factor^3 */
FT_16D16 length;
FT_16D16_Vec curve_point; /* point on the curve */
FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
FT_26D6_Vec d1; /* first derivative */
FT_26D6_Vec d2; /* second derivative */
FT_16D16 temp1;
FT_16D16 temp2;
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
{
factor2 = FT_MulFix( factor, factor );
factor3 = FT_MulFix( factor2, factor );
/* B(t) = t^3 * A + t^2 * B + t * C + D */
curve_point.x = FT_MulFix( aA.x, factor3 ) +
FT_MulFix( bB.x, factor2 ) +
FT_MulFix( cC.x, factor ) + dD.x;
curve_point.y = FT_MulFix( aA.y, factor3 ) +
FT_MulFix( bB.y, factor2 ) +
FT_MulFix( cC.y, factor ) + dD.y;
/* convert to 16.16 */
curve_point.x = FT_26D6_16D16( curve_point.x );
curve_point.y = FT_26D6_16D16( curve_point.y );
/* P(t) in the comment */
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
length = VECTOR_LENGTH_16D16( dist_vector );
if ( length < min )
{
min = length;
min_factor = factor;
min_factor_sq = factor2;
nearest_point = curve_point;
}
/* This the Newton's approximation. */
/* */
/* t := P(t) . B'(t) / */
/* (B'(t) . B'(t) + P(t) . B''(t)) */
/* B'(t) = 3t^2 * A + 2t * B + C */
d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
FT_MulFix( bB.x, 2 * factor ) + cC.x;
d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
FT_MulFix( bB.y, 2 * factor ) + cC.y;
/* B''(t) = 6t * A + 2B */
d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
dist_vector.x /= 1024;
dist_vector.y /= 1024;
/* temp1 = P(t) . B'(t) */
temp1 = VEC_26D6_DOT( dist_vector, d1 );
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
temp2 = VEC_26D6_DOT( d1, d1 ) +
VEC_26D6_DOT( dist_vector, d2 );
factor -= FT_DivFix( temp1, temp2 );
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
break;
}
}
/* B'(t) = 3t^2 * A + 2t * B + C */
direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
/* determine the sign */
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
direction.y ) -
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
direction.x );
/* assign the values */
out->distance = min;
out->sign = cross < 0 ? 1 : -1;
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
else
{
/* convert to nearest vector */
nearest_point.x -= FT_26D6_16D16( p.x );
nearest_point.y -= FT_26D6_16D16( p.y );
/* compute `cross` if not perpendicular */
FT_Vector_NormLen( &direction );
FT_Vector_NormLen( &nearest_point );
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
FT_MulFix( direction.y, nearest_point.x );
}
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_edge_get_min_distance
*
* @Description:
* Find shortest distance from `point` to any type of `edge`. It checks
* the edge type and then calls the relevant `get_min_distance_*`
* function.
*
* @Input:
* edge ::
* An edge to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from `point` to `edge`.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_edge_get_min_distance( SDF_Edge* edge,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
FT_Error error = FT_Err_Ok;
if ( !edge || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* edge-specific distance calculation */
switch ( edge->edge_type )
{
case SDF_EDGE_LINE:
get_min_distance_line( edge, point, out );
break;
case SDF_EDGE_CONIC:
get_min_distance_conic( edge, point, out );
break;
case SDF_EDGE_CUBIC:
get_min_distance_cubic( edge, point, out );
break;
default:
error = FT_THROW( Invalid_Argument );
}
Exit:
return error;
}
/* `sdf_generate' is not used at the moment */
#if 0
#error "DO NOT USE THIS!"
#error "The function still outputs 16-bit data, which might cause memory"
#error "corruption. If required I will add this later."
/**************************************************************************
*
* @Function:
* sdf_contour_get_min_distance
*
* @Description:
* Iterate over all edges that make up the contour, find the shortest
* distance from a point to this contour, and assigns result to `out`.
*
* @Input:
* contour ::
* A contour to which the shortest distance is to be computed.
*
* point ::
* Point from which the shortest distance is to be computed.
*
* @Output:
* out ::
* Signed distance from the `point' to the `contour'.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function does not return a signed distance for each edge which
* makes up the contour, it simply returns the shortest of all the
* edges.
*
*/
static FT_Error
sdf_contour_get_min_distance( SDF_Contour* contour,
FT_26D6_Vec point,
SDF_Signed_Distance* out )
{
FT_Error error = FT_Err_Ok;
SDF_Signed_Distance min_dist = max_sdf;
SDF_Edge* edge_list;
if ( !contour || !out )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
edge_list = contour->edges;
/* iterate over all the edges manually */
while ( edge_list )
{
SDF_Signed_Distance current_dist = max_sdf;
FT_16D16 diff;
FT_CALL( sdf_edge_get_min_distance( edge_list,
point,
&current_dist ) );
if ( current_dist.distance >= 0 )
{
diff = current_dist.distance - min_dist.distance;
if ( FT_ABS( diff ) < CORNER_CHECK_EPSILON )
min_dist = resolve_corner( min_dist, current_dist );
else if ( diff < 0 )
min_dist = current_dist;
}
else
FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" ));
edge_list = edge_list->next;
}
*out = min_dist;
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate
*
* @Description:
* This is the main function that is responsible for generating signed
* distance fields. The function does not align or compute the size of
* `bitmap`; therefore the calling application must set up `bitmap`
* properly and transform the `shape' appropriately in advance.
*
* Currently we check all pixels against all contours and all edges.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer. See
* @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate( const SDF_Params internal_params,
const SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_UInt width = 0;
FT_UInt rows = 0;
FT_UInt x = 0; /* used to loop in x direction, i.e., width */
FT_UInt y = 0; /* used to loop in y direction, i.e., rows */
FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */
FT_Short* buffer;
if ( !shape || !bitmap )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
width = bitmap->width;
rows = bitmap->rows;
buffer = (FT_Short*)bitmap->buffer;
if ( USE_SQUARED_DISTANCES )
sp_sq = FT_INT_16D16( spread * spread );
else
sp_sq = FT_INT_16D16( spread );
if ( width == 0 || rows == 0 )
{
FT_TRACE0(( "sdf_generate:"
" Cannot render glyph with width/height == 0\n" ));
FT_TRACE0(( " "
" (width, height provided [%d, %d])\n",
width, rows ));
error = FT_THROW( Cannot_Render_Glyph );
goto Exit;
}
/* loop over all rows */
for ( y = 0; y < rows; y++ )
{
/* loop over all pixels of a row */
for ( x = 0; x < width; x++ )
{
/* `grid_point` is the current pixel position; */
/* our task is to find the shortest distance */
/* from this point to the entire shape. */
FT_26D6_Vec grid_point = zero_vector;
SDF_Signed_Distance min_dist = max_sdf;
SDF_Contour* contour_list;
FT_UInt index;
FT_Short value;
grid_point.x = FT_INT_26D6( x );
grid_point.y = FT_INT_26D6( y );
/* This `grid_point' is at the corner, but we */
/* use the center of the pixel. */
grid_point.x += FT_INT_26D6( 1 ) / 2;
grid_point.y += FT_INT_26D6( 1 ) / 2;
contour_list = shape->contours;
/* iterate over all contours manually */
while ( contour_list )
{
SDF_Signed_Distance current_dist = max_sdf;
FT_CALL( sdf_contour_get_min_distance( contour_list,
grid_point,
&current_dist ) );
if ( current_dist.distance < min_dist.distance )
min_dist = current_dist;
contour_list = contour_list->next;
}
/* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */
/* the value to spread to avoid square_root */
/* clamp the values to spread */
if ( min_dist.distance > sp_sq )
min_dist.distance = sp_sq;
/* square_root the values and fit in a 6.10 fixed-point */
if ( USE_SQUARED_DISTANCES )
min_dist.distance = square_root( min_dist.distance );
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
min_dist.sign = -min_dist.sign;
if ( internal_params.flip_sign )
min_dist.sign = -min_dist.sign;
min_dist.distance /= 64; /* convert from 16.16 to 22.10 */
value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */
value *= min_dist.sign;
if ( internal_params.flip_y )
index = y * width + x;
else
index = ( rows - y - 1 ) * width + x;
buffer[index] = value;
}
}
Exit:
return error;
}
#endif /* 0 */
/**************************************************************************
*
* @Function:
* sdf_generate_bounding_box
*
* @Description:
* This function does basically the same thing as `sdf_generate` above
* but more efficiently.
*
* Instead of checking all pixels against all edges, we loop over all
* edges and only check pixels around the control box of the edge; the
* control box is increased by the spread in all directions. Anything
* outside of the control box that exceeds `spread` doesn't need to be
* computed.
*
* Lastly, to determine the sign of unchecked pixels, we do a single
* pass of all rows starting with a '+' sign and flipping when we come
* across a '-' sign and continue. This also eliminates the possibility
* of overflow because we only check the proximity of the curve.
* Therefore we can use squared distanced safely.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer.
* See @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate_bounding_box( const SDF_Params internal_params,
const SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_Memory memory = NULL;
FT_Int width, rows, i, j;
FT_Int sp_sq; /* max value to check */
SDF_Contour* contours; /* list of all contours */
FT_SDFFormat* buffer; /* the bitmap buffer */
/* This buffer has the same size in indices as the */
/* bitmap buffer. When we check a pixel position for */
/* a shortest distance we keep it in this buffer. */
/* This way we can find out which pixel is set, */
/* and also determine the signs properly. */
SDF_Signed_Distance* dists = NULL;
const FT_16D16 fixed_spread = (FT_16D16)FT_INT_16D16( spread );
if ( !shape || !bitmap )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
memory = shape->memory;
if ( !memory )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
if ( FT_ALLOC( dists,
bitmap->width * bitmap->rows * sizeof ( *dists ) ) )
goto Exit;
contours = shape->contours;
width = (FT_Int)bitmap->width;
rows = (FT_Int)bitmap->rows;
buffer = (FT_SDFFormat*)bitmap->buffer;
if ( USE_SQUARED_DISTANCES )
sp_sq = FT_INT_16D16( (FT_Int)( spread * spread ) );
else
sp_sq = fixed_spread;
if ( width == 0 || rows == 0 )
{
FT_TRACE0(( "sdf_generate:"
" Cannot render glyph with width/height == 0\n" ));
FT_TRACE0(( " "
" (width, height provided [%d, %d])", width, rows ));
error = FT_THROW( Cannot_Render_Glyph );
goto Exit;
}
/* loop over all contours */
while ( contours )
{
SDF_Edge* edges = contours->edges;
/* loop over all edges */
while ( edges )
{
FT_CBox cbox;
FT_Int x, y;
/* get the control box and increase it by `spread' */
cbox = get_control_box( *edges );
cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread;
cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread;
cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread;
cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread;
/* now loop over the pixels in the control box. */
for ( y = cbox.yMin; y < cbox.yMax; y++ )
{
for ( x = cbox.xMin; x < cbox.xMax; x++ )
{
FT_26D6_Vec grid_point = zero_vector;
SDF_Signed_Distance dist = max_sdf;
FT_UInt index = 0;
FT_16D16 diff = 0;
if ( x < 0 || x >= width )
continue;
if ( y < 0 || y >= rows )
continue;
grid_point.x = FT_INT_26D6( x );
grid_point.y = FT_INT_26D6( y );
/* This `grid_point` is at the corner, but we */
/* use the center of the pixel. */
grid_point.x += FT_INT_26D6( 1 ) / 2;
grid_point.y += FT_INT_26D6( 1 ) / 2;
FT_CALL( sdf_edge_get_min_distance( edges,
grid_point,
&dist ) );
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
dist.sign = -dist.sign;
/* ignore if the distance is greater than spread; */
/* otherwise it creates artifacts due to the wrong sign */
if ( dist.distance > sp_sq )
continue;
/* take the square root of the distance if required */
if ( USE_SQUARED_DISTANCES )
dist.distance = square_root( dist.distance );
if ( internal_params.flip_y )
index = (FT_UInt)( y * width + x );
else
index = (FT_UInt)( ( rows - y - 1 ) * width + x );
/* check whether the pixel is set or not */
if ( dists[index].sign == 0 )
dists[index] = dist;
else
{
diff = FT_ABS( dists[index].distance - dist.distance );
if ( diff <= CORNER_CHECK_EPSILON )
dists[index] = resolve_corner( dists[index], dist );
else if ( dists[index].distance > dist.distance )
dists[index] = dist;
}
}
}
edges = edges->next;
}
contours = contours->next;
}
/* final pass */
for ( j = 0; j < rows; j++ )
{
/* We assume the starting pixel of each row is outside. */
FT_Char current_sign = -1;
FT_UInt index;
if ( internal_params.overload_sign != 0 )
current_sign = internal_params.overload_sign < 0 ? -1 : 1;
for ( i = 0; i < width; i++ )
{
index = (FT_UInt)( j * width + i );
/* if the pixel is not set */
/* its shortest distance is more than `spread` */
if ( dists[index].sign == 0 )
dists[index].distance = fixed_spread;
else
current_sign = dists[index].sign;
/* clamp the values */
if ( dists[index].distance > fixed_spread )
dists[index].distance = fixed_spread;
/* flip sign if required */
dists[index].distance *= internal_params.flip_sign ? -current_sign
: current_sign;
/* concatenate to appropriate format */
buffer[index] = map_fixed_to_sdf( dists[index].distance,
fixed_spread );
}
}
Exit:
FT_FREE( dists );
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate_subdivision
*
* @Description:
* Subdivide the shape into a number of straight lines, then use the
* above `sdf_generate_bounding_box` function to generate the SDF.
*
* Note: After calling this function `shape` no longer has the original
* edges, it only contains lines.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer.
* See @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed inthe output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
*/
static FT_Error
sdf_generate_subdivision( const SDF_Params internal_params,
SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
/*
* Thanks to Alexei for providing the idea of this optimization.
*
* We take advantage of two facts.
*
* (1) Computing the shortest distance from a point to a line segment is
* very fast.
* (2) We don't have to compute the shortest distance for the entire
* two-dimensional grid.
*
* Both ideas lead to the following optimization.
*
* (1) Split the outlines into a number of line segments.
*
* (2) For each line segment, only process its neighborhood.
*
* (3) Compute the closest distance to the line only for neighborhood
* grid points.
*
* This greatly reduces the number of grid points to check.
*/
FT_Error error = FT_Err_Ok;
FT_CALL( split_sdf_shape( shape ) );
FT_CALL( sdf_generate_bounding_box( internal_params,
shape, spread, bitmap ) );
Exit:
return error;
}
/**************************************************************************
*
* @Function:
* sdf_generate_with_overlaps
*
* @Description:
* This function can be used to generate SDF for glyphs with overlapping
* contours. The function generates SDF for contours separately on
* separate bitmaps (to generate SDF it uses
* `sdf_generate_subdivision`). At the end it simply combines all the
* SDF into the output bitmap; this fixes all the signs and removes
* overlaps.
*
* @Input:
* internal_params ::
* Internal parameters and properties required by the rasterizer. See
* @SDF_Params for more.
*
* shape ::
* A complete shape which is used to generate SDF.
*
* spread ::
* Maximum distances to be allowed in the output bitmap.
*
* @Output:
* bitmap ::
* The output bitmap which will contain the SDF information.
*
* @Return:
* FreeType error, 0 means success.
*
* @Note:
* The function cannot generate a proper SDF for glyphs with
* self-intersecting contours because we cannot separate them into two
* separate bitmaps. In case of self-intersecting contours it is
* necessary to remove the overlaps before generating the SDF.
*
*/
static FT_Error
sdf_generate_with_overlaps( SDF_Params internal_params,
SDF_Shape* shape,
FT_UInt spread,
const FT_Bitmap* bitmap )
{
FT_Error error = FT_Err_Ok;
FT_Int num_contours; /* total number of contours */
FT_Int i, j; /* iterators */
FT_Int width, rows; /* width and rows of the bitmap */
FT_Bitmap* bitmaps; /* separate bitmaps for contours */
SDF_Contour* contour; /* temporary variable to iterate */
SDF_Contour* temp_contour; /* temporary contour */
SDF_Contour* head; /* head of the contour list */
SDF_Shape temp_shape; /* temporary shape */
FT_Memory memory; /* to allocate memory */
FT_SDFFormat* t; /* target bitmap buffer */
FT_Bool flip_sign; /* flip sign? */
/* orientation of all the separate contours */
SDF_Contour_Orientation* orientations;
bitmaps = NULL;
orientations = NULL;
head = NULL;
if ( !shape || !bitmap || !shape->memory )
return FT_THROW( Invalid_Argument );
/* Disable `flip_sign` to avoid extra complication */
/* during the combination phase. */
flip_sign = internal_params.flip_sign;
internal_params.flip_sign = 0;
contour = shape->contours;
memory = shape->memory;
temp_shape.memory = memory;
width = (FT_Int)bitmap->width;
rows = (FT_Int)bitmap->rows;
num_contours = 0;
/* find the number of contours in the shape */
while ( contour )
{
num_contours++;
contour = contour->next;
}
/* allocate the bitmaps to generate SDF for separate contours */
if ( FT_ALLOC( bitmaps,
(FT_UInt)num_contours * sizeof ( *bitmaps ) ) )
goto Exit;
/* allocate array to hold orientation for all contours */
if ( FT_ALLOC( orientations,
(FT_UInt)num_contours * sizeof ( *orientations ) ) )
goto Exit;
contour = shape->contours;
/* Iterate over all contours and generate SDF separately. */
for ( i = 0; i < num_contours; i++ )
{
/* initialize the corresponding bitmap */
FT_Bitmap_Init( &bitmaps[i] );
bitmaps[i].width = bitmap->width;
bitmaps[i].rows = bitmap->rows;
bitmaps[i].pitch = bitmap->pitch;
bitmaps[i].num_grays = bitmap->num_grays;
bitmaps[i].pixel_mode = bitmap->pixel_mode;
/* allocate memory for the buffer */
if ( FT_ALLOC( bitmaps[i].buffer,
bitmap->rows * (FT_UInt)bitmap->pitch ) )
goto Exit;
/* determine the orientation */
orientations[i] = get_contour_orientation( contour );
/* The `overload_sign` property is specific to */
/* `sdf_generate_bounding_box`. This basically */
/* overloads the default sign of the outside */
/* pixels, which is necessary for */
/* counter-clockwise contours. */
if ( orientations[i] == SDF_ORIENTATION_CCW &&
internal_params.orientation == FT_ORIENTATION_FILL_RIGHT )
internal_params.overload_sign = 1;
else if ( orientations[i] == SDF_ORIENTATION_CW &&
internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
internal_params.overload_sign = 1;
else
internal_params.overload_sign = 0;
/* Make `contour->next` NULL so that there is */
/* one contour in the list. Also hold the next */
/* contour in a temporary variable so as to */
/* restore the original value. */
temp_contour = contour->next;
contour->next = NULL;
/* Use `temp_shape` to hold the new contour. */
/* Now, `temp_shape` has only one contour. */
temp_shape.contours = contour;
/* finally generate the SDF */
FT_CALL( sdf_generate_subdivision( internal_params,
&temp_shape,
spread,
&bitmaps[i] ) );
/* Restore the original `next` variable. */
contour->next = temp_contour;
/* Since `split_sdf_shape` deallocated the original */
/* contours list we need to assign the new value to */
/* the shape's contour. */
temp_shape.contours->next = head;
head = temp_shape.contours;
/* Simply flip the orientation in case of post-script fonts */
/* so as to avoid modificatons in the combining phase. */
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
{
if ( orientations[i] == SDF_ORIENTATION_CW )
orientations[i] = SDF_ORIENTATION_CCW;
else if ( orientations[i] == SDF_ORIENTATION_CCW )
orientations[i] = SDF_ORIENTATION_CW;
}
contour = contour->next;
}
/* assign the new contour list to `shape->contours` */
shape->contours = head;
/* cast the output bitmap buffer */
t = (FT_SDFFormat*)bitmap->buffer;
/* Iterate over all pixels and combine all separate */
/* contours. These are the rules for combining: */
/* */
/* (1) For all clockwise contours, compute the largest */
/* value. Name this as `val_c`. */
/* (2) For all counter-clockwise contours, compute the */
/* smallest value. Name this as `val_ac`. */
/* (3) Now, finally use the smaller value of `val_c' */
/* and `val_ac'. */
for ( j = 0; j < rows; j++ )
{
for ( i = 0; i < width; i++ )
{
FT_Int id = j * width + i; /* index of current pixel */
FT_Int c; /* contour iterator */
FT_SDFFormat val_c = 0; /* max clockwise value */
FT_SDFFormat val_ac = UCHAR_MAX; /* min counter-clockwise val */
/* iterate through all the contours */
for ( c = 0; c < num_contours; c++ )
{
/* current contour value */
FT_SDFFormat temp = ( (FT_SDFFormat*)bitmaps[c].buffer )[id];
if ( orientations[c] == SDF_ORIENTATION_CW )
val_c = FT_MAX( val_c, temp ); /* clockwise */
else
val_ac = FT_MIN( val_ac, temp ); /* counter-clockwise */
}
/* Finally find the smaller of the two and assign to output. */
/* Also apply `flip_sign` if set. */
t[id] = FT_MIN( val_c, val_ac );
if ( flip_sign )
t[id] = invert_sign( t[id] );
}
}
Exit:
/* deallocate orientations array */
if ( orientations )
FT_FREE( orientations );
/* deallocate temporary bitmaps */
if ( bitmaps )
{
if ( num_contours == 0 )
error = FT_THROW( Raster_Corrupted );
else
{
for ( i = 0; i < num_contours; i++ )
FT_FREE( bitmaps[i].buffer );
FT_FREE( bitmaps );
}
}
/* restore the `flip_sign` property */
internal_params.flip_sign = flip_sign;
return error;
}
/**************************************************************************
*
* interface functions
*
*/
static FT_Error
sdf_raster_new( void* memory_, /* FT_Memory */
FT_Raster* araster_ ) /* SDF_PRaster* */
{
FT_Memory memory = (FT_Memory)memory_;
SDF_PRaster* araster = (SDF_PRaster*)araster_;
FT_Error error;
SDF_PRaster raster = NULL;
if ( !FT_NEW( raster ) )
raster->memory = memory;
*araster = raster;
return error;
}
static void
sdf_raster_reset( FT_Raster raster,
unsigned char* pool_base,
unsigned long pool_size )
{
FT_UNUSED( raster );
FT_UNUSED( pool_base );
FT_UNUSED( pool_size );
}
static FT_Error
sdf_raster_set_mode( FT_Raster raster,
unsigned long mode,
void* args )
{
FT_UNUSED( raster );
FT_UNUSED( mode );
FT_UNUSED( args );
return FT_Err_Ok;
}
static FT_Error
sdf_raster_render( FT_Raster raster,
const FT_Raster_Params* params )
{
FT_Error error = FT_Err_Ok;
SDF_TRaster* sdf_raster = (SDF_TRaster*)raster;
FT_Outline* outline = NULL;
const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params;
FT_Memory memory = NULL;
SDF_Shape* shape = NULL;
SDF_Params internal_params;
/* check for valid arguments */
if ( !sdf_raster || !sdf_params )
{
error = FT_THROW( Invalid_Argument );
goto Exit;
}
outline = (FT_Outline*)sdf_params->root.source;
/* check whether outline is valid */
if ( !outline )
{
error = FT_THROW( Invalid_Outline );
goto Exit;
}
/* if the outline is empty, return */
if ( outline->n_points == 0 || outline->n_contours == 0 )
goto Exit;
/* check whether the outline has valid fields */
if ( !outline->contours || !outline->points )
{
error = FT_THROW( Invalid_Outline );
goto Exit;
}
/* check whether spread is set properly */
if ( sdf_params->spread > MAX_SPREAD ||
sdf_params->spread < MIN_SPREAD )
{
FT_TRACE0(( "sdf_raster_render:"
" The `spread' field of `SDF_Raster_Params' is invalid,\n" ));
FT_TRACE0(( " "
" the value of this field must be within [%d, %d].\n",
MIN_SPREAD, MAX_SPREAD ));
FT_TRACE0(( " "
" Also, you must pass `SDF_Raster_Params' instead of\n" ));
FT_TRACE0(( " "
" the default `FT_Raster_Params' while calling\n" ));
FT_TRACE0(( " "
" this function and set the fields properly.\n" ));
error = FT_THROW( Invalid_Argument );
goto Exit;
}
memory = sdf_raster->memory;
if ( !memory )
{
FT_TRACE0(( "sdf_raster_render:"
" Raster not setup properly,\n" ));
FT_TRACE0(( " "
" unable to find memory handle.\n" ));
error = FT_THROW( Invalid_Handle );
goto Exit;
}
/* set up the parameters */
internal_params.orientation = FT_Outline_Get_Orientation( outline );
internal_params.flip_sign = sdf_params->flip_sign;
internal_params.flip_y = sdf_params->flip_y;
internal_params.overload_sign = 0;
FT_CALL( sdf_shape_new( memory, &shape ) );
FT_CALL( sdf_outline_decompose( outline, shape ) );
if ( sdf_params->overlaps )
FT_CALL( sdf_generate_with_overlaps( internal_params,
shape, sdf_params->spread,
sdf_params->root.target ) );
else
FT_CALL( sdf_generate_subdivision( internal_params,
shape, sdf_params->spread,
sdf_params->root.target ) );
if ( shape )
sdf_shape_done( &shape );
Exit:
return error;
}
static void
sdf_raster_done( FT_Raster raster )
{
FT_Memory memory = (FT_Memory)((SDF_TRaster*)raster)->memory;
FT_FREE( raster );
}
FT_DEFINE_RASTER_FUNCS(
ft_sdf_raster,
FT_GLYPH_FORMAT_OUTLINE,
(FT_Raster_New_Func) sdf_raster_new, /* raster_new */
(FT_Raster_Reset_Func) sdf_raster_reset, /* raster_reset */
(FT_Raster_Set_Mode_Func)sdf_raster_set_mode, /* raster_set_mode */
(FT_Raster_Render_Func) sdf_raster_render, /* raster_render */
(FT_Raster_Done_Func) sdf_raster_done /* raster_done */
)
/* END */