Source code

Revision control

Copy as Markdown

Other Tools

/****************************************************************************
*
* cffparse.c
*
* CFF token stream parser (body)
*
* Copyright (C) 1996-2024 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
#include "cffparse.h"
#include <freetype/internal/ftstream.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftcalc.h>
#include <freetype/internal/psaux.h>
#include <freetype/ftlist.h>
#include "cfferrs.h"
#include "cffload.h"
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT cffparse
FT_LOCAL_DEF( FT_Error )
cff_parser_init( CFF_Parser parser,
FT_UInt code,
void* object,
FT_Library library,
FT_UInt stackSize,
FT_UShort num_designs,
FT_UShort num_axes )
{
FT_Memory memory = library->memory; /* for FT_NEW_ARRAY */
FT_Error error; /* for FT_NEW_ARRAY */
FT_ZERO( parser );
#if 0
parser->top = parser->stack;
#endif
parser->object_code = code;
parser->object = object;
parser->library = library;
parser->num_designs = num_designs;
parser->num_axes = num_axes;
/* allocate the stack buffer */
if ( FT_QNEW_ARRAY( parser->stack, stackSize ) )
goto Exit;
parser->stackSize = stackSize;
parser->top = parser->stack; /* empty stack */
Exit:
return error;
}
FT_LOCAL_DEF( void )
cff_parser_done( CFF_Parser parser )
{
FT_Memory memory = parser->library->memory; /* for FT_FREE */
FT_FREE( parser->stack );
#ifdef CFF_CONFIG_OPTION_OLD_ENGINE
FT_List_Finalize( &parser->t2_strings, NULL, memory, NULL );
#endif
}
/* The parser limit checks in the next two functions are supposed */
/* to detect the immediate crossing of the stream boundary. They */
/* shall not be triggered from the distant t2_strings buffers. */
/* read an integer */
static FT_Long
cff_parse_integer( FT_Byte* start,
FT_Byte* limit )
{
FT_Byte* p = start;
FT_Int v = *p++;
FT_Long val = 0;
if ( v == 28 )
{
if ( p + 2 > limit && limit >= p )
goto Bad;
val = (FT_Short)( ( (FT_UShort)p[0] << 8 ) | p[1] );
}
else if ( v == 29 )
{
if ( p + 4 > limit && limit >= p )
goto Bad;
val = (FT_Long)( ( (FT_ULong)p[0] << 24 ) |
( (FT_ULong)p[1] << 16 ) |
( (FT_ULong)p[2] << 8 ) |
(FT_ULong)p[3] );
}
else if ( v < 247 )
{
val = v - 139;
}
else if ( v < 251 )
{
if ( p + 1 > limit && limit >= p )
goto Bad;
val = ( v - 247 ) * 256 + p[0] + 108;
}
else
{
if ( p + 1 > limit && limit >= p )
goto Bad;
val = -( v - 251 ) * 256 - p[0] - 108;
}
Exit:
return val;
Bad:
val = 0;
FT_TRACE4(( "!!!END OF DATA:!!!" ));
goto Exit;
}
static const FT_Long power_tens[] =
{
1L,
10L,
100L,
1000L,
10000L,
100000L,
1000000L,
10000000L,
100000000L,
1000000000L
};
/* maximum values allowed for multiplying */
/* with the corresponding `power_tens' element */
static const FT_Long power_ten_limits[] =
{
FT_LONG_MAX / 1L,
FT_LONG_MAX / 10L,
FT_LONG_MAX / 100L,
FT_LONG_MAX / 1000L,
FT_LONG_MAX / 10000L,
FT_LONG_MAX / 100000L,
FT_LONG_MAX / 1000000L,
FT_LONG_MAX / 10000000L,
FT_LONG_MAX / 100000000L,
FT_LONG_MAX / 1000000000L,
};
/* read a real */
static FT_Fixed
cff_parse_real( FT_Byte* start,
FT_Byte* limit,
FT_Long power_ten,
FT_Long* scaling )
{
FT_Byte* p = start;
FT_Int nib;
FT_UInt phase;
FT_Long result, number, exponent;
FT_Int sign = 0, exponent_sign = 0, have_overflow = 0;
FT_Long exponent_add, integer_length, fraction_length;
if ( scaling )
*scaling = 0;
result = 0;
number = 0;
exponent = 0;
exponent_add = 0;
integer_length = 0;
fraction_length = 0;
/* First of all, read the integer part. */
phase = 4;
for (;;)
{
/* If we entered this iteration with phase == 4, we need to */
/* read a new byte. This also skips past the initial 0x1E. */
if ( phase )
{
p++;
/* Make sure we don't read past the end. */
if ( p + 1 > limit && limit >= p )
goto Bad;
}
/* Get the nibble. */
nib = (FT_Int)( p[0] >> phase ) & 0xF;
phase = 4 - phase;
if ( nib == 0xE )
sign = 1;
else if ( nib > 9 )
break;
else
{
/* Increase exponent if we can't add the digit. */
if ( number >= 0xCCCCCCCL )
exponent_add++;
/* Skip leading zeros. */
else if ( nib || number )
{
integer_length++;
number = number * 10 + nib;
}
}
}
/* Read fraction part, if any. */
if ( nib == 0xA )
for (;;)
{
/* If we entered this iteration with phase == 4, we need */
/* to read a new byte. */
if ( phase )
{
p++;
/* Make sure we don't read past the end. */
if ( p + 1 > limit && limit >= p )
goto Bad;
}
/* Get the nibble. */
nib = ( p[0] >> phase ) & 0xF;
phase = 4 - phase;
if ( nib >= 10 )
break;
/* Skip leading zeros if possible. */
if ( !nib && !number )
exponent_add--;
/* Only add digit if we don't overflow. */
else if ( number < 0xCCCCCCCL && fraction_length < 9 )
{
fraction_length++;
number = number * 10 + nib;
}
}
/* Read exponent, if any. */
if ( nib == 12 )
{
exponent_sign = 1;
nib = 11;
}
if ( nib == 11 )
{
for (;;)
{
/* If we entered this iteration with phase == 4, */
/* we need to read a new byte. */
if ( phase )
{
p++;
/* Make sure we don't read past the end. */
if ( p + 1 > limit && limit >= p )
goto Bad;
}
/* Get the nibble. */
nib = ( p[0] >> phase ) & 0xF;
phase = 4 - phase;
if ( nib >= 10 )
break;
/* Arbitrarily limit exponent. */
if ( exponent > 1000 )
have_overflow = 1;
else
exponent = exponent * 10 + nib;
}
if ( exponent_sign )
exponent = -exponent;
}
if ( !number )
goto Exit;
if ( have_overflow )
{
if ( exponent_sign )
goto Underflow;
else
goto Overflow;
}
/* We don't check `power_ten' and `exponent_add'. */
exponent += power_ten + exponent_add;
if ( scaling )
{
/* Only use `fraction_length'. */
fraction_length += integer_length;
exponent += integer_length;
if ( fraction_length <= 5 )
{
if ( number > 0x7FFFL )
{
result = FT_DivFix( number, 10 );
*scaling = exponent - fraction_length + 1;
}
else
{
if ( exponent > 0 )
{
FT_Long new_fraction_length, shift;
/* Make `scaling' as small as possible. */
new_fraction_length = FT_MIN( exponent, 5 );
shift = new_fraction_length - fraction_length;
if ( shift > 0 )
{
exponent -= new_fraction_length;
number *= power_tens[shift];
if ( number > 0x7FFFL )
{
number /= 10;
exponent += 1;
}
}
else
exponent -= fraction_length;
}
else
exponent -= fraction_length;
result = (FT_Long)( (FT_ULong)number << 16 );
*scaling = exponent;
}
}
else
{
if ( ( number / power_tens[fraction_length - 5] ) > 0x7FFFL )
{
result = FT_DivFix( number, power_tens[fraction_length - 4] );
*scaling = exponent - 4;
}
else
{
result = FT_DivFix( number, power_tens[fraction_length - 5] );
*scaling = exponent - 5;
}
}
}
else
{
integer_length += exponent;
fraction_length -= exponent;
if ( integer_length > 5 )
goto Overflow;
if ( integer_length < -5 )
goto Underflow;
/* Remove non-significant digits. */
if ( integer_length < 0 )
{
number /= power_tens[-integer_length];
fraction_length += integer_length;
}
/* this can only happen if exponent was non-zero */
if ( fraction_length == 10 )
{
number /= 10;
fraction_length -= 1;
}
/* Convert into 16.16 format. */
if ( fraction_length > 0 )
{
if ( ( number / power_tens[fraction_length] ) > 0x7FFFL )
goto Exit;
result = FT_DivFix( number, power_tens[fraction_length] );
}
else
{
number *= power_tens[-fraction_length];
if ( number > 0x7FFFL )
goto Overflow;
result = (FT_Long)( (FT_ULong)number << 16 );
}
}
Exit:
if ( sign )
result = -result;
return result;
Overflow:
result = 0x7FFFFFFFL;
FT_TRACE4(( "!!!OVERFLOW:!!!" ));
goto Exit;
Underflow:
result = 0;
FT_TRACE4(( "!!!UNDERFLOW:!!!" ));
goto Exit;
Bad:
result = 0;
FT_TRACE4(( "!!!END OF DATA:!!!" ));
goto Exit;
}
/* read a number, either integer or real */
FT_LOCAL_DEF( FT_Long )
cff_parse_num( CFF_Parser parser,
FT_Byte** d )
{
if ( **d == 30 )
{
/* binary-coded decimal is truncated to integer */
return cff_parse_real( *d, parser->limit, 0, NULL ) >> 16;
}
else if ( **d == 255 )
{
/* 16.16 fixed-point is used internally for CFF2 blend results. */
/* Since these are trusted values, a limit check is not needed. */
/* After the 255, 4 bytes give the number. */
/* The blend value is converted to integer, with rounding; */
/* due to the right-shift we don't need the lowest byte. */
#if 0
return (FT_Short)(
( ( ( (FT_UInt32)*( d[0] + 1 ) << 24 ) |
( (FT_UInt32)*( d[0] + 2 ) << 16 ) |
( (FT_UInt32)*( d[0] + 3 ) << 8 ) |
(FT_UInt32)*( d[0] + 4 ) ) + 0x8000U ) >> 16 );
#else
return (FT_Short)(
( ( ( (FT_UInt32)*( d[0] + 1 ) << 16 ) |
( (FT_UInt32)*( d[0] + 2 ) << 8 ) |
(FT_UInt32)*( d[0] + 3 ) ) + 0x80U ) >> 8 );
#endif
}
else
return cff_parse_integer( *d, parser->limit );
}
/* read a floating point number, either integer or real */
static FT_Fixed
do_fixed( CFF_Parser parser,
FT_Byte** d,
FT_Long scaling )
{
if ( **d == 30 )
return cff_parse_real( *d, parser->limit, scaling, NULL );
else if ( **d == 255 )
{
FT_Fixed val = (FT_Int32)( ( ( (FT_UInt32)*( d[0] + 1 ) << 24 ) |
( (FT_UInt32)*( d[0] + 2 ) << 16 ) |
( (FT_UInt32)*( d[0] + 3 ) << 8 ) |
(FT_UInt32)*( d[0] + 4 ) ) );
if ( scaling )
{
if ( FT_ABS( val ) > power_ten_limits[scaling] )
{
FT_TRACE4(( "!!!OVERFLOW:!!!" ));
return val > 0 ? 0x7FFFFFFFL : -0x7FFFFFFFL;
}
val *= power_tens[scaling];
}
return val;
}
else
{
FT_Long val = cff_parse_integer( *d, parser->limit );
if ( scaling )
{
if ( ( FT_ABS( val ) << 16 ) > power_ten_limits[scaling] )
{
val = val > 0 ? 0x7FFFFFFFL : -0x7FFFFFFFL;
goto Overflow;
}
val *= power_tens[scaling];
}
if ( val > 0x7FFF )
{
val = 0x7FFFFFFFL;
goto Overflow;
}
else if ( val < -0x7FFF )
{
val = -0x7FFFFFFFL;
goto Overflow;
}
return (FT_Long)( (FT_ULong)val << 16 );
Overflow:
FT_TRACE4(( "!!!OVERFLOW:!!!" ));
return val;
}
}
/* read a floating point number, either integer or real */
FT_LOCAL_DEF( FT_Fixed )
cff_parse_fixed( CFF_Parser parser,
FT_Byte** d )
{
return do_fixed( parser, d, 0 );
}
/* read a floating point number, either integer or real, */
/* but return `10^scaling' times the number read in */
static FT_Fixed
cff_parse_fixed_scaled( CFF_Parser parser,
FT_Byte** d,
FT_Long scaling )
{
return do_fixed( parser, d, scaling );
}
/* read a floating point number, either integer or real, */
/* and return it as precise as possible -- `scaling' returns */
/* the scaling factor (as a power of 10) */
static FT_Fixed
cff_parse_fixed_dynamic( CFF_Parser parser,
FT_Byte** d,
FT_Long* scaling )
{
FT_ASSERT( scaling );
if ( **d == 30 )
return cff_parse_real( *d, parser->limit, 0, scaling );
else
{
FT_Long number;
FT_Int integer_length;
number = cff_parse_integer( *d, parser->limit );
if ( number > 0x7FFFL )
{
for ( integer_length = 5; integer_length < 10; integer_length++ )
if ( number < power_tens[integer_length] )
break;
if ( ( number / power_tens[integer_length - 5] ) > 0x7FFFL )
{
*scaling = integer_length - 4;
return FT_DivFix( number, power_tens[integer_length - 4] );
}
else
{
*scaling = integer_length - 5;
return FT_DivFix( number, power_tens[integer_length - 5] );
}
}
else
{
*scaling = 0;
return (FT_Long)( (FT_ULong)number << 16 );
}
}
}
static FT_Error
cff_parse_font_matrix( CFF_Parser parser )
{
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_Matrix* matrix = &dict->font_matrix;
FT_Vector* offset = &dict->font_offset;
FT_ULong* upm = &dict->units_per_em;
FT_Byte** data = parser->stack;
if ( parser->top >= parser->stack + 6 )
{
FT_Fixed values[6];
FT_Long scalings[6];
FT_Long min_scaling, max_scaling;
int i;
dict->has_font_matrix = TRUE;
/* We expect a well-formed font matrix, that is, the matrix elements */
/* `xx' and `yy' are of approximately the same magnitude. To avoid */
/* loss of precision, we use the magnitude of the largest matrix */
/* element to scale all other elements. The scaling factor is then */
/* contained in the `units_per_em' value. */
max_scaling = FT_LONG_MIN;
min_scaling = FT_LONG_MAX;
for ( i = 0; i < 6; i++ )
{
values[i] = cff_parse_fixed_dynamic( parser, data++, &scalings[i] );
if ( values[i] )
{
if ( scalings[i] > max_scaling )
max_scaling = scalings[i];
if ( scalings[i] < min_scaling )
min_scaling = scalings[i];
}
}
if ( max_scaling < -9 ||
max_scaling > 0 ||
( max_scaling - min_scaling ) < 0 ||
( max_scaling - min_scaling ) > 9 )
{
FT_TRACE1(( "cff_parse_font_matrix:"
" strange scaling values (minimum %ld, maximum %ld),\n",
min_scaling, max_scaling ));
FT_TRACE1(( " "
" using default matrix\n" ));
goto Unlikely;
}
for ( i = 0; i < 6; i++ )
{
FT_Fixed value = values[i];
FT_Long divisor, half_divisor;
if ( !value )
continue;
divisor = power_tens[max_scaling - scalings[i]];
half_divisor = divisor >> 1;
if ( value < 0 )
{
if ( FT_LONG_MIN + half_divisor < value )
values[i] = ( value - half_divisor ) / divisor;
else
values[i] = FT_LONG_MIN / divisor;
}
else
{
if ( FT_LONG_MAX - half_divisor > value )
values[i] = ( value + half_divisor ) / divisor;
else
values[i] = FT_LONG_MAX / divisor;
}
}
matrix->xx = values[0];
matrix->yx = values[1];
matrix->xy = values[2];
matrix->yy = values[3];
offset->x = values[4];
offset->y = values[5];
*upm = (FT_ULong)power_tens[-max_scaling];
FT_TRACE4(( " [%f %f %f %f %f %f]\n",
(double)matrix->xx / (double)*upm / 65536,
(double)matrix->xy / (double)*upm / 65536,
(double)matrix->yx / (double)*upm / 65536,
(double)matrix->yy / (double)*upm / 65536,
(double)offset->x / (double)*upm / 65536,
(double)offset->y / (double)*upm / 65536 ));
if ( !FT_Matrix_Check( matrix ) )
{
FT_TRACE1(( "cff_parse_font_matrix:"
" degenerate values, using default matrix\n" ));
goto Unlikely;
}
return FT_Err_Ok;
}
else
return FT_THROW( Stack_Underflow );
Unlikely:
/* Return default matrix in case of unlikely values. */
matrix->xx = 0x10000L;
matrix->yx = 0;
matrix->xy = 0;
matrix->yy = 0x10000L;
offset->x = 0;
offset->y = 0;
*upm = 1;
return FT_Err_Ok;
}
static FT_Error
cff_parse_font_bbox( CFF_Parser parser )
{
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_BBox* bbox = &dict->font_bbox;
FT_Byte** data = parser->stack;
FT_Error error;
error = FT_ERR( Stack_Underflow );
if ( parser->top >= parser->stack + 4 )
{
bbox->xMin = FT_RoundFix( cff_parse_fixed( parser, data++ ) );
bbox->yMin = FT_RoundFix( cff_parse_fixed( parser, data++ ) );
bbox->xMax = FT_RoundFix( cff_parse_fixed( parser, data++ ) );
bbox->yMax = FT_RoundFix( cff_parse_fixed( parser, data ) );
error = FT_Err_Ok;
FT_TRACE4(( " [%ld %ld %ld %ld]\n",
bbox->xMin / 65536,
bbox->yMin / 65536,
bbox->xMax / 65536,
bbox->yMax / 65536 ));
}
return error;
}
static FT_Error
cff_parse_private_dict( CFF_Parser parser )
{
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_Byte** data = parser->stack;
FT_Error error;
error = FT_ERR( Stack_Underflow );
if ( parser->top >= parser->stack + 2 )
{
FT_Long tmp;
tmp = cff_parse_num( parser, data++ );
if ( tmp < 0 )
{
FT_ERROR(( "cff_parse_private_dict: Invalid dictionary size\n" ));
error = FT_THROW( Invalid_File_Format );
goto Fail;
}
dict->private_size = (FT_ULong)tmp;
tmp = cff_parse_num( parser, data );
if ( tmp < 0 )
{
FT_ERROR(( "cff_parse_private_dict: Invalid dictionary offset\n" ));
error = FT_THROW( Invalid_File_Format );
goto Fail;
}
dict->private_offset = (FT_ULong)tmp;
FT_TRACE4(( " %lu %lu\n",
dict->private_size, dict->private_offset ));
error = FT_Err_Ok;
}
Fail:
return error;
}
/* The `MultipleMaster' operator comes before any */
/* top DICT operators that contain T2 charstrings. */
static FT_Error
cff_parse_multiple_master( CFF_Parser parser )
{
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_Error error;
#ifdef FT_DEBUG_LEVEL_TRACE
/* beautify tracing message */
if ( ft_trace_levels[FT_TRACE_COMP( FT_COMPONENT )] < 4 )
FT_TRACE1(( "Multiple Master CFFs not supported yet,"
" handling first master design only\n" ));
else
FT_TRACE1(( " (not supported yet,"
" handling first master design only)\n" ));
#endif
error = FT_ERR( Stack_Underflow );
/* currently, we handle only the first argument */
if ( parser->top >= parser->stack + 5 )
{
FT_Long num_designs = cff_parse_num( parser, parser->stack );
if ( num_designs > 16 || num_designs < 2 )
{
FT_ERROR(( "cff_parse_multiple_master:"
" Invalid number of designs\n" ));
error = FT_THROW( Invalid_File_Format );
}
else
{
dict->num_designs = (FT_UShort)num_designs;
dict->num_axes = (FT_UShort)( parser->top - parser->stack - 4 );
parser->num_designs = dict->num_designs;
parser->num_axes = dict->num_axes;
error = FT_Err_Ok;
}
}
return error;
}
static FT_Error
cff_parse_cid_ros( CFF_Parser parser )
{
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_Byte** data = parser->stack;
FT_Error error;
error = FT_ERR( Stack_Underflow );
if ( parser->top >= parser->stack + 3 )
{
dict->cid_registry = (FT_UInt)cff_parse_num( parser, data++ );
dict->cid_ordering = (FT_UInt)cff_parse_num( parser, data++ );
if ( **data == 30 )
FT_TRACE1(( "cff_parse_cid_ros: real supplement is rounded\n" ));
dict->cid_supplement = cff_parse_num( parser, data );
if ( dict->cid_supplement < 0 )
FT_TRACE1(( "cff_parse_cid_ros: negative supplement %ld is found\n",
dict->cid_supplement ));
error = FT_Err_Ok;
FT_TRACE4(( " %d %d %ld\n",
dict->cid_registry,
dict->cid_ordering,
dict->cid_supplement ));
}
return error;
}
static FT_Error
cff_parse_vsindex( CFF_Parser parser )
{
/* vsindex operator can only be used in a Private DICT */
CFF_Private priv = (CFF_Private)parser->object;
FT_Byte** data = parser->stack;
CFF_Blend blend;
FT_Error error;
if ( !priv || !priv->subfont )
{
error = FT_THROW( Invalid_File_Format );
goto Exit;
}
blend = &priv->subfont->blend;
if ( blend->usedBV )
{
FT_ERROR(( " cff_parse_vsindex: vsindex not allowed after blend\n" ));
error = FT_THROW( Syntax_Error );
goto Exit;
}
priv->vsindex = (FT_UInt)cff_parse_num( parser, data++ );
FT_TRACE4(( " %d\n", priv->vsindex ));
error = FT_Err_Ok;
Exit:
return error;
}
static FT_Error
cff_parse_blend( CFF_Parser parser )
{
/* blend operator can only be used in a Private DICT */
CFF_Private priv = (CFF_Private)parser->object;
CFF_SubFont subFont;
CFF_Blend blend;
FT_UInt numBlends;
FT_Error error;
if ( !priv || !priv->subfont )
{
error = FT_THROW( Invalid_File_Format );
goto Exit;
}
subFont = priv->subfont;
blend = &subFont->blend;
if ( cff_blend_check_vector( blend,
priv->vsindex,
subFont->lenNDV,
subFont->NDV ) )
{
error = cff_blend_build_vector( blend,
priv->vsindex,
subFont->lenNDV,
subFont->NDV );
if ( error )
goto Exit;
}
numBlends = (FT_UInt)cff_parse_num( parser, parser->top - 1 );
if ( numBlends > parser->stackSize )
{
FT_ERROR(( "cff_parse_blend: Invalid number of blends\n" ));
error = FT_THROW( Invalid_File_Format );
goto Exit;
}
FT_TRACE4(( " %d value%s blended\n",
numBlends,
numBlends == 1 ? "" : "s" ));
error = cff_blend_doBlend( subFont, parser, numBlends );
blend->usedBV = TRUE;
Exit:
return error;
}
/* maxstack operator increases parser and operand stacks for CFF2 */
static FT_Error
cff_parse_maxstack( CFF_Parser parser )
{
/* maxstack operator can only be used in a Top DICT */
CFF_FontRecDict dict = (CFF_FontRecDict)parser->object;
FT_Byte** data = parser->stack;
FT_Error error = FT_Err_Ok;
if ( !dict )
{
error = FT_THROW( Invalid_File_Format );
goto Exit;
}
dict->maxstack = (FT_UInt)cff_parse_num( parser, data++ );
if ( dict->maxstack > CFF2_MAX_STACK )
dict->maxstack = CFF2_MAX_STACK;
if ( dict->maxstack < CFF2_DEFAULT_STACK )
dict->maxstack = CFF2_DEFAULT_STACK;
FT_TRACE4(( " %d\n", dict->maxstack ));
Exit:
return error;
}
#define CFF_FIELD_NUM( code, name, id ) \
CFF_FIELD( code, name, id, cff_kind_num )
#define CFF_FIELD_FIXED( code, name, id ) \
CFF_FIELD( code, name, id, cff_kind_fixed )
#define CFF_FIELD_FIXED_1000( code, name, id ) \
CFF_FIELD( code, name, id, cff_kind_fixed_thousand )
#define CFF_FIELD_STRING( code, name, id ) \
CFF_FIELD( code, name, id, cff_kind_string )
#define CFF_FIELD_BOOL( code, name, id ) \
CFF_FIELD( code, name, id, cff_kind_bool )
#define CFF_FIELD_DELTA( code, name, max, id ) \
CFF_FIELD_DELTA_KIND( code, name, max, id, cff_kind_delta )
#define CFF_FIELD_DELTA_FIXED( code, name, max, id ) \
CFF_FIELD_DELTA_KIND( code, name, max, id, cff_kind_delta_fixed )
#undef CFF_FIELD
#undef CFF_FIELD_DELTA_KIND
#ifndef FT_DEBUG_LEVEL_TRACE
#define CFF_FIELD_CALLBACK( code, name, id ) \
{ \
cff_kind_callback, \
code | CFFCODE, \
0, 0, \
cff_parse_ ## name, \
0, 0 \
},
#define CFF_FIELD_BLEND( code, id ) \
{ \
cff_kind_blend, \
code | CFFCODE, \
0, 0, \
cff_parse_blend, \
0, 0 \
},
#define CFF_FIELD( code, name, id, kind ) \
{ \
kind, \
code | CFFCODE, \
FT_FIELD_OFFSET( name ), \
FT_FIELD_SIZE( name ), \
NULL, 0, 0 \
},
#define CFF_FIELD_DELTA_KIND( code, name, max, id, kind ) \
{ \
kind, \
code | CFFCODE, \
FT_FIELD_OFFSET( name ), \
FT_FIELD_SIZE_DELTA( name ), \
NULL, \
max, \
FT_FIELD_OFFSET( num_ ## name ) \
},
static const CFF_Field_Handler cff_field_handlers[] =
{
#include "cfftoken.h"
{ 0, 0, 0, 0, NULL, 0, 0 }
};
#else /* FT_DEBUG_LEVEL_TRACE */
#define CFF_FIELD_CALLBACK( code, name, id ) \
{ \
cff_kind_callback, \
code | CFFCODE, \
0, 0, \
cff_parse_ ## name, \
0, 0, \
id \
},
#define CFF_FIELD_BLEND( code, id ) \
{ \
cff_kind_blend, \
code | CFFCODE, \
0, 0, \
cff_parse_blend, \
0, 0, \
id \
},
#define CFF_FIELD( code, name, id, kind ) \
{ \
kind, \
code | CFFCODE, \
FT_FIELD_OFFSET( name ), \
FT_FIELD_SIZE( name ), \
NULL, 0, 0, \
id \
},
#define CFF_FIELD_DELTA_KIND( code, name, max, id, kind ) \
{ \
kind, \
code | CFFCODE, \
FT_FIELD_OFFSET( name ), \
FT_FIELD_SIZE_DELTA( name ), \
NULL, \
max, \
FT_FIELD_OFFSET( num_ ## name ), \
id \
},
static const CFF_Field_Handler cff_field_handlers[] =
{
#include "cfftoken.h"
{ 0, 0, 0, 0, NULL, 0, 0, NULL }
};
#endif /* FT_DEBUG_LEVEL_TRACE */
FT_LOCAL_DEF( FT_Error )
cff_parser_run( CFF_Parser parser,
FT_Byte* start,
FT_Byte* limit )
{
FT_Byte* p = start;
FT_Error error = FT_Err_Ok;
#ifdef CFF_CONFIG_OPTION_OLD_ENGINE
PSAux_Service psaux;
FT_Library library = parser->library;
FT_Memory memory = library->memory;
#endif
parser->top = parser->stack;
parser->start = start;
parser->limit = limit;
parser->cursor = start;
while ( p < limit )
{
FT_UInt v = *p;
/* Opcode 31 is legacy MM T2 operator, not a number. */
/* Opcode 255 is reserved and should not appear in fonts; */
/* it is used internally for CFF2 blends. */
if ( v >= 27 && v != 31 && v != 255 )
{
/* it's a number; we will push its position on the stack */
if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize )
goto Stack_Overflow;
*parser->top++ = p;
/* now, skip it */
if ( v == 30 )
{
/* skip real number */
p++;
for (;;)
{
/* An unterminated floating point number at the */
/* end of a dictionary is invalid but harmless. */
if ( p >= limit )
goto Exit;
v = p[0] >> 4;
if ( v == 15 )
break;
v = p[0] & 0xF;
if ( v == 15 )
break;
p++;
}
}
else if ( v == 28 )
p += 2;
else if ( v == 29 )
p += 4;
else if ( v > 246 )
p += 1;
}
#ifdef CFF_CONFIG_OPTION_OLD_ENGINE
else if ( v == 31 )
{
/* a Type 2 charstring */
CFF_Decoder decoder;
CFF_FontRec cff_rec;
FT_Byte* charstring_base;
FT_ULong charstring_len;
FT_Fixed* stack;
FT_Byte* q = NULL;
charstring_base = ++p;
/* search `endchar' operator */
for (;;)
{
if ( p >= limit )
goto Exit;
if ( *p == 14 )
break;
p++;
}
charstring_len = (FT_ULong)( p - charstring_base ) + 1;
/* construct CFF_Decoder object */
FT_ZERO( &decoder );
FT_ZERO( &cff_rec );
cff_rec.top_font.font_dict.num_designs = parser->num_designs;
cff_rec.top_font.font_dict.num_axes = parser->num_axes;
decoder.cff = &cff_rec;
psaux = (PSAux_Service)FT_Get_Module_Interface( library, "psaux" );
if ( !psaux )
{
FT_ERROR(( "cff_parser_run: cannot access `psaux' module\n" ));
error = FT_THROW( Missing_Module );
goto Exit;
}
error = psaux->cff_decoder_funcs->parse_charstrings_old(
&decoder, charstring_base, charstring_len, 1 );
if ( error )
goto Exit;
/* Now copy the stack data in the temporary decoder object, */
/* converting it back to charstring number representations */
/* (this is ugly, I know). */
/* The maximum required size is 5 bytes per stack element. */
if ( FT_QALLOC( q, (FT_Long)( 2 * sizeof ( FT_ListNode ) ) +
5 * ( decoder.top - decoder.stack ) ) )
goto Exit;
FT_List_Add( &parser->t2_strings, (FT_ListNode)q );
q += 2 * sizeof ( FT_ListNode );
for ( stack = decoder.stack; stack < decoder.top; stack++ )
{
FT_Long num = *stack;
if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize )
goto Stack_Overflow;
*parser->top++ = q;
if ( num & 0xFFFFU )
{
*q++ = 255;
*q++ = (FT_Byte)( ( num >> 24 ) & 0xFF );
*q++ = (FT_Byte)( ( num >> 16 ) & 0xFF );
*q++ = (FT_Byte)( ( num >> 8 ) & 0xFF );
*q++ = (FT_Byte)( ( num ) & 0xFF );
}
else
{
num >>= 16;
if ( -107 <= num && num <= 107 )
*q++ = (FT_Byte)( num + 139 );
else if ( 108 <= num && num <= 1131 )
{
*q++ = (FT_Byte)( ( ( num - 108 ) >> 8 ) + 247 );
*q++ = (FT_Byte)( ( num - 108 ) & 0xFF );
}
else if ( -1131 <= num && num <= -108 )
{
*q++ = (FT_Byte)( ( ( -num - 108 ) >> 8 ) + 251 );
*q++ = (FT_Byte)( ( -num - 108) & 0xFF );
}
else
{
*q++ = 28;
*q++ = (FT_Byte)( num >> 8 );
*q++ = (FT_Byte)( num & 0xFF );
}
}
}
}
#endif /* CFF_CONFIG_OPTION_OLD_ENGINE */
else
{
/* This is not a number, hence it's an operator. Compute its code */
/* and look for it in our current list. */
FT_UInt code;
FT_UInt num_args;
const CFF_Field_Handler* field;
if ( (FT_UInt)( parser->top - parser->stack ) >= parser->stackSize )
goto Stack_Overflow;
num_args = (FT_UInt)( parser->top - parser->stack );
*parser->top = p;
code = v;
if ( v == 12 )
{
/* two byte operator */
p++;
if ( p >= limit )
goto Syntax_Error;
code = 0x100 | p[0];
}
code = code | parser->object_code;
for ( field = cff_field_handlers; field->kind; field++ )
{
if ( field->code == (FT_Int)code )
{
/* we found our field's handler; read it */
FT_Long val;
FT_Byte* q = (FT_Byte*)parser->object + field->offset;
#ifdef FT_DEBUG_LEVEL_TRACE
FT_TRACE4(( " %s", field->id ));
#endif
/* check that we have enough arguments -- except for */
/* delta encoded arrays, which can be empty */
if ( field->kind != cff_kind_delta &&
field->kind != cff_kind_delta_fixed && num_args < 1 )
goto Stack_Underflow;
switch ( field->kind )
{
case cff_kind_bool:
case cff_kind_string:
case cff_kind_num:
val = cff_parse_num( parser, parser->stack );
goto Store_Number;
case cff_kind_fixed:
val = cff_parse_fixed( parser, parser->stack );
goto Store_Number;
case cff_kind_fixed_thousand:
val = cff_parse_fixed_scaled( parser, parser->stack, 3 );
Store_Number:
switch ( field->size )
{
case (8 / FT_CHAR_BIT):
*(FT_Byte*)q = (FT_Byte)val;
break;
case (16 / FT_CHAR_BIT):
*(FT_Short*)q = (FT_Short)val;
break;
case (32 / FT_CHAR_BIT):
*(FT_Int32*)q = (FT_Int)val;
break;
default: /* for 64-bit systems */
*(FT_Long*)q = val;
}
#ifdef FT_DEBUG_LEVEL_TRACE
switch ( field->kind )
{
case cff_kind_bool:
FT_TRACE4(( " %s\n", val ? "true" : "false" ));
break;
case cff_kind_string:
FT_TRACE4(( " %ld (SID)\n", val ));
break;
case cff_kind_num:
FT_TRACE4(( " %ld\n", val ));
break;
case cff_kind_fixed:
FT_TRACE4(( " %f\n", (double)val / 65536 ));
break;
case cff_kind_fixed_thousand:
FT_TRACE4(( " %f\n", (double)val / 65536 / 1000 ));
break;
default:
; /* never reached */
}
#endif
break;
case cff_kind_delta:
{
FT_Byte* qcount = (FT_Byte*)parser->object +
field->count_offset;
FT_Byte** data = parser->stack;
if ( num_args > field->array_max )
num_args = field->array_max;
FT_TRACE4(( " [" ));
/* store count */
*qcount = (FT_Byte)num_args;
val = 0;
while ( num_args > 0 )
{
val = ADD_LONG( val, cff_parse_num( parser, data++ ) );
switch ( field->size )
{
case (8 / FT_CHAR_BIT):
*(FT_Byte*)q = (FT_Byte)val;
break;
case (16 / FT_CHAR_BIT):
*(FT_Short*)q = (FT_Short)val;
break;
case (32 / FT_CHAR_BIT):
*(FT_Int32*)q = (FT_Int)val;
break;
default: /* for 64-bit systems */
*(FT_Long*)q = val;
}
FT_TRACE4(( " %ld", val ));
q += field->size;
num_args--;
}
FT_TRACE4(( "]\n" ));
}
break;
case cff_kind_delta_fixed:
{
FT_Byte* qcount = (FT_Byte*)parser->object +
field->count_offset;
FT_Byte** data = parser->stack;
if ( num_args > field->array_max )
num_args = field->array_max;
FT_TRACE4(( " [" ));
/* store count */
*qcount = (FT_Byte)num_args;
val = 0;
while ( num_args > 0 )
{
val = ADD_LONG( val, cff_parse_fixed( parser, data++ ) );
*(FT_Long*)q = val;
FT_TRACE4(( " %f\n", (double)val / 65536 ));
q += field->size;
num_args--;
}
FT_TRACE4(( "]\n" ));
}
break;
default: /* callback or blend */
error = field->reader( parser );
if ( error )
goto Exit;
}
goto Found;
}
}
/* this is an unknown operator, or it is unsupported; */
/* we will ignore it for now. */
Found:
/* clear stack */
/* TODO: could clear blend stack here, */
/* but we don't have access to subFont */
if ( field->kind != cff_kind_blend )
parser->top = parser->stack;
}
p++;
} /* while ( p < limit ) */
Exit:
return error;
Stack_Overflow:
error = FT_THROW( Invalid_Argument );
goto Exit;
Stack_Underflow:
error = FT_THROW( Invalid_Argument );
goto Exit;
Syntax_Error:
error = FT_THROW( Invalid_Argument );
goto Exit;
}
/* END */