Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 variant of methods for lossless decoder
//
// Author: Skal (pascal.massimino@gmail.com)
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_SSE2)
#include "src/dsp/common_sse2.h"
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include <emmintrin.h>
//------------------------------------------------------------------------------
// Predictor Transform
static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
uint32_t c1,
uint32_t c2) {
const __m128i zero = _mm_setzero_si128();
const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
const __m128i V1 = _mm_add_epi16(C0, C1);
const __m128i V2 = _mm_sub_epi16(V1, C2);
const __m128i b = _mm_packus_epi16(V2, V2);
return (uint32_t)_mm_cvtsi128_si32(b);
}
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
uint32_t c1,
uint32_t c2) {
const __m128i zero = _mm_setzero_si128();
const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
const __m128i avg = _mm_add_epi16(C1, C0);
const __m128i A0 = _mm_srli_epi16(avg, 1);
const __m128i A1 = _mm_sub_epi16(A0, B0);
const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
const __m128i A2 = _mm_sub_epi16(A1, BgtA);
const __m128i A3 = _mm_srai_epi16(A2, 1);
const __m128i A4 = _mm_add_epi16(A0, A3);
const __m128i A5 = _mm_packus_epi16(A4, A4);
return (uint32_t)_mm_cvtsi128_si32(A5);
}
static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
int pa_minus_pb;
const __m128i zero = _mm_setzero_si128();
const __m128i A0 = _mm_cvtsi32_si128((int)a);
const __m128i B0 = _mm_cvtsi32_si128((int)b);
const __m128i C0 = _mm_cvtsi32_si128((int)c);
const __m128i AC0 = _mm_subs_epu8(A0, C0);
const __m128i CA0 = _mm_subs_epu8(C0, A0);
const __m128i BC0 = _mm_subs_epu8(B0, C0);
const __m128i CB0 = _mm_subs_epu8(C0, B0);
const __m128i AC = _mm_or_si128(AC0, CA0);
const __m128i BC = _mm_or_si128(BC0, CB0);
const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
const __m128i diff = _mm_sub_epi16(pb, pa);
{
int16_t out[8];
_mm_storeu_si128((__m128i*)out, diff);
pa_minus_pb = out[0] + out[1] + out[2] + out[3];
}
return (pa_minus_pb <= 0) ? a : b;
}
static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
const __m128i* const a1,
__m128i* const avg) {
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
const __m128i ones = _mm_set1_epi8(1);
const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
*avg = _mm_sub_epi8(avg1, one);
}
static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
const uint32_t a1,
__m128i* const avg) {
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
const __m128i ones = _mm_set1_epi8(1);
const __m128i A0 = _mm_cvtsi32_si128((int)a0);
const __m128i A1 = _mm_cvtsi32_si128((int)a1);
const __m128i avg1 = _mm_avg_epu8(A0, A1);
const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
*avg = _mm_sub_epi8(avg1, one);
}
static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
const __m128i zero = _mm_setzero_si128();
const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
const __m128i sum = _mm_add_epi16(A1, A0);
return _mm_srli_epi16(sum, 1);
}
static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
__m128i output;
Average2_uint32_SSE2(a0, a1, &output);
return (uint32_t)_mm_cvtsi128_si32(output);
}
static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
uint32_t a2) {
const __m128i zero = _mm_setzero_si128();
const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
const __m128i sum = _mm_add_epi16(avg1, A1);
const __m128i avg2 = _mm_srli_epi16(sum, 1);
const __m128i A2 = _mm_packus_epi16(avg2, avg2);
return (uint32_t)_mm_cvtsi128_si32(A2);
}
static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3) {
const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
const __m128i sum = _mm_add_epi16(avg2, avg1);
const __m128i avg3 = _mm_srli_epi16(sum, 1);
const __m128i A0 = _mm_packus_epi16(avg3, avg3);
return (uint32_t)_mm_cvtsi128_si32(A0);
}
static uint32_t Predictor5_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
return pred;
}
static uint32_t Predictor6_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average2_SSE2(*left, top[-1]);
return pred;
}
static uint32_t Predictor7_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average2_SSE2(*left, top[0]);
return pred;
}
static uint32_t Predictor8_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average2_SSE2(top[-1], top[0]);
(void)left;
return pred;
}
static uint32_t Predictor9_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average2_SSE2(top[0], top[1]);
(void)left;
return pred;
}
static uint32_t Predictor10_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
return pred;
}
static uint32_t Predictor11_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
return pred;
}
static uint32_t Predictor12_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
return pred;
}
static uint32_t Predictor13_SSE2(const uint32_t* const left,
const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
return pred;
}
// Batch versions of those functions.
// Predictor0: ARGB_BLACK.
static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
const __m128i res = _mm_add_epi8(src, black);
_mm_storeu_si128((__m128i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
}
(void)upper;
}
// Predictor1: left.
static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
__m128i prev = _mm_set1_epi32((int)out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
// a | b | c | d
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
// 0 | a | b | c
const __m128i shift0 = _mm_slli_si128(src, 4);
// a | a + b | b + c | c + d
const __m128i sum0 = _mm_add_epi8(src, shift0);
// 0 | 0 | a | a + b
const __m128i shift1 = _mm_slli_si128(sum0, 8);
// a | a + b | a + b + c | a + b + c + d
const __m128i sum1 = _mm_add_epi8(sum0, shift1);
const __m128i res = _mm_add_epi8(sum1, prev);
_mm_storeu_si128((__m128i*)&out[i], res);
// replicate prev output on the four lanes
prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
}
if (i != num_pixels) {
VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
}
}
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
// per 8 bit channel.
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
int num_pixels, uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
const __m128i res = _mm_add_epi8(src, other); \
_mm_storeu_si128((__m128i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
// Predictor2: Top.
GENERATE_PREDICTOR_1(2, upper[i])
// Predictor3: Top-right.
GENERATE_PREDICTOR_1(3, upper[i + 1])
// Predictor4: Top-left.
GENERATE_PREDICTOR_1(4, upper[i - 1])
#undef GENERATE_PREDICTOR_1
// Due to averages with integers, values cannot be accumulated in parallel for
// predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
#define GENERATE_PREDICTOR_2(X, IN) \
static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
int num_pixels, uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
__m128i avg, res; \
Average2_m128i(&T, &Tother, &avg); \
res = _mm_add_epi8(avg, src); \
_mm_storeu_si128((__m128i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
// Predictor8: average TL T.
GENERATE_PREDICTOR_2(8, upper[i - 1])
// Predictor9: average T TR.
GENERATE_PREDICTOR_2(9, upper[i + 1])
#undef GENERATE_PREDICTOR_2
// Predictor10: average of (average of (L,TL), average of (T, TR)).
#define DO_PRED10(OUT) do { \
__m128i avgLTL, avg; \
Average2_m128i(&L, &TL, &avgLTL); \
Average2_m128i(&avgTTR, &avgLTL, &avg); \
L = _mm_add_epi8(avg, src); \
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
} while (0)
#define DO_PRED10_SHIFT do { \
/* Rotate the pre-computed values for the next iteration.*/ \
avgTTR = _mm_srli_si128(avgTTR, 4); \
TL = _mm_srli_si128(TL, 4); \
src = _mm_srli_si128(src, 4); \
} while (0)
static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
__m128i L = _mm_cvtsi32_si128((int)out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
__m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
__m128i avgTTR;
Average2_m128i(&T, &TR, &avgTTR);
DO_PRED10(0);
DO_PRED10_SHIFT;
DO_PRED10(1);
DO_PRED10_SHIFT;
DO_PRED10(2);
DO_PRED10_SHIFT;
DO_PRED10(3);
}
if (i != num_pixels) {
VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED10
#undef DO_PRED10_SHIFT
// Predictor11: select.
#define DO_PRED11(OUT) do { \
const __m128i L_lo = _mm_unpacklo_epi32(L, T); \
const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \
const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \
const __m128i mask = _mm_cmpgt_epi32(pb, pa); \
const __m128i A = _mm_and_si128(mask, L); \
const __m128i B = _mm_andnot_si128(mask, T); \
const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
L = _mm_add_epi8(src, pred); \
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \
} while (0)
#define DO_PRED11_SHIFT do { \
/* Shift the pre-computed value for the next iteration.*/ \
T = _mm_srli_si128(T, 4); \
TL = _mm_srli_si128(TL, 4); \
src = _mm_srli_si128(src, 4); \
pa = _mm_srli_si128(pa, 4); \
} while (0)
static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
__m128i pa;
__m128i L = _mm_cvtsi32_si128((int)out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
__m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
__m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
{
// We can unpack with any value on the upper 32 bits, provided it's the
// same on both operands (so that their sum of abs diff is zero). Here we
// use T.
const __m128i T_lo = _mm_unpacklo_epi32(T, T);
const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
const __m128i T_hi = _mm_unpackhi_epi32(T, T);
const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL|
}
DO_PRED11(0);
DO_PRED11_SHIFT;
DO_PRED11(1);
DO_PRED11_SHIFT;
DO_PRED11(2);
DO_PRED11_SHIFT;
DO_PRED11(3);
}
if (i != num_pixels) {
VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED11
#undef DO_PRED11_SHIFT
// Predictor12: ClampedAddSubtractFull.
#define DO_PRED12(DIFF, LANE, OUT) do { \
const __m128i all = _mm_add_epi16(L, (DIFF)); \
const __m128i alls = _mm_packus_epi16(all, all); \
const __m128i res = _mm_add_epi8(src, alls); \
out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
L = _mm_unpacklo_epi8(res, zero); \
} while (0)
#define DO_PRED12_SHIFT(DIFF, LANE) do { \
/* Shift the pre-computed value for the next iteration.*/ \
if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
src = _mm_srli_si128(src, 4); \
} while (0)
static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const __m128i zero = _mm_setzero_si128();
const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
__m128i L = _mm_unpacklo_epi8(L8, zero);
for (i = 0; i + 4 <= num_pixels; i += 4) {
// Load 4 pixels at a time.
__m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
__m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
__m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
DO_PRED12(diff_lo, 0, 0);
DO_PRED12_SHIFT(diff_lo, 0);
DO_PRED12(diff_lo, 1, 1);
DO_PRED12_SHIFT(diff_lo, 1);
DO_PRED12(diff_hi, 0, 2);
DO_PRED12_SHIFT(diff_hi, 0);
DO_PRED12(diff_hi, 1, 3);
}
if (i != num_pixels) {
VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
}
}
#undef DO_PRED12
#undef DO_PRED12_SHIFT
// Due to averages with integers, values cannot be accumulated in parallel for
// predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
//------------------------------------------------------------------------------
// Subtract-Green Transform
static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
uint32_t* dst) {
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
const __m128i out = _mm_add_epi8(in, C);
_mm_storeu_si128((__m128i*)&dst[i], out);
}
// fallthrough and finish off with plain-C
if (i != num_pixels) {
VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
}
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
const uint32_t* const src,
int num_pixels, uint32_t* dst) {
// sign-extended multiplying constants, pre-shifted by 5.
#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
#define MK_CST_16(HI, LO) \
_mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
#undef MK_CST_16
#undef CST
const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
const __m128i E = _mm_add_epi8(in, D); // x r' x b'
const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0
const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0
const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0
const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
const __m128i out = _mm_or_si128(J, A);
_mm_storeu_si128((__m128i*)&dst[i], out);
}
// Fall-back to C-version for left-overs.
if (i != num_pixels) {
VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
}
}
//------------------------------------------------------------------------------
// Color-space conversion functions
static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
uint8_t* dst) {
const __m128i* in = (const __m128i*)src;
__m128i* out = (__m128i*)dst;
while (num_pixels >= 32) {
// Load the BGRA buffers.
__m128i in0 = _mm_loadu_si128(in + 0);
__m128i in1 = _mm_loadu_si128(in + 1);
__m128i in2 = _mm_loadu_si128(in + 2);
__m128i in3 = _mm_loadu_si128(in + 3);
__m128i in4 = _mm_loadu_si128(in + 4);
__m128i in5 = _mm_loadu_si128(in + 5);
__m128i in6 = _mm_loadu_si128(in + 6);
__m128i in7 = _mm_loadu_si128(in + 7);
VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
// At this points, in1/in5 contains red only, in2/in6 green only ...
// Pack the colors in 24b RGB.
VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
_mm_storeu_si128(out + 0, in1);
_mm_storeu_si128(out + 1, in5);
_mm_storeu_si128(out + 2, in2);
_mm_storeu_si128(out + 3, in6);
_mm_storeu_si128(out + 4, in3);
_mm_storeu_si128(out + 5, in7);
in += 8;
out += 6;
num_pixels -= 32;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
}
}
static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
const __m128i* in = (const __m128i*)src;
__m128i* out = (__m128i*)dst;
while (num_pixels >= 8) {
const __m128i A1 = _mm_loadu_si128(in++);
const __m128i A2 = _mm_loadu_si128(in++);
const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0
const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0
const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A
const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A
const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
const __m128i F1 = _mm_or_si128(E1, C1);
const __m128i F2 = _mm_or_si128(E2, C2);
_mm_storeu_si128(out++, F1);
_mm_storeu_si128(out++, F2);
num_pixels -= 8;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
}
}
static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
const __m128i* in = (const __m128i*)src;
__m128i* out = (__m128i*)dst;
while (num_pixels >= 8) {
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7-
const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7
const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7-
const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7
const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0
#if (WEBP_SWAP_16BIT_CSP == 1)
const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7
#else
const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7
#endif
_mm_storeu_si128(out++, rgba);
num_pixels -= 8;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
}
}
static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
const __m128i mask_0x07 = _mm_set1_epi8(0x07);
const __m128i* in = (const __m128i*)src;
__m128i* out = (__m128i*)dst;
while (num_pixels >= 8) {
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7
const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b)
const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b)
const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0
const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx
const __m128i b1 = _mm_srli_epi16(b0, 3);
const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx
#if (WEBP_SWAP_16BIT_CSP == 1)
const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7
#else
const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7
#endif
_mm_storeu_si128(out++, rgba);
num_pixels -= 8;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
}
}
static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
const __m128i* in = (const __m128i*)src;
const uint8_t* const end = dst + num_pixels * 3;
// the last storel_epi64 below writes 8 bytes starting at offset 18
while (dst + 26 <= end) {
const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0
const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0
const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0
const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0
const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00
const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00
const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00
const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00
const __m128i c2 = _mm_srli_si128(c0, 8);
const __m128i c6 = _mm_srli_si128(c4, 8);
_mm_storel_epi64((__m128i*)(dst + 0), c0);
_mm_storel_epi64((__m128i*)(dst + 6), c2);
_mm_storel_epi64((__m128i*)(dst + 12), c4);
_mm_storel_epi64((__m128i*)(dst + 18), c6);
dst += 24;
num_pixels -= 8;
}
// left-overs
if (num_pixels > 0) {
VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8LDspInitSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
VP8LPredictors[5] = Predictor5_SSE2;
VP8LPredictors[6] = Predictor6_SSE2;
VP8LPredictors[7] = Predictor7_SSE2;
VP8LPredictors[8] = Predictor8_SSE2;
VP8LPredictors[9] = Predictor9_SSE2;
VP8LPredictors[10] = Predictor10_SSE2;
VP8LPredictors[11] = Predictor11_SSE2;
VP8LPredictors[12] = Predictor12_SSE2;
VP8LPredictors[13] = Predictor13_SSE2;
VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
VP8LTransformColorInverse = TransformColorInverse_SSE2;
VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
}
#else // !WEBP_USE_SSE2
WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
#endif // WEBP_USE_SSE2