Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
/*
* rendering object for CSS display:block, inline-block, and list-item
* boxes, also used for various anonymous boxes
*/
#include "nsBlockFrame.h"
#include "gfxContext.h"
#include "mozilla/AppUnits.h"
#include "mozilla/Baseline.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "mozilla/PresShell.h"
#include "mozilla/ScrollContainerFrame.h"
#include "mozilla/StaticPrefs_browser.h"
#include "mozilla/StaticPrefs_layout.h"
#include "mozilla/SVGUtils.h"
#include "mozilla/ToString.h"
#include "mozilla/UniquePtr.h"
#include "nsCRT.h"
#include "nsCOMPtr.h"
#include "nsCSSRendering.h"
#include "nsAbsoluteContainingBlock.h"
#include "nsBlockReflowContext.h"
#include "BlockReflowState.h"
#include "nsFontMetrics.h"
#include "nsGenericHTMLElement.h"
#include "nsLineBox.h"
#include "nsLineLayout.h"
#include "nsPlaceholderFrame.h"
#include "nsStyleConsts.h"
#include "nsFrameManager.h"
#include "nsPresContext.h"
#include "nsPresContextInlines.h"
#include "nsHTMLParts.h"
#include "nsGkAtoms.h"
#include "mozilla/Sprintf.h"
#include "nsFloatManager.h"
#include "prenv.h"
#include "nsError.h"
#include <algorithm>
#include "nsLayoutUtils.h"
#include "nsDisplayList.h"
#include "nsCSSFrameConstructor.h"
#include "TextOverflow.h"
#include "nsIFrameInlines.h"
#include "CounterStyleManager.h"
#include "mozilla/dom/Selection.h"
#include "mozilla/PresShell.h"
#include "mozilla/RestyleManager.h"
#include "mozilla/ServoStyleSet.h"
#include "nsFlexContainerFrame.h"
#include "nsTextControlFrame.h"
#include "nsBidiPresUtils.h"
#include <inttypes.h>
static const int MIN_LINES_NEEDING_CURSOR = 20;
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;
using AbsPosReflowFlags = nsAbsoluteContainingBlock::AbsPosReflowFlags;
using ClearFloatsResult = BlockReflowState::ClearFloatsResult;
using ShapeType = nsFloatManager::ShapeType;
static void MarkAllDescendantLinesDirty(nsBlockFrame* aBlock) {
for (auto& line : aBlock->Lines()) {
if (line.IsBlock()) {
nsBlockFrame* bf = do_QueryFrame(line.mFirstChild);
if (bf) {
MarkAllDescendantLinesDirty(bf);
}
}
line.MarkDirty();
}
}
static void MarkSameFloatManagerLinesDirty(nsBlockFrame* aBlock) {
nsBlockFrame* blockWithFloatMgr = aBlock;
while (!blockWithFloatMgr->HasAnyStateBits(NS_BLOCK_BFC)) {
nsBlockFrame* bf = do_QueryFrame(blockWithFloatMgr->GetParent());
if (!bf) {
break;
}
blockWithFloatMgr = bf;
}
// Mark every line at and below the line where the float was
// dirty, and mark their lines dirty too. We could probably do
// something more efficient --- e.g., just dirty the lines that intersect
// the float vertically.
MarkAllDescendantLinesDirty(blockWithFloatMgr);
}
/**
* Returns true if aFrame is a block that has one or more float children.
*/
static bool BlockHasAnyFloats(nsIFrame* aFrame) {
nsBlockFrame* block = do_QueryFrame(aFrame);
if (!block) {
return false;
}
if (block->GetChildList(FrameChildListID::Float).FirstChild()) {
return true;
}
for (const auto& line : block->Lines()) {
if (line.IsBlock() && BlockHasAnyFloats(line.mFirstChild)) {
return true;
}
}
return false;
}
// Determines whether the given frame is visible text or has visible text that
// participate in the same line. Frames that are not line participants do not
// have their children checked.
static bool FrameHasVisibleInlineText(nsIFrame* aFrame) {
MOZ_ASSERT(aFrame, "Frame argument cannot be null");
if (!aFrame->IsLineParticipant()) {
return false;
}
if (aFrame->IsTextFrame()) {
return aFrame->StyleVisibility()->IsVisible() &&
NS_GET_A(aFrame->StyleText()->mWebkitTextFillColor.CalcColor(
aFrame)) != 0;
}
for (nsIFrame* kid : aFrame->PrincipalChildList()) {
if (FrameHasVisibleInlineText(kid)) {
return true;
}
}
return false;
}
// Determines whether any of the frames from the given line have visible text.
static bool LineHasVisibleInlineText(nsLineBox* aLine) {
nsIFrame* kid = aLine->mFirstChild;
int32_t n = aLine->GetChildCount();
while (n-- > 0) {
if (FrameHasVisibleInlineText(kid)) {
return true;
}
kid = kid->GetNextSibling();
}
return false;
}
/**
* Iterates through the frame's in-flow children and
* unions the ink overflow of all text frames which
* participate in the line aFrame belongs to.
* If a child of aFrame is not a text frame,
* we recurse with the child as the aFrame argument.
* If aFrame isn't a line participant, we skip it entirely
* and return an empty rect.
* The resulting nsRect is offset relative to the parent of aFrame.
*/
static nsRect GetFrameTextArea(nsIFrame* aFrame,
nsDisplayListBuilder* aBuilder) {
nsRect textArea;
if (const nsTextFrame* textFrame = do_QueryFrame(aFrame)) {
if (!textFrame->IsEntirelyWhitespace()) {
textArea = aFrame->InkOverflowRect();
}
} else if (aFrame->IsLineParticipant()) {
for (nsIFrame* kid : aFrame->PrincipalChildList()) {
nsRect kidTextArea = GetFrameTextArea(kid, aBuilder);
textArea.OrWith(kidTextArea);
}
}
// add aFrame's position to keep textArea relative to aFrame's parent
return textArea + aFrame->GetPosition();
}
/**
* Iterates through the line's children and
* unions the ink overflow of all text frames.
* GetFrameTextArea unions and returns the ink overflow
* from all line-participating text frames within the given child.
* The nsRect returned from GetLineTextArea is offset
* relative to the given line.
*/
static nsRect GetLineTextArea(nsLineBox* aLine,
nsDisplayListBuilder* aBuilder) {
nsRect textArea;
nsIFrame* kid = aLine->mFirstChild;
int32_t n = aLine->GetChildCount();
while (n-- > 0) {
nsRect kidTextArea = GetFrameTextArea(kid, aBuilder);
textArea.OrWith(kidTextArea);
kid = kid->GetNextSibling();
}
return textArea;
}
/**
* Starting with aFrame, iterates upward through parent frames and checks for
* non-transparent background colors. If one is found, we use that as our
* backplate color. Otheriwse, we use the default background color from
* our high contrast theme.
*/
static nscolor GetBackplateColor(nsIFrame* aFrame) {
nsPresContext* pc = aFrame->PresContext();
nscolor currentBackgroundColor = NS_TRANSPARENT;
for (nsIFrame* frame = aFrame; frame; frame = frame->GetParent()) {
// NOTE(emilio): We assume themed frames (frame->IsThemed()) have correct
// background-color information so as to compute the right backplate color.
//
// This holds because HTML widgets with author-specified backgrounds or
// borders disable theming. So as long as the UA-specified background colors
// match the actual theme (which they should because we always use system
// colors with the non-native theme, and native system colors should also
// match the native theme), then we're alright and we should compute an
// appropriate backplate color.
const auto* style = frame->Style();
if (style->StyleBackground()->IsTransparent(style)) {
continue;
}
bool drawImage = false, drawColor = false;
nscolor backgroundColor = nsCSSRendering::DetermineBackgroundColor(
pc, style, frame, drawImage, drawColor);
if (!drawColor && !drawImage) {
continue;
}
if (NS_GET_A(backgroundColor) == 0) {
// Even if there's a background image, if there's no background color we
continue;
}
if (NS_GET_A(currentBackgroundColor) == 0) {
// Try to avoid somewhat expensive math in the common case.
currentBackgroundColor = backgroundColor;
} else {
currentBackgroundColor =
NS_ComposeColors(backgroundColor, currentBackgroundColor);
}
if (NS_GET_A(currentBackgroundColor) == 0xff) {
// If fully opaque, we're done, otherwise keep going up blending with our
// background.
return currentBackgroundColor;
}
}
nscolor backgroundColor = aFrame->PresContext()->DefaultBackgroundColor();
if (NS_GET_A(currentBackgroundColor) == 0) {
return backgroundColor;
}
return NS_ComposeColors(backgroundColor, currentBackgroundColor);
}
static nsRect GetNormalMarginRect(nsIFrame* aFrame) {
auto rect = aFrame->GetMarginRectRelativeToSelf();
return rect + aFrame->GetNormalPosition();
}
#ifdef DEBUG
# include "nsBlockDebugFlags.h"
bool nsBlockFrame::gLamePaintMetrics;
bool nsBlockFrame::gLameReflowMetrics;
bool nsBlockFrame::gNoisy;
bool nsBlockFrame::gNoisyDamageRepair;
bool nsBlockFrame::gNoisyIntrinsic;
bool nsBlockFrame::gNoisyReflow;
bool nsBlockFrame::gReallyNoisyReflow;
bool nsBlockFrame::gNoisyFloatManager;
bool nsBlockFrame::gVerifyLines;
bool nsBlockFrame::gDisableResizeOpt;
int32_t nsBlockFrame::gNoiseIndent;
struct BlockDebugFlags {
const char* name;
bool* on;
};
static const BlockDebugFlags gFlags[] = {
{"reflow", &nsBlockFrame::gNoisyReflow},
{"really-noisy-reflow", &nsBlockFrame::gReallyNoisyReflow},
{"intrinsic", &nsBlockFrame::gNoisyIntrinsic},
{"float-manager", &nsBlockFrame::gNoisyFloatManager},
{"verify-lines", &nsBlockFrame::gVerifyLines},
{"damage-repair", &nsBlockFrame::gNoisyDamageRepair},
{"lame-paint-metrics", &nsBlockFrame::gLamePaintMetrics},
{"lame-reflow-metrics", &nsBlockFrame::gLameReflowMetrics},
{"disable-resize-opt", &nsBlockFrame::gDisableResizeOpt},
};
# define NUM_DEBUG_FLAGS (sizeof(gFlags) / sizeof(gFlags[0]))
static void ShowDebugFlags() {
printf("Here are the available GECKO_BLOCK_DEBUG_FLAGS:\n");
const BlockDebugFlags* bdf = gFlags;
const BlockDebugFlags* end = gFlags + NUM_DEBUG_FLAGS;
for (; bdf < end; bdf++) {
printf(" %s\n", bdf->name);
}
printf("Note: GECKO_BLOCK_DEBUG_FLAGS is a comma separated list of flag\n");
printf("names (no whitespace)\n");
}
void nsBlockFrame::InitDebugFlags() {
static bool firstTime = true;
if (firstTime) {
firstTime = false;
char* flags = PR_GetEnv("GECKO_BLOCK_DEBUG_FLAGS");
if (flags) {
bool error = false;
for (;;) {
char* cm = strchr(flags, ',');
if (cm) {
*cm = '\0';
}
bool found = false;
const BlockDebugFlags* bdf = gFlags;
const BlockDebugFlags* end = gFlags + NUM_DEBUG_FLAGS;
for (; bdf < end; bdf++) {
if (nsCRT::strcasecmp(bdf->name, flags) == 0) {
*(bdf->on) = true;
printf("nsBlockFrame: setting %s debug flag on\n", bdf->name);
gNoisy = true;
found = true;
break;
}
}
if (!found) {
error = true;
}
if (!cm) {
break;
}
*cm = ',';
flags = cm + 1;
}
if (error) {
ShowDebugFlags();
}
}
}
}
#endif
//----------------------------------------------------------------------
// Debugging support code
#ifdef DEBUG
const char* nsBlockFrame::kReflowCommandType[] = {
"ContentChanged", "StyleChanged", "ReflowDirty", "Timeout", "UserDefined",
};
const char* nsBlockFrame::LineReflowStatusToString(
LineReflowStatus aLineReflowStatus) const {
switch (aLineReflowStatus) {
case LineReflowStatus::OK:
return "LINE_REFLOW_OK";
case LineReflowStatus::Stop:
return "LINE_REFLOW_STOP";
case LineReflowStatus::RedoNoPull:
return "LINE_REFLOW_REDO_NO_PULL";
case LineReflowStatus::RedoMoreFloats:
return "LINE_REFLOW_REDO_MORE_FLOATS";
case LineReflowStatus::RedoNextBand:
return "LINE_REFLOW_REDO_NEXT_BAND";
case LineReflowStatus::Truncated:
return "LINE_REFLOW_TRUNCATED";
}
return "unknown";
}
#endif
#ifdef REFLOW_STATUS_COVERAGE
static void RecordReflowStatus(bool aChildIsBlock,
const nsReflowStatus& aFrameReflowStatus) {
static uint32_t record[2];
// 0: child-is-block
// 1: child-is-inline
int index = 0;
if (!aChildIsBlock) {
index |= 1;
}
// Compute new status
uint32_t newS = record[index];
if (aFrameReflowStatus.IsInlineBreak()) {
if (aFrameReflowStatus.IsInlineBreakBefore()) {
newS |= 1;
} else if (aFrameReflowStatus.IsIncomplete()) {
newS |= 2;
} else {
newS |= 4;
}
} else if (aFrameReflowStatus.IsIncomplete()) {
newS |= 8;
} else {
newS |= 16;
}
// Log updates to the status that yield different values
if (record[index] != newS) {
record[index] = newS;
printf("record(%d): %02x %02x\n", index, record[0], record[1]);
}
}
#endif
NS_DECLARE_FRAME_PROPERTY_WITH_DTOR_NEVER_CALLED(OverflowLinesProperty,
nsBlockFrame::FrameLines)
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(OverflowOutOfFlowsProperty)
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(FloatsProperty)
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(PushedFloatsProperty)
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(OutsideMarkerProperty)
NS_DECLARE_FRAME_PROPERTY_WITHOUT_DTOR(InsideMarkerProperty, nsIFrame)
//----------------------------------------------------------------------
nsBlockFrame* NS_NewBlockFrame(PresShell* aPresShell, ComputedStyle* aStyle) {
return new (aPresShell) nsBlockFrame(aStyle, aPresShell->GetPresContext());
}
NS_IMPL_FRAMEARENA_HELPERS(nsBlockFrame)
nsBlockFrame::~nsBlockFrame() = default;
void nsBlockFrame::AddSizeOfExcludingThisForTree(
nsWindowSizes& aWindowSizes) const {
nsContainerFrame::AddSizeOfExcludingThisForTree(aWindowSizes);
// Add the size of any nsLineBox::mFrames hashtables we might have:
for (const auto& line : Lines()) {
line.AddSizeOfExcludingThis(aWindowSizes);
}
const FrameLines* overflowLines = GetOverflowLines();
if (overflowLines) {
ConstLineIterator line = overflowLines->mLines.begin(),
line_end = overflowLines->mLines.end();
for (; line != line_end; ++line) {
line->AddSizeOfExcludingThis(aWindowSizes);
}
}
}
void nsBlockFrame::Destroy(DestroyContext& aContext) {
ClearLineCursors();
DestroyAbsoluteFrames(aContext);
nsPresContext* presContext = PresContext();
mozilla::PresShell* presShell = presContext->PresShell();
if (HasFloats()) {
SafelyDestroyFrameListProp(aContext, presShell, FloatsProperty());
RemoveStateBits(NS_BLOCK_HAS_FLOATS);
}
nsLineBox::DeleteLineList(presContext, mLines, &mFrames, aContext);
if (HasPushedFloats()) {
SafelyDestroyFrameListProp(aContext, presShell, PushedFloatsProperty());
RemoveStateBits(NS_BLOCK_HAS_PUSHED_FLOATS);
}
// destroy overflow lines now
FrameLines* overflowLines = RemoveOverflowLines();
if (overflowLines) {
nsLineBox::DeleteLineList(presContext, overflowLines->mLines,
&overflowLines->mFrames, aContext);
delete overflowLines;
}
if (HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS)) {
SafelyDestroyFrameListProp(aContext, presShell,
OverflowOutOfFlowsProperty());
RemoveStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS);
}
if (HasMarker()) {
SafelyDestroyFrameListProp(aContext, presShell, OutsideMarkerProperty());
RemoveStateBits(NS_BLOCK_HAS_MARKER);
}
nsContainerFrame::Destroy(aContext);
}
/* virtual */
nsILineIterator* nsBlockFrame::GetLineIterator() {
nsLineIterator* iter = GetProperty(LineIteratorProperty());
if (!iter) {
const nsStyleVisibility* visibility = StyleVisibility();
iter = new nsLineIterator(mLines,
visibility->mDirection == StyleDirection::Rtl);
SetProperty(LineIteratorProperty(), iter);
}
return iter;
}
NS_QUERYFRAME_HEAD(nsBlockFrame)
NS_QUERYFRAME_ENTRY(nsBlockFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
#ifdef DEBUG_FRAME_DUMP
void nsBlockFrame::List(FILE* out, const char* aPrefix,
ListFlags aFlags) const {
nsCString str;
ListGeneric(str, aPrefix, aFlags);
fprintf_stderr(out, "%s <\n", str.get());
nsCString pfx(aPrefix);
pfx += " ";
// Output the lines
if (!mLines.empty()) {
ConstLineIterator line = LinesBegin(), line_end = LinesEnd();
for (; line != line_end; ++line) {
line->List(out, pfx.get(), aFlags);
}
}
// Output the overflow lines.
const FrameLines* overflowLines = GetOverflowLines();
if (overflowLines && !overflowLines->mLines.empty()) {
fprintf_stderr(out, "%sOverflow-lines %p/%p <\n", pfx.get(), overflowLines,
&overflowLines->mFrames);
nsCString nestedPfx(pfx);
nestedPfx += " ";
ConstLineIterator line = overflowLines->mLines.begin(),
line_end = overflowLines->mLines.end();
for (; line != line_end; ++line) {
line->List(out, nestedPfx.get(), aFlags);
}
fprintf_stderr(out, "%s>\n", pfx.get());
}
// skip the principal list - we printed the lines above
// skip the overflow list - we printed the overflow lines above
ChildListIDs skip = {FrameChildListID::Principal, FrameChildListID::Overflow};
ListChildLists(out, pfx.get(), aFlags, skip);
fprintf_stderr(out, "%s>\n", aPrefix);
}
nsresult nsBlockFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"Block"_ns, aResult);
}
#endif
void nsBlockFrame::InvalidateFrame(uint32_t aDisplayItemKey,
bool aRebuildDisplayItems) {
if (IsInSVGTextSubtree()) {
NS_ASSERTION(GetParent()->IsSVGTextFrame(),
"unexpected block frame in SVG text");
GetParent()->InvalidateFrame();
return;
}
nsContainerFrame::InvalidateFrame(aDisplayItemKey, aRebuildDisplayItems);
}
void nsBlockFrame::InvalidateFrameWithRect(const nsRect& aRect,
uint32_t aDisplayItemKey,
bool aRebuildDisplayItems) {
if (IsInSVGTextSubtree()) {
NS_ASSERTION(GetParent()->IsSVGTextFrame(),
"unexpected block frame in SVG text");
GetParent()->InvalidateFrame();
return;
}
nsContainerFrame::InvalidateFrameWithRect(aRect, aDisplayItemKey,
aRebuildDisplayItems);
}
nscoord nsBlockFrame::SynthesizeFallbackBaseline(
WritingMode aWM, BaselineSharingGroup aBaselineGroup) const {
return Baseline::SynthesizeBOffsetFromMarginBox(this, aWM, aBaselineGroup);
}
template <typename LineIteratorType>
Maybe<nscoord> nsBlockFrame::GetBaselineBOffset(
LineIteratorType aStart, LineIteratorType aEnd, WritingMode aWM,
BaselineSharingGroup aBaselineGroup,
BaselineExportContext aExportContext) const {
MOZ_ASSERT((std::is_same_v<LineIteratorType, ConstLineIterator> &&
aBaselineGroup == BaselineSharingGroup::First) ||
(std::is_same_v<LineIteratorType, ConstReverseLineIterator> &&
aBaselineGroup == BaselineSharingGroup::Last),
"Iterator direction must match baseline sharing group.");
for (auto line = aStart; line != aEnd; ++line) {
if (!line->IsBlock()) {
// XXX Is this the right test? We have some bogus empty lines
// floating around, but IsEmpty is perhaps too weak.
if (line->BSize() != 0 || !line->IsEmpty()) {
const auto ascent = line->BStart() + line->GetLogicalAscent();
if (aBaselineGroup == BaselineSharingGroup::Last) {
return Some(BSize(aWM) - ascent);
}
return Some(ascent);
}
continue;
}
nsIFrame* kid = line->mFirstChild;
if (aWM.IsOrthogonalTo(kid->GetWritingMode())) {
continue;
}
if (aExportContext == BaselineExportContext::LineLayout &&
kid->IsTableWrapperFrame()) {
// `<table>` in inline-block context does not export any baseline.
continue;
}
const auto kidBaselineGroup =
aExportContext == BaselineExportContext::LineLayout
? kid->GetDefaultBaselineSharingGroup()
: aBaselineGroup;
const auto kidBaseline =
kid->GetNaturalBaselineBOffset(aWM, kidBaselineGroup, aExportContext);
if (!kidBaseline) {
continue;
}
auto result = *kidBaseline;
if (kidBaselineGroup == BaselineSharingGroup::Last) {
result = kid->BSize(aWM) - result;
}
// Ignore relative positioning for baseline calculations.
const nsSize& sz = line->mContainerSize;
result += kid->GetLogicalNormalPosition(aWM, sz).B(aWM);
if (aBaselineGroup == BaselineSharingGroup::Last) {
return Some(BSize(aWM) - result);
}
return Some(result);
}
return Nothing{};
}
Maybe<nscoord> nsBlockFrame::GetNaturalBaselineBOffset(
WritingMode aWM, BaselineSharingGroup aBaselineGroup,
BaselineExportContext aExportContext) const {
if (StyleDisplay()->IsContainLayout()) {
return Nothing{};
}
if (aBaselineGroup == BaselineSharingGroup::First) {
return GetBaselineBOffset(LinesBegin(), LinesEnd(), aWM, aBaselineGroup,
aExportContext);
}
return GetBaselineBOffset(LinesRBegin(), LinesREnd(), aWM, aBaselineGroup,
aExportContext);
}
nscoord nsBlockFrame::GetCaretBaseline() const {
const auto wm = GetWritingMode();
if (!mLines.empty()) {
ConstLineIterator line = LinesBegin();
if (!line->IsEmpty()) {
if (line->IsBlock()) {
return GetLogicalUsedBorderAndPadding(wm).BStart(wm) +
line->mFirstChild->GetCaretBaseline();
}
return line->BStart() + line->GetLogicalAscent();
}
}
return GetFontMetricsDerivedCaretBaseline(ContentBSize(wm));
}
/////////////////////////////////////////////////////////////////////////////
// Child frame enumeration
const nsFrameList& nsBlockFrame::GetChildList(ChildListID aListID) const {
switch (aListID) {
case FrameChildListID::Principal:
return mFrames;
case FrameChildListID::Overflow: {
FrameLines* overflowLines = GetOverflowLines();
return overflowLines ? overflowLines->mFrames : nsFrameList::EmptyList();
}
case FrameChildListID::OverflowOutOfFlow: {
const nsFrameList* list = GetOverflowOutOfFlows();
return list ? *list : nsFrameList::EmptyList();
}
case FrameChildListID::Float: {
const nsFrameList* list = GetFloats();
return list ? *list : nsFrameList::EmptyList();
}
case FrameChildListID::PushedFloats: {
const nsFrameList* list = GetPushedFloats();
return list ? *list : nsFrameList::EmptyList();
}
case FrameChildListID::Bullet: {
const nsFrameList* list = GetOutsideMarkerList();
return list ? *list : nsFrameList::EmptyList();
}
default:
return nsContainerFrame::GetChildList(aListID);
}
}
void nsBlockFrame::GetChildLists(nsTArray<ChildList>* aLists) const {
nsContainerFrame::GetChildLists(aLists);
FrameLines* overflowLines = GetOverflowLines();
if (overflowLines) {
overflowLines->mFrames.AppendIfNonempty(aLists, FrameChildListID::Overflow);
}
if (const nsFrameList* list = GetOverflowOutOfFlows()) {
list->AppendIfNonempty(aLists, FrameChildListID::OverflowOutOfFlow);
}
if (const nsFrameList* list = GetOutsideMarkerList()) {
list->AppendIfNonempty(aLists, FrameChildListID::Bullet);
}
if (const nsFrameList* list = GetFloats()) {
list->AppendIfNonempty(aLists, FrameChildListID::Float);
}
if (const nsFrameList* list = GetPushedFloats()) {
list->AppendIfNonempty(aLists, FrameChildListID::PushedFloats);
}
}
/* virtual */
bool nsBlockFrame::IsFloatContainingBlock() const { return true; }
/**
* Remove the first line from aFromLines and adjust the associated frame list
* aFromFrames accordingly. The removed line is assigned to *aOutLine and
* a frame list with its frames is assigned to *aOutFrames, i.e. the frames
* that were extracted from the head of aFromFrames.
* aFromLines must contain at least one line, the line may be empty.
* @return true if aFromLines becomes empty
*/
static bool RemoveFirstLine(nsLineList& aFromLines, nsFrameList& aFromFrames,
nsLineBox** aOutLine, nsFrameList* aOutFrames) {
LineListIterator removedLine = aFromLines.begin();
*aOutLine = removedLine;
LineListIterator next = aFromLines.erase(removedLine);
bool isLastLine = next == aFromLines.end();
nsIFrame* firstFrameInNextLine = isLastLine ? nullptr : next->mFirstChild;
*aOutFrames = aFromFrames.TakeFramesBefore(firstFrameInNextLine);
return isLastLine;
}
//////////////////////////////////////////////////////////////////////
// Reflow methods
/* virtual */
void nsBlockFrame::MarkIntrinsicISizesDirty() {
nsBlockFrame* dirtyBlock = static_cast<nsBlockFrame*>(FirstContinuation());
dirtyBlock->mCachedIntrinsics.Clear();
if (!HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION)) {
for (nsIFrame* frame = dirtyBlock; frame;
frame = frame->GetNextContinuation()) {
frame->AddStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION);
}
}
nsContainerFrame::MarkIntrinsicISizesDirty();
}
void nsBlockFrame::CheckIntrinsicCacheAgainstShrinkWrapState() {
nsPresContext* presContext = PresContext();
if (!nsLayoutUtils::FontSizeInflationEnabled(presContext)) {
return;
}
bool inflationEnabled = !presContext->mInflationDisabledForShrinkWrap;
if (inflationEnabled != HasAnyStateBits(NS_BLOCK_INTRINSICS_INFLATED)) {
mCachedIntrinsics.Clear();
AddOrRemoveStateBits(NS_BLOCK_INTRINSICS_INFLATED, inflationEnabled);
}
}
// Whether this line is indented by the text-indent amount.
bool nsBlockFrame::TextIndentAppliesTo(const LineIterator& aLine) const {
const auto& textIndent = StyleText()->mTextIndent;
bool isFirstLineOrAfterHardBreak = [&] {
if (aLine != LinesBegin()) {
// If not the first line of the block, but 'each-line' is in effect,
// check if the previous line was not wrapped.
return textIndent.each_line && !aLine.prev()->IsLineWrapped();
}
if (nsBlockFrame* prevBlock = do_QueryFrame(GetPrevInFlow())) {
// There's a prev-in-flow, so this only counts as a first-line if
// 'each-line' and the prev-in-flow's last line was not wrapped.
return textIndent.each_line &&
(prevBlock->Lines().empty() ||
!prevBlock->LinesEnd().prev()->IsLineWrapped());
}
return true;
}();
// The 'hanging' option inverts which lines are/aren't indented.
return isFirstLineOrAfterHardBreak != textIndent.hanging;
}
nscoord nsBlockFrame::IntrinsicISize(const IntrinsicSizeInput& aInput,
IntrinsicISizeType aType) {
nsIFrame* firstCont = FirstContinuation();
if (firstCont != this) {
return firstCont->IntrinsicISize(aInput, aType);
}
CheckIntrinsicCacheAgainstShrinkWrapState();
return mCachedIntrinsics.GetOrSet(*this, aType, aInput, [&] {
return aType == IntrinsicISizeType::MinISize ? MinISize(aInput)
: PrefISize(aInput);
});
}
/* virtual */
nscoord nsBlockFrame::MinISize(const IntrinsicSizeInput& aInput) {
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
return *containISize;
}
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": MinISize\n");
}
AutoNoisyIndenter indenter(gNoisyIntrinsic);
#endif
for (nsBlockFrame* curFrame = this; curFrame;
curFrame = static_cast<nsBlockFrame*>(curFrame->GetNextContinuation())) {
curFrame->LazyMarkLinesDirty();
}
if (HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION) &&
PresContext()->BidiEnabled()) {
ResolveBidi();
}
const bool whiteSpaceCanWrap = StyleText()->WhiteSpaceCanWrapStyle();
InlineMinISizeData data;
for (nsBlockFrame* curFrame = this; curFrame;
curFrame = static_cast<nsBlockFrame*>(curFrame->GetNextContinuation())) {
for (LineIterator line = curFrame->LinesBegin(),
line_end = curFrame->LinesEnd();
line != line_end; ++line) {
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
printf("line (%s%s)\n", line->IsBlock() ? "block" : "inline",
line->IsEmpty() ? ", empty" : "");
}
AutoNoisyIndenter lineindent(gNoisyIntrinsic);
#endif
if (line->IsBlock()) {
data.ForceBreak();
nsIFrame* kid = line->mFirstChild;
const IntrinsicSizeInput kidInput(aInput, kid->GetWritingMode(),
GetWritingMode());
data.mCurrentLine = nsLayoutUtils::IntrinsicForContainer(
kidInput.mContext, kid, IntrinsicISizeType::MinISize,
kidInput.mPercentageBasisForChildren);
data.ForceBreak();
} else {
if (!curFrame->GetPrevContinuation() && TextIndentAppliesTo(line)) {
data.mCurrentLine += StyleText()->mTextIndent.length.Resolve(0);
}
data.mLine = &line;
data.SetLineContainer(curFrame);
nsIFrame* kid = line->mFirstChild;
for (int32_t i = 0, i_end = line->GetChildCount(); i != i_end;
++i, kid = kid->GetNextSibling()) {
const IntrinsicSizeInput kidInput(aInput, kid->GetWritingMode(),
GetWritingMode());
kid->AddInlineMinISize(kidInput, &data);
if (whiteSpaceCanWrap && data.mTrailingWhitespace) {
data.OptionallyBreak();
}
}
}
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
printf("min: [prevLines=%d currentLine=%d]\n", data.mPrevLines,
data.mCurrentLine);
}
#endif
}
}
data.ForceBreak();
return data.mPrevLines;
}
/* virtual */
nscoord nsBlockFrame::PrefISize(const IntrinsicSizeInput& aInput) {
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
return *containISize;
}
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": PrefISize\n");
}
AutoNoisyIndenter indenter(gNoisyIntrinsic);
#endif
for (nsBlockFrame* curFrame = this; curFrame;
curFrame = static_cast<nsBlockFrame*>(curFrame->GetNextContinuation())) {
curFrame->LazyMarkLinesDirty();
}
if (HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION) &&
PresContext()->BidiEnabled()) {
ResolveBidi();
}
InlinePrefISizeData data;
for (nsBlockFrame* curFrame = this; curFrame;
curFrame = static_cast<nsBlockFrame*>(curFrame->GetNextContinuation())) {
for (LineIterator line = curFrame->LinesBegin(),
line_end = curFrame->LinesEnd();
line != line_end; ++line) {
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
printf("line (%s%s)\n", line->IsBlock() ? "block" : "inline",
line->IsEmpty() ? ", empty" : "");
}
AutoNoisyIndenter lineindent(gNoisyIntrinsic);
#endif
if (line->IsBlock()) {
nsIFrame* kid = line->mFirstChild;
UsedClear clearType;
if (!data.mLineIsEmpty || BlockCanIntersectFloats(kid)) {
clearType = UsedClear::Both;
} else {
clearType = kid->StyleDisplay()->UsedClear(GetWritingMode());
}
data.ForceBreak(clearType);
const IntrinsicSizeInput kidInput(aInput, kid->GetWritingMode(),
GetWritingMode());
data.mCurrentLine = nsLayoutUtils::IntrinsicForContainer(
kidInput.mContext, kid, IntrinsicISizeType::PrefISize,
kidInput.mPercentageBasisForChildren);
data.ForceBreak();
} else {
if (!curFrame->GetPrevContinuation() && TextIndentAppliesTo(line)) {
nscoord indent = StyleText()->mTextIndent.length.Resolve(0);
data.mCurrentLine += indent;
// XXXmats should the test below be indent > 0?
if (indent != nscoord(0)) {
data.mLineIsEmpty = false;
}
}
data.mLine = &line;
data.SetLineContainer(curFrame);
nsIFrame* kid = line->mFirstChild;
for (int32_t i = 0, i_end = line->GetChildCount(); i != i_end;
++i, kid = kid->GetNextSibling()) {
const IntrinsicSizeInput kidInput(aInput, kid->GetWritingMode(),
GetWritingMode());
kid->AddInlinePrefISize(kidInput, &data);
}
}
#ifdef DEBUG
if (gNoisyIntrinsic) {
IndentBy(stdout, gNoiseIndent);
printf("pref: [prevLines=%d currentLine=%d]\n", data.mPrevLines,
data.mCurrentLine);
}
#endif
}
}
data.ForceBreak();
return data.mPrevLines;
}
nsRect nsBlockFrame::ComputeTightBounds(DrawTarget* aDrawTarget) const {
// be conservative
if (Style()->HasTextDecorationLines()) {
return InkOverflowRect();
}
return ComputeSimpleTightBounds(aDrawTarget);
}
/* virtual */
nsresult nsBlockFrame::GetPrefWidthTightBounds(gfxContext* aRenderingContext,
nscoord* aX, nscoord* aXMost) {
nsIFrame* firstInFlow = FirstContinuation();
if (firstInFlow != this) {
return firstInFlow->GetPrefWidthTightBounds(aRenderingContext, aX, aXMost);
}
*aX = 0;
*aXMost = 0;
nsresult rv;
InlinePrefISizeData data;
for (nsBlockFrame* curFrame = this; curFrame;
curFrame = static_cast<nsBlockFrame*>(curFrame->GetNextContinuation())) {
for (LineIterator line = curFrame->LinesBegin(),
line_end = curFrame->LinesEnd();
line != line_end; ++line) {
nscoord childX, childXMost;
if (line->IsBlock()) {
data.ForceBreak();
rv = line->mFirstChild->GetPrefWidthTightBounds(aRenderingContext,
&childX, &childXMost);
NS_ENSURE_SUCCESS(rv, rv);
*aX = std::min(*aX, childX);
*aXMost = std::max(*aXMost, childXMost);
} else {
if (!curFrame->GetPrevContinuation() && TextIndentAppliesTo(line)) {
data.mCurrentLine += StyleText()->mTextIndent.length.Resolve(0);
}
data.mLine = &line;
data.SetLineContainer(curFrame);
nsIFrame* kid = line->mFirstChild;
// Per comment in nsIFrame::GetPrefWidthTightBounds(), the function is
// only implemented for nsBlockFrame and nsTextFrame and is used to
// determine the intrinsic inline sizes of MathML token elements. These
// elements shouldn't have percentage block sizes that require a
// percentage basis for resolution.
const IntrinsicSizeInput kidInput(aRenderingContext, Nothing(),
Nothing());
for (int32_t i = 0, i_end = line->GetChildCount(); i != i_end;
++i, kid = kid->GetNextSibling()) {
rv = kid->GetPrefWidthTightBounds(aRenderingContext, &childX,
&childXMost);
NS_ENSURE_SUCCESS(rv, rv);
*aX = std::min(*aX, data.mCurrentLine + childX);
*aXMost = std::max(*aXMost, data.mCurrentLine + childXMost);
kid->AddInlinePrefISize(kidInput, &data);
}
}
}
}
data.ForceBreak();
return NS_OK;
}
/**
* Return whether aNewAvailableSpace is smaller *on either side*
* (inline-start or inline-end) than aOldAvailableSpace, so that we know
* if we need to redo layout on an line, replaced block, or block
* formatting context, because its height (which we used to compute
* aNewAvailableSpace) caused it to intersect additional floats.
*/
static bool AvailableSpaceShrunk(WritingMode aWM,
const LogicalRect& aOldAvailableSpace,
const LogicalRect& aNewAvailableSpace,
bool aCanGrow /* debug-only */) {
if (aNewAvailableSpace.ISize(aWM) == 0) {
// Positions are not significant if the inline size is zero.
return aOldAvailableSpace.ISize(aWM) != 0;
}
if (aCanGrow) {
NS_ASSERTION(
aNewAvailableSpace.IStart(aWM) <= aOldAvailableSpace.IStart(aWM) ||
aNewAvailableSpace.IEnd(aWM) <= aOldAvailableSpace.IEnd(aWM),
"available space should not shrink on the start side and "
"grow on the end side");
NS_ASSERTION(
aNewAvailableSpace.IStart(aWM) >= aOldAvailableSpace.IStart(aWM) ||
aNewAvailableSpace.IEnd(aWM) >= aOldAvailableSpace.IEnd(aWM),
"available space should not grow on the start side and "
"shrink on the end side");
} else {
NS_ASSERTION(
aOldAvailableSpace.IStart(aWM) <= aNewAvailableSpace.IStart(aWM) &&
aOldAvailableSpace.IEnd(aWM) >= aNewAvailableSpace.IEnd(aWM),
"available space should never grow");
}
// Have we shrunk on either side?
return aNewAvailableSpace.IStart(aWM) > aOldAvailableSpace.IStart(aWM) ||
aNewAvailableSpace.IEnd(aWM) < aOldAvailableSpace.IEnd(aWM);
}
static LogicalSize CalculateContainingBlockSizeForAbsolutes(
WritingMode aWM, const ReflowInput& aReflowInput, LogicalSize aFrameSize) {
// The issue here is that for a 'height' of 'auto' the reflow input
// code won't know how to calculate the containing block height
// because it's calculated bottom up. So we use our own computed
// size as the dimensions.
nsIFrame* frame = aReflowInput.mFrame;
LogicalSize cbSize(aFrameSize);
// Containing block is relative to the padding edge
const LogicalMargin border = aReflowInput.ComputedLogicalBorder(aWM);
cbSize.ISize(aWM) -= border.IStartEnd(aWM);
cbSize.BSize(aWM) -= border.BStartEnd(aWM);
if (frame->GetParent()->GetContent() != frame->GetContent() ||
frame->GetParent()->IsCanvasFrame()) {
return cbSize;
}
// We are a wrapped frame for the content (and the wrapper is not the
// canvas frame, whose size is not meaningful here).
// Use the container's dimensions, if they have been precomputed.
// XXX This is a hack! We really should be waiting until the outermost
// frame is fully reflowed and using the resulting dimensions, even
// if they're intrinsic.
// In fact we should be attaching absolute children to the outermost
// frame and not always sticking them in block frames.
// First, find the reflow input for the outermost frame for this content.
const ReflowInput* lastRI = &aReflowInput;
DebugOnly<const ReflowInput*> lastButOneRI = &aReflowInput;
while (lastRI->mParentReflowInput &&
lastRI->mParentReflowInput->mFrame->GetContent() ==
frame->GetContent()) {
lastButOneRI = lastRI;
lastRI = lastRI->mParentReflowInput;
}
if (lastRI == &aReflowInput) {
return cbSize;
}
// For scroll containers, we can just use cbSize (which is the padding-box
// size of the scrolled-content frame).
if (lastRI->mFrame->IsScrollContainerOrSubclass()) {
// Assert that we're not missing any frames between the abspos containing
// block and the scroll container.
// the parent.
MOZ_ASSERT(lastButOneRI == &aReflowInput);
return cbSize;
}
// Same for fieldsets, where the inner anonymous frame has the correct padding
// area with the legend taken into account.
if (lastRI->mFrame->IsFieldSetFrame()) {
return cbSize;
}
// We found a reflow input for the outermost wrapping frame, so use
// its computed metrics if available, converted to our writing mode
const LogicalSize lastRISize = lastRI->ComputedSize(aWM);
const LogicalMargin lastRIPadding = lastRI->ComputedLogicalPadding(aWM);
if (lastRISize.ISize(aWM) != NS_UNCONSTRAINEDSIZE) {
cbSize.ISize(aWM) =
std::max(0, lastRISize.ISize(aWM) + lastRIPadding.IStartEnd(aWM));
}
if (lastRISize.BSize(aWM) != NS_UNCONSTRAINEDSIZE) {
cbSize.BSize(aWM) =
std::max(0, lastRISize.BSize(aWM) + lastRIPadding.BStartEnd(aWM));
}
return cbSize;
}
/**
* Returns aFrame if it is an in-flow, non-BFC block frame, and null otherwise.
*
* This is used to determine whether to recurse into aFrame when applying
* -webkit-line-clamp.
*/
static const nsBlockFrame* GetAsLineClampDescendant(const nsIFrame* aFrame) {
const nsBlockFrame* block = do_QueryFrame(aFrame);
if (!block || block->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW | NS_BLOCK_BFC)) {
return nullptr;
}
return block;
}
static nsBlockFrame* GetAsLineClampDescendant(nsIFrame* aFrame) {
return const_cast<nsBlockFrame*>(
GetAsLineClampDescendant(const_cast<const nsIFrame*>(aFrame)));
}
static bool IsLineClampRoot(const nsBlockFrame* aFrame) {
if (!aFrame->StyleDisplay()->mWebkitLineClamp) {
return false;
}
if (!aFrame->HasAnyStateBits(NS_BLOCK_BFC)) {
return false;
}
if (StaticPrefs::layout_css_webkit_line_clamp_block_enabled() ||
aFrame->PresContext()->Document()->ChromeRulesEnabled()) {
return true;
}
// For now, -webkit-box is the only thing allowed to be a line-clamp root.
// Ideally we'd just make this work everywhere, but for now we're carrying
// this forward as a limitation on the legacy -webkit-line-clamp feature,
// since relaxing this limitation might create webcompat trouble.
auto origDisplay = [&] {
if (aFrame->Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
// If we're the anonymous block inside the scroll frame, we need to look
// at the original display of our parent frame.
MOZ_ASSERT(aFrame->GetParent());
const auto& parentDisp = *aFrame->GetParent()->StyleDisplay();
MOZ_ASSERT(parentDisp.mWebkitLineClamp ==
aFrame->StyleDisplay()->mWebkitLineClamp,
":-moz-scrolled-content should inherit -webkit-line-clamp, "
"via rule in UA stylesheet");
return parentDisp.mOriginalDisplay;
}
return aFrame->StyleDisplay()->mOriginalDisplay;
}();
return origDisplay.Inside() == StyleDisplayInside::WebkitBox;
}
nsBlockFrame* nsBlockFrame::GetLineClampRoot() const {
if (IsLineClampRoot(this)) {
return const_cast<nsBlockFrame*>(this);
}
const nsBlockFrame* cur = this;
while (GetAsLineClampDescendant(cur)) {
cur = do_QueryFrame(cur->GetParent());
if (!cur) {
break;
}
if (IsLineClampRoot(cur)) {
return const_cast<nsBlockFrame*>(cur);
}
}
return nullptr;
}
bool nsBlockFrame::MaybeHasFloats() const {
if (HasFloats()) {
return true;
}
if (HasPushedFloats()) {
return true;
}
// For the OverflowOutOfFlowsProperty I think we do enforce that, but it's
// a mix of out-of-flow frames, so that's why the method name has "Maybe".
return HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS);
}
/**
* Iterator over all descendant inline line boxes, except for those that are
* under an independent formatting context.
*/
class MOZ_RAII LineClampLineIterator {
public:
LineClampLineIterator(nsBlockFrame* aFrame, const nsBlockFrame* aStopAtFrame)
: mCur(aFrame->LinesBegin()),
mEnd(aFrame->LinesEnd()),
mCurrentFrame(mCur == mEnd ? nullptr : aFrame),
mStopAtFrame(aStopAtFrame) {
if (mCur != mEnd && !mCur->IsInline()) {
Advance();
}
}
nsLineBox* GetCurrentLine() { return mCurrentFrame ? mCur.get() : nullptr; }
nsBlockFrame* GetCurrentFrame() { return mCurrentFrame; }
// Advances the iterator to the next line line.
//
// Next() shouldn't be called once the iterator is at the end, which can be
// checked for by GetCurrentLine() or GetCurrentFrame() returning null.
void Next() {
MOZ_ASSERT(mCur != mEnd && mCurrentFrame,
"Don't call Next() when the iterator is at the end");
++mCur;
Advance();
}
private:
void Advance() {
for (;;) {
if (mCur == mEnd) {
// Reached the end of the current block. Pop the parent off the
// stack; if there isn't one, then we've reached the end.
if (mStack.IsEmpty()) {
mCurrentFrame = nullptr;
break;
}
if (mCurrentFrame == mStopAtFrame) {
mStack.Clear();
mCurrentFrame = nullptr;
break;
}
auto entry = mStack.PopLastElement();
mCurrentFrame = entry.first;
mCur = entry.second;
mEnd = mCurrentFrame->LinesEnd();
} else if (mCur->IsBlock()) {
if (nsBlockFrame* child = GetAsLineClampDescendant(mCur->mFirstChild)) {
nsBlockFrame::LineIterator next = mCur;
++next;
mStack.AppendElement(std::make_pair(mCurrentFrame, next));
mCur = child->LinesBegin();
mEnd = child->LinesEnd();
mCurrentFrame = child;
} else {
// Some kind of frame we shouldn't descend into.
++mCur;
}
} else {
MOZ_ASSERT(mCur->IsInline());
break;
}
}
}
// The current line within the current block.
//
// When this is equal to mEnd, the iterator is at its end, and mCurrentFrame
// is set to null.
nsBlockFrame::LineIterator mCur;
// The iterator end for the current block.
nsBlockFrame::LineIterator mEnd;
// The current block.
nsBlockFrame* mCurrentFrame;
// The block past which we can't look at line-clamp.
const nsBlockFrame* mStopAtFrame;
// Stack of mCurrentFrame and mEnd values that we push and pop as we enter and
// exist blocks.
AutoTArray<std::pair<nsBlockFrame*, nsBlockFrame::LineIterator>, 8> mStack;
};
static bool ClearLineClampEllipsis(nsBlockFrame* aFrame) {
if (aFrame->HasLineClampEllipsis()) {
MOZ_ASSERT(!aFrame->HasLineClampEllipsisDescendant());
aFrame->SetHasLineClampEllipsis(false);
for (auto& line : aFrame->Lines()) {
if (line.HasLineClampEllipsis()) {
line.ClearHasLineClampEllipsis();
break;
}
}
return true;
}
if (aFrame->HasLineClampEllipsisDescendant()) {
aFrame->SetHasLineClampEllipsisDescendant(false);
for (nsIFrame* f : aFrame->PrincipalChildList()) {
if (nsBlockFrame* child = GetAsLineClampDescendant(f)) {
if (ClearLineClampEllipsis(child)) {
return true;
}
}
}
}
return false;
}
void nsBlockFrame::ClearLineClampEllipsis() { ::ClearLineClampEllipsis(this); }
void nsBlockFrame::Reflow(nsPresContext* aPresContext, ReflowOutput& aMetrics,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
FinishAndStoreOverflow(&aMetrics, aReflowInput.mStyleDisplay);
return;
}
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsBlockFrame");
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
#ifdef DEBUG
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": begin reflow availSize=%d,%d computedSize=%d,%d\n",
aReflowInput.AvailableISize(), aReflowInput.AvailableBSize(),
aReflowInput.ComputedISize(), aReflowInput.ComputedBSize());
}
AutoNoisyIndenter indent(gNoisy);
PRTime start = 0; // Initialize these variablies to silence the compiler.
int32_t ctc = 0; // We only use these if they are set (gLameReflowMetrics).
if (gLameReflowMetrics) {
start = PR_Now();
ctc = nsLineBox::GetCtorCount();
}
#endif
// ColumnSetWrapper's children depend on ColumnSetWrapper's block-size or
// max-block-size because both affect the children's available block-size.
if (IsColumnSetWrapperFrame()) {
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
Maybe<nscoord> restoreReflowInputAvailBSize;
auto MaybeRestore = MakeScopeExit([&] {
if (MOZ_UNLIKELY(restoreReflowInputAvailBSize)) {
const_cast<ReflowInput&>(aReflowInput)
.SetAvailableBSize(*restoreReflowInputAvailBSize);
}
});
WritingMode wm = aReflowInput.GetWritingMode();
const nscoord consumedBSize = CalcAndCacheConsumedBSize();
const nscoord effectiveContentBoxBSize =
GetEffectiveComputedBSize(aReflowInput, consumedBSize);
// If we have non-auto block size, we're clipping our kids and we fit,
// make sure our kids fit too.
if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE &&
ShouldApplyOverflowClipping(aReflowInput.mStyleDisplay)
.contains(wm.PhysicalAxis(LogicalAxis::Block))) {
LogicalMargin blockDirExtras =
aReflowInput.ComputedLogicalBorderPadding(wm);
if (GetLogicalSkipSides().BStart()) {
blockDirExtras.BStart(wm) = 0;
} else {
// Block-end margin never causes us to create continuations, so we
// don't need to worry about whether it fits in its entirety.
blockDirExtras.BStart(wm) +=
aReflowInput.ComputedLogicalMargin(wm).BStart(wm);
}
if (effectiveContentBoxBSize + blockDirExtras.BStartEnd(wm) <=
aReflowInput.AvailableBSize()) {
restoreReflowInputAvailBSize.emplace(aReflowInput.AvailableBSize());
const_cast<ReflowInput&>(aReflowInput)
.SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
}
}
if (IsFrameTreeTooDeep(aReflowInput, aMetrics, aStatus)) {
return;
}
// OK, some lines may be reflowed. Blow away any saved line cursor
// because we may invalidate the nondecreasing
// overflowArea.InkOverflow().y/yMost invariant, and we may even
// delete the line with the line cursor.
ClearLineCursors();
// See comment below about oldSize. Use *only* for the
// abs-pos-containing-block-size-change optimization!
nsSize oldSize = GetSize();
// Should we create a float manager?
nsAutoFloatManager autoFloatManager(const_cast<ReflowInput&>(aReflowInput));
// XXXldb If we start storing the float manager in the frame rather
// than keeping it around only during reflow then we should create it
// only when there are actually floats to manage. Otherwise things
// like tables will gain significant bloat.
//
// if we're a reflow root and no float manager is provided by the caller
// in aReflowInput, we'd normally expect the block to be a BFC and so
// BlockNeedsFloatManager will return true. But sometimes the block may
// have lost its BFC-ness since it was recorded as a dirty reflow root
// but before the reflow actually happens. Creating a float manager here
// avoids crashing, but may not be entirely correct in such a case.
bool needFloatManager =
!aReflowInput.mFloatManager || nsBlockFrame::BlockNeedsFloatManager(this);
if (needFloatManager) {
autoFloatManager.CreateFloatManager(aPresContext);
}
if (HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION) &&
PresContext()->BidiEnabled()) {
static_cast<nsBlockFrame*>(FirstContinuation())->ResolveBidi();
}
// Whether to apply text-wrap: balance behavior.
bool tryBalance =
StyleText()->mTextWrapStyle == StyleTextWrapStyle::Balance &&
!GetPrevContinuation();
// Struct used to hold the "target" number of lines or clamp position to
// maintain when doing text-wrap: balance.
struct BalanceTarget {
// If line-clamp is in effect, mContent and mOffset indicate the starting
// position of the first line after the clamp limit, and mBlockCoord is the
// block-axis offset of its position.
// If line-clamp is not in use, mContent is null, mOffset is the total
// number of lines that the block must contain, and mBlockCoord is its end
// edge in the block direction.
nsIContent* mContent = nullptr;
int32_t mOffset = -1;
nscoord mBlockCoord = 0;
bool operator==(const BalanceTarget& aOther) const {
return mContent == aOther.mContent && mOffset == aOther.mOffset &&
mBlockCoord == aOther.mBlockCoord;
}
bool operator!=(const BalanceTarget& aOther) const {
return !(*this == aOther);
}
};
BalanceTarget balanceTarget;
// Helpers for text-wrap: balance implementation:
// Count the number of lines in the mLines list, but return -1 (to suppress
// balancing) instead if the count is going to exceed aLimit, or if we
// encounter a block.
auto countLinesUpTo = [&](int32_t aLimit) -> int32_t {
int32_t n = 0;
for (auto iter = mLines.begin(); iter != mLines.end(); ++iter) {
if (++n > aLimit || iter->IsBlock()) {
return -1;
}
}
return n;
};
// Return a BalanceTarget record representing the position at which line-clamp
// will take effect for the current line list. Only to be used when there are
// enough lines that the clamp will apply.
auto getClampPosition = [&](uint32_t aClampCount) -> BalanceTarget {
MOZ_ASSERT(aClampCount < mLines.size());
auto iter = mLines.begin();
for (uint32_t i = 0; i < aClampCount; i++) {
++iter;
}
nsIFrame* firstChild = iter->mFirstChild;
if (!firstChild) {
return BalanceTarget{};
}
nsIContent* content = firstChild->GetContent();
if (!content) {
return BalanceTarget{};
}
int32_t offset = 0;
if (firstChild->IsTextFrame()) {
auto* textFrame = static_cast<nsTextFrame*>(firstChild);
offset = textFrame->GetContentOffset();
}
return BalanceTarget{content, offset, iter.get()->BStart()};
};
// "balancing" is implemented by shortening the effective inline-size of the
// lines, so that content will tend to be pushed down to fill later lines of
// the block. `balanceInset` is the current amount of "inset" to apply, and
// `balanceStep` is the increment to adjust it by for the next iteration.
nscoord balanceStep = 0;
// text-wrap: balance loop, executed only once if balancing is not required.
nsReflowStatus reflowStatus;
TrialReflowState trialState(consumedBSize, effectiveContentBoxBSize,
needFloatManager);
while (true) {
// Save the initial floatManager state for repeated trial reflows.
// We'll restore (and re-save) the initial state each time we repeat the
// reflow.
nsFloatManager::SavedState floatManagerState;
aReflowInput.mFloatManager->PushState(&floatManagerState);
aMetrics = ReflowOutput(aMetrics.GetWritingMode());
reflowStatus =
TrialReflow(aPresContext, aMetrics, aReflowInput, trialState);
// Do we need to start a `text-wrap: balance` iteration?
if (tryBalance) {
tryBalance = false;
// Don't try to balance an incomplete block, or if we had to use an
// overflow-wrap break position in the initial reflow.
if (!reflowStatus.IsFullyComplete() || trialState.mUsedOverflowWrap) {
break;
}
balanceTarget.mOffset =
countLinesUpTo(StaticPrefs::layout_css_text_wrap_balance_limit());
if (balanceTarget.mOffset < 2) {
// If there are less than 2 lines, or the number exceeds the limit,
// no balancing is needed; just break from the balance loop.
break;
}
balanceTarget.mBlockCoord = mLines.back()->BEnd();
// Initialize the amount of inset to try, and the iteration step size.
balanceStep = aReflowInput.ComputedISize() / balanceTarget.mOffset;
trialState.ResetForBalance(balanceStep);
balanceStep /= 2;
// If -webkit-line-clamp is in effect, then we need to maintain the
// content location at which clamping occurs, rather than the total
// number of lines in the block.
if (StaticPrefs::layout_css_text_wrap_balance_after_clamp_enabled() &&
IsLineClampRoot(this)) {
uint32_t lineClampCount = aReflowInput.mStyleDisplay->mWebkitLineClamp;
if (uint32_t(balanceTarget.mOffset) > lineClampCount) {
auto t = getClampPosition(lineClampCount);
if (t.mContent) {
balanceTarget = t;
}
}
}
// Restore initial floatManager state for a new trial with updated inset.
aReflowInput.mFloatManager->PopState(&floatManagerState);
continue;
}
// Helper to determine whether the current trial succeeded (i.e. was able
// to fit the content into the expected number of lines).
auto trialSucceeded = [&]() -> bool {
if (!reflowStatus.IsFullyComplete() || trialState.mUsedOverflowWrap) {
return false;
}
if (balanceTarget.mContent) {
auto t = getClampPosition(aReflowInput.mStyleDisplay->mWebkitLineClamp);
return t == balanceTarget;
}
int32_t numLines =
countLinesUpTo(StaticPrefs::layout_css_text_wrap_balance_limit());
return numLines == balanceTarget.mOffset &&
mLines.back()->BEnd() == balanceTarget.mBlockCoord;
};
// If we're in the process of a balance operation, check whether we've
// inset by too much and either increase or reduce the inset for the next
// iteration.
if (balanceStep > 0) {
if (trialSucceeded()) {
trialState.ResetForBalance(balanceStep);
} else {
trialState.ResetForBalance(-balanceStep);
}
balanceStep /= 2;
aReflowInput.mFloatManager->PopState(&floatManagerState);
continue;
}
// If we were attempting to balance, check whether the final iteration was
// successful, and if not, back up by one step.
if (balanceTarget.mOffset >= 0) {
if (!trialState.mInset || trialSucceeded()) {
break;
}
trialState.ResetForBalance(-1);
aReflowInput.mFloatManager->PopState(&floatManagerState);
continue;
}
// If we reach here, no balancing was required, so just exit; we don't
// reset (pop) the floatManager state because this is the reflow we're
// going to keep. So the saved state is just dropped.
break;
} // End of text-wrap: balance retry loop
// If the block direction is right-to-left, we need to update the bounds of
// lines that were placed relative to mContainerSize during reflow, as
// we typically do not know the true container size until we've reflowed all
// its children. So we use a dummy mContainerSize during reflow (see
// BlockReflowState's constructor) and then fix up the positions of the
// lines here, once the final block size is known.
//
// Note that writing-mode:vertical-rl is the only case where the block
// logical direction progresses in a negative physical direction, and
// therefore block-dir coordinate conversion depends on knowing the width
// of the coordinate space in order to translate between the logical and
// physical origins.
if (aReflowInput.GetWritingMode().IsVerticalRL()) {
nsSize containerSize = aMetrics.PhysicalSize();
nscoord deltaX = containerSize.width - trialState.mContainerWidth;
if (deltaX != 0) {
// We compute our lines and markers' overflow areas later in
// ComputeOverflowAreas(), so we don't need to adjust their overflow areas
// here.
const nsPoint physicalDelta(deltaX, 0);
for (auto& line : Lines()) {
UpdateLineContainerSize(&line, containerSize);
}
trialState.mFcBounds.Clear();
if (nsFrameList* floats = GetFloats()) {
for (nsIFrame* f : *floats) {
f->MovePositionBy(physicalDelta);
ConsiderChildOverflow(trialState.mFcBounds, f);
}
}
if (nsFrameList* markerList = GetOutsideMarkerList()) {
for (nsIFrame* f : *markerList) {
f->MovePositionBy(physicalDelta);
}
}
if (nsFrameList* overflowContainers = GetOverflowContainers()) {
trialState.mOcBounds.Clear();
for (nsIFrame* f : *overflowContainers) {
f->MovePositionBy(physicalDelta);
ConsiderChildOverflow(trialState.mOcBounds, f);
}
}
}
}
aMetrics.SetOverflowAreasToDesiredBounds();
ComputeOverflowAreas(aMetrics.mOverflowAreas, aReflowInput.mStyleDisplay);
// Factor overflow container child bounds into the overflow area
aMetrics.mOverflowAreas.UnionWith(trialState.mOcBounds);
// Factor pushed float child bounds into the overflow area
aMetrics.mOverflowAreas.UnionWith(trialState.mFcBounds);
// Let the absolutely positioned container reflow any absolutely positioned
// child frames that need to be reflowed, e.g., elements with a percentage
// based width/height
// We want to do this under either of two conditions:
// 1. If we didn't do the incremental reflow above.
// 2. If our size changed.
// Even though it's the padding edge that's the containing block, we
// can use our rect (the border edge) since if the border style
// changed, the reflow would have been targeted at us so we'd satisfy
// condition 1.
// XXX checking oldSize is bogus, there are various reasons we might have
// reflowed but our size might not have been changed to what we
// asked for (e.g., we ended up being pushed to a new page)
// When WillReflowAgainForClearance is true, we will reflow again without
// resetting the size. Because of this, we must not reflow our abs-pos
// children in that situation --- what we think is our "new size" will not be
// our real new size. This also happens to be more efficient.
WritingMode parentWM = aMetrics.GetWritingMode();
if (HasAbsolutelyPositionedChildren()) {
nsAbsoluteContainingBlock* absoluteContainer = GetAbsoluteContainingBlock();
bool haveInterrupt = aPresContext->HasPendingInterrupt();
if (aReflowInput.WillReflowAgainForClearance() || haveInterrupt) {
// Make sure that when we reflow again we'll actually reflow all the abs
// pos frames that might conceivably depend on our size (or all of them,
// if we're dirty right now and interrupted; in that case we also need
// to mark them all with NS_FRAME_IS_DIRTY). Sadly, we can't do much
// better than that, because we don't really know what our size will be,
// and it might in fact not change on the followup reflow!
if (haveInterrupt && HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
absoluteContainer->MarkAllFramesDirty();
} else {
absoluteContainer->MarkSizeDependentFramesDirty();
}
if (haveInterrupt) {
// We're not going to reflow absolute frames; make sure to account for
// their existing overflow areas, which is usually a side effect of this
// reflow.
//
// TODO(emilio): nsAbsoluteContainingBlock::Reflow already checks for
// interrupt, can we just rely on it and unconditionally take the else
// branch below? That's a bit more subtle / risky, since I don't see
// what would reflow them in that case if they depended on our size.
for (nsIFrame* kid = absoluteContainer->GetChildList().FirstChild();
kid; kid = kid->GetNextSibling()) {
ConsiderChildOverflow(aMetrics.mOverflowAreas, kid);
}
}
} else {
LogicalSize containingBlockSize =
CalculateContainingBlockSizeForAbsolutes(parentWM, aReflowInput,
aMetrics.Size(parentWM));
// Mark frames that depend on changes we just made to this frame as dirty:
// Now we can assume that the padding edge hasn't moved.
// We need to reflow the absolutes if one of them depends on
// its placeholder position, or the containing block size in a
// direction in which the containing block size might have
// changed.
// XXX "width" and "height" in this block will become ISize and BSize
// when nsAbsoluteContainingBlock is logicalized
bool cbWidthChanged = aMetrics.Width() != oldSize.width;
bool isRoot = !GetContent()->GetParent();
// If isRoot and we have auto height, then we are the initial
// containing block and the containing block height is the
// viewport height, which can't change during incremental
// reflow.
bool cbHeightChanged =
!(isRoot && NS_UNCONSTRAINEDSIZE == aReflowInput.ComputedHeight()) &&
aMetrics.Height() != oldSize.height;
nsRect containingBlock(nsPoint(0, 0),
containingBlockSize.GetPhysicalSize(parentWM));
AbsPosReflowFlags flags = AbsPosReflowFlags::ConstrainHeight;
if (cbWidthChanged) {
flags |= AbsPosReflowFlags::CBWidthChanged;
}
if (cbHeightChanged) {
flags |= AbsPosReflowFlags::CBHeightChanged;
}
// Setup the line cursor here to optimize line searching for
// calculating hypothetical position of absolutely-positioned
// frames.
SetupLineCursorForQuery();
absoluteContainer->Reflow(this, aPresContext, aReflowInput, reflowStatus,
containingBlock, flags,
&aMetrics.mOverflowAreas);
}
}
FinishAndStoreOverflow(&aMetrics, aReflowInput.mStyleDisplay);
aStatus = reflowStatus;
#ifdef DEBUG
// Between when we drain pushed floats and when we complete reflow,
// we're allowed to have multiple continuations of the same float on
// our floats list, since a first-in-flow might get pushed to a later
// continuation of its containing block. But it's not permitted
// outside that time.
nsLayoutUtils::AssertNoDuplicateContinuations(
this, GetChildList(FrameChildListID::Float));
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": status=%s metrics=%d,%d carriedMargin=%d",
ToString(aStatus).c_str(), aMetrics.ISize(parentWM),
aMetrics.BSize(parentWM), aMetrics.mCarriedOutBEndMargin.Get());
if (HasOverflowAreas()) {
printf(" overflow-vis={%d,%d,%d,%d}", aMetrics.InkOverflow().x,
aMetrics.InkOverflow().y, aMetrics.InkOverflow().width,
aMetrics.InkOverflow().height);
printf(" overflow-scr={%d,%d,%d,%d}", aMetrics.ScrollableOverflow().x,
aMetrics.ScrollableOverflow().y,
aMetrics.ScrollableOverflow().width,
aMetrics.ScrollableOverflow().height);
}
printf("\n");
}
if (gLameReflowMetrics) {
PRTime end = PR_Now();
int32_t ectc = nsLineBox::GetCtorCount();
int32_t numLines = mLines.size();
if (!numLines) {
numLines = 1;
}
PRTime delta, perLineDelta, lines;
lines = int64_t(numLines);
delta = end - start;
perLineDelta = delta / lines;
ListTag(stdout);
char buf[400];
SprintfLiteral(buf,
": %" PRId64 " elapsed (%" PRId64
" per line) (%d lines; %d new lines)",
delta, perLineDelta, numLines, ectc - ctc);
printf("%s\n", buf);
}
#endif
}
nsReflowStatus nsBlockFrame::TrialReflow(nsPresContext* aPresContext,
ReflowOutput& aMetrics,
const ReflowInput& aReflowInput,
TrialReflowState& aTrialState) {
#ifdef DEBUG
// Between when we drain pushed floats and when we complete reflow,
// we're allowed to have multiple continuations of the same float on
// our floats list, since a first-in-flow might get pushed to a later
// continuation of its containing block. But it's not permitted
// outside that time.
nsLayoutUtils::AssertNoDuplicateContinuations(
this, GetChildList(FrameChildListID::Float));
#endif
// ALWAYS drain overflow. We never want to leave the previnflow's
// overflow lines hanging around; block reflow depends on the
// overflow line lists being cleared out between reflow passes.
DrainOverflowLines();
// Clear any existing -webkit-line-clamp ellipsis if we're reflowing the
// line-clamp root.
if (IsLineClampRoot(this)) {
ClearLineClampEllipsis();
}
bool blockStartMarginRoot, blockEndMarginRoot;
IsMarginRoot(&blockStartMarginRoot, &blockEndMarginRoot);
BlockReflowState state(aReflowInput, aPresContext, this, blockStartMarginRoot,
blockEndMarginRoot, aTrialState.mNeedFloatManager,
aTrialState.mConsumedBSize,
aTrialState.mEffectiveContentBoxBSize,
aTrialState.mInset);
// Handle paginated overflow (see nsContainerFrame.h)
nsReflowStatus ocStatus;
if (GetPrevInFlow()) {
ReflowOverflowContainerChildren(
aPresContext, aReflowInput, aTrialState.mOcBounds,
ReflowChildFlags::Default, ocStatus, DefaultChildFrameMerge,
Some(state.ContainerSize()));
}
// Now that we're done cleaning up our overflow container lists, we can
// give |state| its nsOverflowContinuationTracker.
nsOverflowContinuationTracker tracker(this, false);
state.mOverflowTracker = &tracker;
// Drain & handle pushed floats
DrainPushedFloats();
ReflowPushedFloats(state, aTrialState.mFcBounds);
// If we're not dirty (which means we'll mark everything dirty later)
// and our inline-size has changed, mark the lines dirty that we need to
// mark dirty for a resize reflow.
if (!HasAnyStateBits(NS_FRAME_IS_DIRTY) && aReflowInput.IsIResize()) {
PrepareResizeReflow(state);
}
// The same for percentage text-indent, except conditioned on the
// parent resizing.
if (!HasAnyStateBits(NS_FRAME_IS_DIRTY) && aReflowInput.mCBReflowInput &&
aReflowInput.mCBReflowInput->IsIResize() &&
StyleText()->mTextIndent.length.HasPercent() && !mLines.empty()) {
mLines.front()->MarkDirty();
}
// For text-wrap:balance trials, we need to reflow all the lines even if
// they're not all "dirty".
if (aTrialState.mBalancing) {
MarkAllDescendantLinesDirty(this);
} else {
LazyMarkLinesDirty();
}
// Now reflow...
aTrialState.mUsedOverflowWrap = ReflowDirtyLines(state);
// If we have a next-in-flow, and that next-in-flow has pushed floats from
// this frame from a previous iteration of reflow, then we should not return
// a status with IsFullyComplete() equals to true, since we actually have
// overflow, it's just already been handled.
// NOTE: This really shouldn't happen, since we _should_ pull back our floats
// and reflow them, but just in case it does, this is a safety precaution so
// we don't end up with a placeholder pointing to frames that have already
// been deleted as part of removing our next-in-flow.
if (state.mReflowStatus.IsFullyComplete()) {
nsBlockFrame* nif = static_cast<nsBlockFrame*>(GetNextInFlow());
while (nif) {
if (nif->HasPushedFloatsFromPrevContinuation()) {
if (nif->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
state.mReflowStatus.SetOverflowIncomplete();
} else {
state.mReflowStatus.SetIncomplete();
}
break;
}
nif = static_cast<nsBlockFrame*>(nif->GetNextInFlow());
}
}
state.mReflowStatus.MergeCompletionStatusFrom(ocStatus);
// If we end in a BR with clear and affected floats continue,
// we need to continue, too.
if (NS_UNCONSTRAINEDSIZE != aReflowInput.AvailableBSize() &&
state.mReflowStatus.IsComplete() &&
state.FloatManager()->ClearContinues(FindTrailingClear())) {
state.mReflowStatus.SetIncomplete();
}
if (!state.mReflowStatus.IsFullyComplete()) {
if (HasOverflowLines() || HasPushedFloats()) {
state.mReflowStatus.SetNextInFlowNeedsReflow();
}
}
// Place the ::marker's frame if it is placed next to a block child.
//
// According to the CSS2 spec, section 12.6.1, the ::marker's box
// participates in the height calculation of the list-item box's
// first line box.
//
// There are exactly two places a ::marker can be placed: near the
// first or second line. It's only placed on the second line in a
// rare case: an empty first line followed by a second line that
// contains a block (example: <LI>\n<P>... ). This is where
// the second case can happen.
nsIFrame* outsideMarker = GetOutsideMarker();
if (outsideMarker && !mLines.empty() &&
(mLines.front()->IsBlock() ||
(0 == mLines.front()->BSize() && mLines.front() != mLines.back() &&
mLines.begin().next()->IsBlock()))) {
// Reflow the ::marker's frame.
ReflowOutput reflowOutput(aReflowInput);
nsLayoutUtils::LinePosition position;
WritingMode wm = aReflowInput.GetWritingMode();
bool havePosition =
nsLayoutUtils::GetFirstLinePosition(wm, this, &position);
nscoord lineBStart =
havePosition ? position.mBStart
: aReflowInput.ComputedLogicalBorderPadding(wm).BStart(wm);
ReflowOutsideMarker(outsideMarker, state, reflowOutput, lineBStart);
NS_ASSERTION(!MarkerIsEmpty(outsideMarker) || reflowOutput.BSize(wm) == 0,
"empty ::marker frame took up space");
if (havePosition && !MarkerIsEmpty(outsideMarker)) {
// We have some lines to align the ::marker with.
// Doing the alignment using the baseline will also cater for
// Tall ::markers won't look particularly nice here...
LogicalRect bbox =
outsideMarker->GetLogicalRect(wm, reflowOutput.PhysicalSize());
const auto baselineGroup = BaselineSharingGroup::First;
Maybe<nscoord> result;
if (MOZ_LIKELY(!wm.IsOrthogonalTo(outsideMarker->GetWritingMode()))) {
result = outsideMarker->GetNaturalBaselineBOffset(
wm, baselineGroup, BaselineExportContext::LineLayout);
}
const auto markerBaseline =
result.valueOrFrom([bbox, wm, outsideMarker]() {
return bbox.BSize(wm) +
outsideMarker->GetLogicalUsedMargin(wm).BEnd(wm);
});
bbox.BStart(wm) = position.mBaseline - markerBaseline;
outsideMarker->SetRect(wm, bbox, reflowOutput.PhysicalSize());
}
// Otherwise just leave the ::marker where it is, up against our
// block-start padding.
}
CheckFloats(state);
// Compute our final size (for this trial layout)
aTrialState.mBlockEndEdgeOfChildren =
ComputeFinalSize(aReflowInput, state, aMetrics);
aTrialState.mContainerWidth = state.ContainerSize().width;
// Align content
AlignContent(state, aMetrics, aTrialState.mBlockEndEdgeOfChildren);
return state.mReflowStatus;
}
bool nsBlockFrame::CheckForCollapsedBEndMarginFromClearanceLine() {
for (auto& line : Reversed(Lines())) {
if (0 != line.BSize() || !line.CachedIsEmpty()) {
return false;
}
if (line.HasClearance()) {
return true;
}
}
return false;
}
std::pair<nsBlockFrame*, nsLineBox*> FindLineClampTarget(
nsBlockFrame* const aRootFrame, const nsBlockFrame* const aStopAtFrame,
StyleLineClamp aLineNumber) {
MOZ_ASSERT(aLineNumber > 0);
nsLineBox* targetLine = nullptr;
nsBlockFrame* targetFrame = nullptr;
bool foundFollowingLine = false;
LineClampLineIterator iter(aRootFrame, aStopAtFrame);
while (nsLineBox* line = iter.GetCurrentLine()) {
// Don't count a line that only has collapsible white space (as might exist
// after calling e.g. getBoxQuads).
if (line->IsEmpty()) {
iter.Next();
continue;
}
if (aLineNumber == 0) {
// We already previously found our target line, and now we have
// confirmed that there is another line after it.
foundFollowingLine = true;
break;
}
if (--aLineNumber == 0) {
// This is our target line. Continue looping to confirm that we
// have another line after us.
targetLine = line;
targetFrame = iter.GetCurrentFrame();
}
iter.Next();
}
if (!foundFollowingLine) {
MOZ_ASSERT(!aRootFrame->HasLineClampEllipsis(),
"should have been removed earlier");
return std::pair(nullptr, nullptr);
}
MOZ_ASSERT(targetLine);
MOZ_ASSERT(targetFrame);
// If targetFrame is not the same as the line-clamp root, any ellipsis on the
// root should have been previously cleared.
MOZ_ASSERT(targetFrame == aRootFrame || !aRootFrame->HasLineClampEllipsis(),
"line-clamp target mismatch");
return std::pair(targetFrame, targetLine);
}
nscoord nsBlockFrame::ApplyLineClamp(nscoord aContentBlockEndEdge) {
auto* root = GetLineClampRoot();
if (!root) {
return aContentBlockEndEdge;
}
auto lineClamp = root->StyleDisplay()->mWebkitLineClamp;
auto [target, line] = FindLineClampTarget(root, this, lineClamp);
if (!line) {
// The number of lines did not exceed the -webkit-line-clamp value.
return aContentBlockEndEdge;
}
// Mark the line as having an ellipsis so that TextOverflow will render it.
line->SetHasLineClampEllipsis();
target->SetHasLineClampEllipsis(true);
// Translate the b-end edge of the line up to aFrame's space.
nscoord edge = line->BEnd();
for (nsIFrame* f = target; f; f = f->GetParent()) {
MOZ_ASSERT(f->IsBlockFrameOrSubclass(),
"GetAsLineClampDescendant guarantees this");
if (f != target) {
static_cast<nsBlockFrame*>(f)->SetHasLineClampEllipsisDescendant(true);
}
if (f == this) {
break;
}
if (f == root) {
// The clamped line is not in our subtree.
return aContentBlockEndEdge;
}
const auto wm = f->GetWritingMode();
const nsSize parentSize = f->GetParent()->GetSize();
edge = f->GetLogicalRect(parentSize).BEnd(wm);
}
return edge;
}
nscoord nsBlockFrame::ComputeFinalSize(const ReflowInput& aReflowInput,
BlockReflowState& aState,
ReflowOutput& aMetrics) {
WritingMode wm = aState.mReflowInput.GetWritingMode();
const LogicalMargin& borderPadding = aState.BorderPadding();
#ifdef NOISY_FINAL_SIZE
ListTag(stdout);
printf(": mBCoord=%d mIsBEndMarginRoot=%s mPrevBEndMargin=%d bp=%d,%d\n",
aState.mBCoord, aState.mFlags.mIsBEndMarginRoot ? "yes" : "no",
aState.mPrevBEndMargin.get(), borderPadding.BStart(wm),
borderPadding.BEnd(wm));
#endif
// Compute final inline size
LogicalSize finalSize(wm);
finalSize.ISize(wm) =
NSCoordSaturatingAdd(NSCoordSaturatingAdd(borderPadding.IStart(wm),
aReflowInput.ComputedISize()),
borderPadding.IEnd(wm));
// Return block-end margin information
// just set the margin to zero and we'll figure out why later
// NS_ASSERTION(aMetrics.mCarriedOutBEndMargin.IsZero(),
// "someone else set the margin");
nscoord nonCarriedOutBDirMargin = 0;
if (!aState.mFlags.mIsBEndMarginRoot) {
// Apply rule from CSS 2.1 section 8.3.1. If we have some empty
// line with clearance and a non-zero block-start margin and all
// subsequent lines are empty, then we do not allow our children's
// carried out block-end margin to be carried out of us and collapse
// with our own block-end margin.
if (CheckForCollapsedBEndMarginFromClearanceLine()) {
// Convert the children's carried out margin to something that
// we will include in our height
nonCarriedOutBDirMargin = aState.mPrevBEndMargin.Get();
aState.mPrevBEndMargin.Zero();
}
aMetrics.mCarriedOutBEndMargin = aState.mPrevBEndMargin;
} else {
aMetrics.mCarriedOutBEndMargin.Zero();
}
nscoord blockEndEdgeOfChildren = aState.mBCoord + nonCarriedOutBDirMargin;
// Shrink wrap our height around our contents.
if (aState.mFlags.mIsBEndMarginRoot ||
NS_UNCONSTRAINEDSIZE != aReflowInput.ComputedBSize()) {
// When we are a block-end-margin root make sure that our last
// child's block-end margin is fully applied. We also do this when
// we have a computed height, since in that case the carried out
// margin is not going to be applied anywhere, so we should note it
// here to be included in the overflow area.
// Apply the margin only if there's space for it.
if (blockEndEdgeOfChildren < aState.mReflowInput.AvailableBSize()) {
// Truncate block-end margin if it doesn't fit to our available BSize.
blockEndEdgeOfChildren =
std::min(blockEndEdgeOfChildren + aState.mPrevBEndMargin.Get(),
aState.mReflowInput.AvailableBSize());
}
}
if (aState.mFlags.mBlockNeedsFloatManager) {
// Include the float manager's state to properly account for the
// block-end margin of any floated elements; e.g., inside a table cell.
//
// Note: The block coordinate returned by ClearFloats is always greater than
// or equal to blockEndEdgeOfChildren.
std::tie(blockEndEdgeOfChildren, std::ignore) =
aState.ClearFloats(blockEndEdgeOfChildren, UsedClear::Both);
}
// undo cached alignment shift for sizing purposes
// (we used shifted positions because the float manager uses them)
blockEndEdgeOfChildren -= aState.mAlignContentShift;
aState.UndoAlignContentShift();
if (NS_UNCONSTRAINEDSIZE != aReflowInput.ComputedBSize()) {
// Note: We don't use blockEndEdgeOfChildren because it includes the
// previous margin.
const nscoord contentBSizeWithBStartBP =
aState.mBCoord + nonCarriedOutBDirMargin;
// We don't care about ApplyLineClamp's return value (the line-clamped
// content BSize) in this explicit-BSize codepath, but we do still need to
// call ApplyLineClamp for ellipsis markers to be placed as-needed.
ApplyLineClamp(contentBSizeWithBStartBP);
finalSize.BSize(wm) = ComputeFinalBSize(aState, contentBSizeWithBStartBP);
// If the content block-size is larger than the effective computed
// block-size, we extend the block-size to contain all the content.
if (aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis()) {
// Note: finalSize.BSize(wm) is the border-box size, so we compare it with
// the content's block-size plus our border and padding..
finalSize.BSize(wm) =
std::max(finalSize.BSize(wm),
contentBSizeWithBStartBP + borderPadding.BEnd(wm));
// The size should be capped by its maximum block size.
if (aReflowInput.ComputedMaxBSize() != NS_UNCONSTRAINEDSIZE) {
finalSize.BSize(wm) =
std::min(finalSize.BSize(wm), aReflowInput.ComputedMaxBSize() +
borderPadding.BStartEnd(wm));
}
}
// Don't carry out a block-end margin when our BSize is fixed.
//
// Note: this also includes the case that aReflowInput.ComputedBSize() is
// calculated from aspect-ratio. i.e. Don't carry out block margin-end if it
// is replaced by the block size from aspect-ratio and inline size.
aMetrics.mCarriedOutBEndMargin.Zero();
} else if (Maybe<nscoord> containBSize = ContainIntrinsicBSize()) {
// If we're size-containing in block axis and we don't have a specified
// block size, then our final size should actually be computed from only
// our border, padding and contain-intrinsic-block-size, ignoring the
// actual contents. Hence this case is a simplified version of the case
// below.
nscoord contentBSize = *containBSize;
nscoord autoBSize =
aReflowInput.ApplyMinMaxBSize(contentBSize, aState.mConsumedBSize);
aMetrics.mCarriedOutBEndMargin.Zero();
autoBSize += borderPadding.BStartEnd(wm);
finalSize.BSize(wm) = autoBSize;
} else if (aState.mReflowStatus.IsInlineBreakBefore()) {
// Our parent is expected to push this frame to the next page/column so
// what size we set here doesn't really matter.
finalSize.BSize(wm) = aReflowInput.AvailableBSize();
} else if (aState.mReflowStatus.IsComplete()) {
const nscoord lineClampedContentBlockEndEdge =
ApplyLineClamp(blockEndEdgeOfChildren);
const nscoord bpBStart = borderPadding.BStart(wm);
const nscoord contentBSize = blockEndEdgeOfChildren - bpBStart;
const nscoord lineClampedContentBSize =
lineClampedContentBlockEndEdge - bpBStart;
const nscoord autoBSize = aReflowInput.ApplyMinMaxBSize(
lineClampedContentBSize, aState.mConsumedBSize);
if (autoBSize != contentBSize) {
// Our min-block-size, max-block-size, or -webkit-line-clamp value made
// our bsize change. Don't carry out our kids' block-end margins.
aMetrics.mCarriedOutBEndMargin.Zero();
}
nscoord bSize = autoBSize + borderPadding.BStartEnd(wm);
if (MOZ_UNLIKELY(autoBSize > contentBSize &&
bSize > aReflowInput.AvailableBSize() &&
aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) {
// Applying `min-size` made us overflow our available size.
// Clamp it and report that we're Incomplete, or BreakBefore if we have
// 'break-inside: avoid' that is applicable.
bSize = aReflowInput.AvailableBSize();
if (ShouldAvoidBreakInside(aReflowInput)) {
aState.mReflowStatus.SetInlineLineBreakBeforeAndReset();
} else {
aState.mReflowStatus.SetIncomplete();
}
}
finalSize.BSize(wm) = bSize;
} else {
NS_ASSERTION(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE,
"Shouldn't be incomplete if availableBSize is UNCONSTRAINED.");
nscoord bSize = std::max(aState.mBCoord, aReflowInput.AvailableBSize());
if (aReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
bSize = aState.mBCoord;
}
const nscoord maxBSize = aReflowInput.ComputedMaxBSize();
if (maxBSize != NS_UNCONSTRAINEDSIZE &&
aState.mConsumedBSize + bSize - borderPadding.BStart(wm) > maxBSize) {
// Compute this fragment's block-size, with the max-block-size
// constraint taken into consideration.
const nscoord clampedBSizeWithoutEndBP =
std::max(0, maxBSize - aState.mConsumedBSize) +
borderPadding.BStart(wm);
const nscoord clampedBSize =
clampedBSizeWithoutEndBP + borderPadding.BEnd(wm);
if (clampedBSize <= aReflowInput.AvailableBSize()) {
// We actually fit after applying `max-size` so we should be
// Overflow-Incomplete instead.
bSize = clampedBSize;
aState.mReflowStatus.SetOverflowIncomplete();
} else {
// We cannot fit after applying `max-size` with our block-end BP, so
// we should draw it in our next continuation.
bSize = clampedBSizeWithoutEndBP;
}
}
finalSize.BSize(wm) = bSize;
}
if (IsTrueOverflowContainer()) {
if (aState.mReflowStatus.IsIncomplete()) {
// Overflow containers can only be overflow complete.
// Note that auto height overflow containers have no normal children
NS_ASSERTION(finalSize.BSize(wm) == 0,
"overflow containers must be zero-block-size");
aState.mReflowStatus.SetOverflowIncomplete();
}
} else if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
!aState.mReflowStatus.IsInlineBreakBefore() &&
aState.mReflowStatus.IsComplete()) {
// Currently only used for grid items, but could be used in other contexts.
// The FragStretchBSizeProperty is our expected non-fragmented block-size
// we should stretch to (for align-self:stretch etc). In some fragmentation
// cases though, the last fragment (this frame since we're complete), needs
// to have extra size applied because earlier fragments consumed too much of
// our computed size due to overflowing their containing block. (E.g. this
// ensures we fill the last row when a multi-row grid item is fragmented).
bool found;
nscoord bSize = GetProperty(FragStretchBSizeProperty(), &found);
if (found) {
finalSize.BSize(wm) = std::max(bSize, finalSize.BSize(wm));
}
}
// Clamp the content size to fit within the margin-box clamp size, if any.
if (MOZ_UNLIKELY(aReflowInput.mComputeSizeFlags.contains(
ComputeSizeFlag::BClampMarginBoxMinSize)) &&
aState.mReflowStatus.IsComplete()) {
bool found;
nscoord cbSize = GetProperty(BClampMarginBoxMinSizeProperty(), &found);
if (found) {
auto marginBoxBSize =
finalSize.BSize(wm) +
aReflowInput.ComputedLogicalMargin(wm).BStartEnd(wm);
auto overflow = marginBoxBSize - cbSize;
if (overflow > 0) {
auto contentBSize = finalSize.BSize(wm) - borderPadding.BStartEnd(wm);
auto newContentBSize = std::max(nscoord(0), contentBSize - overflow);
// XXXmats deal with percentages better somehow?
finalSize.BSize(wm) -= contentBSize - newContentBSize;
}
}
}
// Screen out negative block sizes --- can happen due to integer overflows :-(
finalSize.BSize(wm) = std::max(0, finalSize.BSize(wm));
aMetrics.SetSize(wm, finalSize);
return blockEndEdgeOfChildren;
}
void nsBlockFrame::AlignContent(BlockReflowState& aState,
ReflowOutput& aMetrics,
nscoord aBEndEdgeOfChildren) {
if (!StaticPrefs::layout_css_align_content_blocks_enabled()) {
return;
}
StyleAlignFlags alignment = StylePosition()->mAlignContent.primary;
alignment &= ~StyleAlignFlags::FLAG_BITS;
// Short circuit
const bool isCentered = alignment == StyleAlignFlags::CENTER ||
alignment == StyleAlignFlags::SPACE_AROUND ||
alignment == StyleAlignFlags::SPACE_EVENLY;
const bool isEndAlign = alignment == StyleAlignFlags::END ||
alignment == StyleAlignFlags::FLEX_END ||
alignment == StyleAlignFlags::LAST_BASELINE;
if (!isEndAlign && !isCentered && !aState.mAlignContentShift) {
// desired shift = 0, no cached shift to undo
return;
}
// NOTE: ComputeFinalSize already called aState.UndoAlignContentShift(),
// so metrics no longer include cached shift.
// NOTE: Content is currently positioned at cached shift
// NOTE: Content has been fragmented against 0-shift assumption.
// Calculate shift
nscoord shift = 0;
WritingMode wm = aState.mReflowInput.GetWritingMode();
if ((isCentered || isEndAlign) && !mLines.empty() &&
aState.mReflowStatus.IsFullyComplete() && !GetPrevInFlow()) {
nscoord availB = aState.mReflowInput.AvailableBSize();
nscoord endB = aMetrics.BSize(wm) - aState.BorderPadding().BEnd(wm);
shift = std::min(availB, endB) - aBEndEdgeOfChildren;
// note: these measures all include start BP, so it subtracts out
if (!(StylePosition()->mAlignContent.primary & StyleAlignFlags::UNSAFE)) {
shift = std::max(0, shift);
}
if (isCentered) {
shift = shift / 2;
}
}
// else: zero shift if start-aligned or if fragmented
nscoord delta = shift - aState.mAlignContentShift;
if (delta) {
// Shift children
LogicalPoint translation(wm, 0, delta);
for (nsLineBox& line : Lines()) {
SlideLine(aState, &line, delta);
}
for (nsIFrame* kid : GetChildList(FrameChildListID::Float)) {
kid->MovePositionBy(wm, translation);
nsContainerFrame::PlaceFrameView(kid);
}
nsIFrame* outsideMarker = GetOutsideMarker();
if (outsideMarker && !mLines.empty()) {
outsideMarker->MovePositionBy(wm, translation);
}
}
if (shift) {
// Cache shift
SetProperty(AlignContentShift(), shift);
} else {
RemoveProperty(AlignContentShift());
}
}
void nsBlockFrame::ComputeOverflowAreas(OverflowAreas& aOverflowAreas,
const nsStyleDisplay* aDisplay) const {
// XXX_perf: This can be done incrementally. It is currently one of
// the things that makes incremental reflow O(N^2).
auto overflowClipAxes = ShouldApplyOverflowClipping(aDisplay);
auto overflowClipMargin = OverflowClipMargin(overflowClipAxes);
if (overflowClipAxes == kPhysicalAxesBoth && overflowClipMargin == nsSize()) {
return;
}
// We rely here on our caller having called SetOverflowAreasToDesiredBounds().
const nsRect frameBounds = aOverflowAreas.ScrollableOverflow();
const auto wm = GetWritingMode();
const auto borderPadding =
GetLogicalUsedBorderAndPadding(wm).GetPhysicalMargin(wm);
// Compute content-box by subtracting borderPadding off of frame rect.
// This gives us a reasonable starting-rect for the child-rect-unioning
// below, which we can then inflate by our padding (without needing to
// worry about having double-counted our padding or anything).
auto frameContentBounds = frameBounds;
frameContentBounds.Deflate(borderPadding);
// Margin rects (Zero-area rects included) of in-flow children (And floats,
// as discussed later) are unioned (starting with the scroller's own
// content-box), then inflated by the scroll container's padding...
auto inFlowChildBounds = frameContentBounds;
// ... While scrollable overflow rects contributed from further descendants
// (Regardless of if they're in-flow or out-of-flow) are unioned separately
// and their union does not get inflated by the scroll container's padding.
auto inFlowScrollableOverflow = frameContentBounds;
for (const auto& line : Lines()) {
aOverflowAreas.InkOverflow() =
aOverflowAreas.InkOverflow().Union(line.InkOverflowRect());
if (aDisplay->IsContainLayout()) {
// If we have layout containment, we should only consider our child's
// ink overflow, leaving the scrollable regions of the parent
// unaffected.
// Note: Any overflow must be treated as ink overflow (As per
// However, by unioning the children's ink overflow, we've already
// incorporated its scrollable overflow, since scrollable overflow
// is a subset of ink overflow.
continue;
}
if (line.IsInline()) {
// This is the maximum contribution for inline line-participating frames -
// See `GetLineFrameInFlowBounds`.
inFlowChildBounds =
inFlowChildBounds.UnionEdges(line.GetPhysicalBounds());
}
auto lineInFlowChildBounds = line.GetInFlowChildBounds();
if (lineInFlowChildBounds) {
inFlowChildBounds = inFlowChildBounds.UnionEdges(*lineInFlowChildBounds);
}
inFlowScrollableOverflow =
inFlowScrollableOverflow.Union(line.ScrollableOverflowRect());
}
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
// Padding inflation only applies to scrolled containers.
const auto paddingInflatedOverflow =
ComputePaddingInflatedScrollableOverflow(inFlowChildBounds);
aOverflowAreas.UnionAllWith(paddingInflatedOverflow);
}
// Note: we're using UnionAllWith so as to maintain the invariant of
// ink overflow being a superset of scrollable overflow.
aOverflowAreas.UnionAllWith(inFlowScrollableOverflow);
// Factor an outside ::marker in; normally the ::marker will be factored
// into the line-box's overflow areas. However, if the line is a block
// line then it won't; if there are no lines, it won't. So just
// factor it in anyway (it can't hurt if it was already done).
// XXXldb Can we just fix GetOverflowArea instead?
if (nsIFrame* outsideMarker = GetOutsideMarker()) {
aOverflowAreas.UnionAllWith(outsideMarker->GetRect());
}
if (!overflowClipAxes.isEmpty()) {
aOverflowAreas.ApplyClipping(frameBounds, overflowClipAxes,
overflowClipMargin);
}
#ifdef NOISY_OVERFLOW_AREAS
printf("%s: InkOverflowArea=%s, ScrollableOverflowArea=%s\n", ListTag().get(),
ToString(aOverflowAreas.InkOverflow()).c_str(),
ToString(aOverflowAreas.ScrollableOverflow()).c_str());
#endif
}
// Depending on our ancestor, determine if we need to restrict padding inflation
// in inline direction. This assumes that the passed-in frame is a scrolled
// frame. HACK(dshin): Reaching out and querying the type like this isn't ideal.
static bool RestrictPaddingInflationInInline(const nsIFrame* aFrame) {
MOZ_ASSERT(aFrame);
if (aFrame->Style()->GetPseudoType() != PseudoStyleType::scrolledContent) {
// This can only happen when computing scrollable overflow for overflow:
// visible frames (for scroll{Width,Height}).
return false;
}
// If we're `input` or `textarea`, our grandparent element must be the text
// control element that we can query.
const auto* parent = aFrame->GetParent();
if (!parent) {
return false;
}
MOZ_ASSERT(parent->IsScrollContainerOrSubclass(), "Not a scrolled frame?");
nsTextControlFrame* textControl = do_QueryFrame(parent->GetParent());
if (MOZ_LIKELY(!textControl)) {
return false;
}
// We implement `textarea` as a special case of a div, but based on
// web-platform-tests, different rules apply for it - namely, no inline
// padding inflation. See
// `textarea-padding-iend-overlaps-content-001.tentative.html`.
if (!textControl->IsTextArea()) {
return false;
}
return true;
}
nsRect nsBlockFrame::ComputePaddingInflatedScrollableOverflow(
const nsRect& aInFlowChildBounds) const {
auto result = aInFlowChildBounds;
const auto wm = GetWritingMode();
auto padding = GetLogicalUsedPadding(wm);
if (RestrictPaddingInflationInInline(this)) {
padding.IStart(wm) = padding.IEnd(wm) = 0;
}
result.Inflate(padding.GetPhysicalMargin(wm));
return result;
}
Maybe<nsRect> nsBlockFrame::GetLineFrameInFlowBounds(
const nsLineBox& aLine, const nsIFrame& aLineChildFrame) const {
MOZ_ASSERT(aLineChildFrame.GetParent() == this,
"Line's frame doesn't belong to this block frame?");
// Line participants are considered in-flow for content within the line
// bounds, which should be accounted for from the line bounds. This is
// consistent with e.g. inline element's `margin-bottom` not affecting the
// placement of the next line.
if (aLineChildFrame.IsPlaceholderFrame() ||
aLineChildFrame.IsLineParticipant()) {
return Nothing{};
}
if (aLine.IsInline()) {
return Some(aLineChildFrame.GetMarginRectRelativeToSelf() +
aLineChildFrame.GetNormalPosition());
}
const auto wm = GetWritingMode();
// Ensure we use the margin we actually carried out.
auto logicalMargin = aLineChildFrame.GetLogicalUsedMargin(wm);
logicalMargin.BEnd(wm) = aLine.GetCarriedOutBEndMargin().Get();
const auto linePoint = aLine.GetPhysicalBounds().TopLeft();
// Special handling is required for boxes of zero block size, which carry
// out margin collapsing with themselves. We end up "rewinding" the line
// position after carrying out the block start margin. This is not reflected
// in the zero-sized frame's own frame-position.
const auto normalPosition = aLineChildFrame.GetLogicalSize(wm).BSize(wm) == 0
? linePoint
: aLineChildFrame.GetNormalPosition();
const auto margin = logicalMargin.GetPhysicalMargin(wm).ApplySkipSides(
aLineChildFrame.GetSkipSides());
auto rect = aLineChildFrame.GetRectRelativeToSelf();
rect.Inflate(margin);
return Some(rect + normalPosition);
}
void nsBlockFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas,
bool aAsIfScrolled) {
// We need to update the overflow areas of lines manually, as they
// get cached and re-used otherwise. Lines aren't exposed as normal
// frame children, so calling UnionChildOverflow alone will end up
// using the old cached values.
const auto wm = GetWritingMode();
// Overflow area computed here should agree with one computed in
// documentation in that function applies here as well.
const bool isScrolled = aAsIfScrolled || Style()->GetPseudoType() ==
PseudoStyleType::scrolledContent;
// Relying on aOverflowAreas having been set to frame border rect (if
// aAsIfScrolled is false), or padding rect (if true).
auto frameContentBounds = aOverflowAreas.ScrollableOverflow();
frameContentBounds.Deflate((aAsIfScrolled
? GetLogicalUsedPadding(wm)
: GetLogicalUsedBorderAndPadding(wm))
.GetPhysicalMargin(wm));
// We need to take in-flow children's margin rect into account, and inflate
// it by the padding.
auto inFlowChildBounds = frameContentBounds;
auto inFlowScrollableOverflow = frameContentBounds;
const auto inkOverflowOnly =
!aAsIfScrolled && StyleDisplay()->IsContainLayout();
for (auto& line : Lines()) {
nsRect bounds = line.GetPhysicalBounds();
OverflowAreas lineAreas(bounds, bounds);
int32_t n = line.GetChildCount();
for (nsIFrame* lineFrame = line.mFirstChild; n > 0;
lineFrame = lineFrame->GetNextSibling(), --n) {
// Ensure this is called for each frame in the line
ConsiderChildOverflow(lineAreas, lineFrame, aAsIfScrolled);
if (inkOverflowOnly || !isScrolled) {
continue;
}
if (auto lineFrameBounds = GetLineFrameInFlowBounds(line, *lineFrame)) {
inFlowChildBounds = inFlowChildBounds.UnionEdges(*lineFrameBounds);
}
}
// Consider the overflow areas of the floats attached to the line as well
if (line.HasFloats()) {
for (nsIFrame* f : line.Floats()) {
ConsiderChildOverflow(lineAreas, f, aAsIfScrolled);
if (inkOverflowOnly || !isScrolled) {
continue;
}
inFlowChildBounds =
inFlowChildBounds.UnionEdges(GetNormalMarginRect(f));
}
}
if (!aAsIfScrolled) {
line.SetOverflowAreas(lineAreas);
}
aOverflowAreas.InkOverflow() =
aOverflowAreas.InkOverflow().Union(lineAreas.InkOverflow());
if (!inkOverflowOnly) {
inFlowScrollableOverflow =
inFlowScrollableOverflow.Union(lineAreas.ScrollableOverflow());
}
}
if (isScrolled) {
const auto paddingInflatedOverflow =
ComputePaddingInflatedScrollableOverflow(inFlowChildBounds);
aOverflowAreas.UnionAllWith(paddingInflatedOverflow);
}
aOverflowAreas.UnionAllWith(inFlowScrollableOverflow);
// Union with child frames, skipping the principal and float lists
// since we already handled those using the line boxes.
nsLayoutUtils::UnionChildOverflow(
this, aOverflowAreas,
{FrameChildListID::Principal, FrameChildListID::Float});
}
bool nsBlockFrame::ComputeCustomOverflow(OverflowAreas& aOverflowAreas) {
// Line cursor invariants depend on the overflow areas of the lines, so
// we must clear the line cursor since those areas may have changed.
ClearLineCursors();
return nsContainerFrame::ComputeCustomOverflow(aOverflowAreas);
}
void nsBlockFrame::LazyMarkLinesDirty() {
if (HasAnyStateBits(NS_BLOCK_LOOK_FOR_DIRTY_FRAMES)) {
for (LineIterator line = LinesBegin(), line_end = LinesEnd();
line != line_end; ++line) {
int32_t n = line->GetChildCount();
for (nsIFrame* lineFrame = line->mFirstChild; n > 0;
lineFrame = lineFrame->GetNextSibling(), --n) {
if (lineFrame->IsSubtreeDirty()) {
// NOTE: MarkLineDirty does more than just marking the line dirty.
MarkLineDirty(line, &mLines);
break;
}
}
}
RemoveStateBits(NS_BLOCK_LOOK_FOR_DIRTY_FRAMES);
}
}
void nsBlockFrame::MarkLineDirty(LineIterator aLine,
const nsLineList* aLineList) {
// Mark aLine dirty
aLine->MarkDirty();
aLine->SetInvalidateTextRuns(true);
#ifdef DEBUG
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": mark line %p dirty\n", static_cast<void*>(aLine.get()));
}
#endif
// Mark previous line dirty if it's an inline line so that it can
// maybe pullup something from the line just affected.
// XXX We don't need to do this if aPrevLine ends in a break-after...
if (aLine != aLineList->front() && aLine->IsInline() &&
aLine.prev()->IsInline()) {
aLine.prev()->MarkDirty();
aLine.prev()->SetInvalidateTextRuns(true);
#ifdef DEBUG
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": mark prev-line %p dirty\n",
static_cast<void*>(aLine.prev().get()));
}
#endif
}
}
/**
* Test whether lines are certain to be aligned left so that we can make
* resizing optimizations
*/
static inline bool IsAlignedLeft(StyleTextAlign aAlignment,
StyleDirection aDirection,
StyleUnicodeBidi aUnicodeBidi,
nsIFrame* aFrame) {
return aFrame->IsInSVGTextSubtree() || StyleTextAlign::Left == aAlignment ||
(((StyleTextAlign::Start == aAlignment &&
StyleDirection::Ltr == aDirection) ||
(StyleTextAlign::End == aAlignment &&
StyleDirection::Rtl == aDirection)) &&
aUnicodeBidi != StyleUnicodeBidi::Plaintext);
}
void nsBlockFrame::PrepareResizeReflow(BlockReflowState& aState) {
// See if we can try and avoid marking all the lines as dirty
// FIXME(emilio): This should be writing-mode aware, I guess.
bool tryAndSkipLines =
// The left content-edge must be a constant distance from the left
// border-edge.
!StylePadding()->mPadding.Get(eSideLeft).HasPercent();
#ifdef DEBUG
if (gDisableResizeOpt) {
tryAndSkipLines = false;
}
if (gNoisyReflow) {
if (!tryAndSkipLines) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": marking all lines dirty: availISize=%d\n",
aState.mReflowInput.AvailableISize());
}
}
#endif
if (tryAndSkipLines) {
WritingMode wm = aState.mReflowInput.GetWritingMode();
nscoord newAvailISize =
aState.mReflowInput.ComputedLogicalBorderPadding(wm).IStart(wm) +
aState.mReflowInput.ComputedISize();
#ifdef DEBUG
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": trying to avoid marking all lines dirty\n");
}
#endif
for (LineIterator line = LinesBegin(), line_end = LinesEnd();
line != line_end; ++line) {
// We let child blocks make their own decisions the same
// way we are here.
bool isLastLine = line == mLines.back() && !GetNextInFlow();
if (line->IsBlock() || line->HasFloats() ||
(!isLastLine && !line->HasForcedLineBreakAfter()) ||
((isLastLine || !line->IsLineWrapped())) ||
line->ResizeReflowOptimizationDisabled() ||
line->IsImpactedByFloat() || (line->IEnd() > newAvailISize)) {
line->MarkDirty();
}
#ifdef REALLY_NOISY_REFLOW
if (!line->IsBlock()) {
printf("PrepareResizeReflow thinks line %p is %simpacted by floats\n",
line.get(), line->IsImpactedByFloat() ? "" : "not ");
}
#endif
#ifdef DEBUG
if (gNoisyReflow && !line->IsDirty()) {
IndentBy(stdout, gNoiseIndent + 1);
printf(
"skipped: line=%p next=%p %s %s%s%s clearTypeBefore/After=%s/%s "
"xmost=%d\n",
static_cast<void*>(line.get()),
static_cast<void*>(
(line.next() != LinesEnd() ? line.next().get() : nullptr)),
line->IsBlock() ? "block" : "inline",
line->HasForcedLineBreakAfter() ? "has-break-after " : "",
line->HasFloats() ? "has-floats " : "",
line->IsImpactedByFloat() ? "impacted " : "",
line->UsedClearToString(line->FloatClearTypeBefore()),
line->UsedClearToString(line->FloatClearTypeAfter()), line->IEnd());
}
#endif
}
} else {
// Mark everything dirty
for (auto& line : Lines()) {
line.MarkDirty();
}
}
}
//----------------------------------------
/**
* Propagate reflow "damage" from from earlier lines to the current
* line. The reflow damage comes from the following sources:
* 1. The regions of float damage remembered during reflow.
* 2. The combination of nonzero |aDeltaBCoord| and any impact by a
* float, either the previous reflow or now.
*
* When entering this function, |aLine| is still at its old position and
* |aDeltaBCoord| indicates how much it will later be slid (assuming it
* doesn't get marked dirty and reflowed entirely).
*/
void nsBlockFrame::PropagateFloatDamage(BlockReflowState& aState,
nsLineBox* aLine,
nscoord aDeltaBCoord) {
nsFloatManager* floatManager = aState.FloatManager();
NS_ASSERTION(
(aState.mReflowInput.mParentReflowInput &&
aState.mReflowInput.mParentReflowInput->mFloatManager == floatManager) ||
aState.mReflowInput.mBlockDelta == 0,
"Bad block delta passed in");
// Check to see if there are any floats; if there aren't, there can't
// be any float damage
if (!floatManager->HasAnyFloats()) {
return;
}
// Check the damage region recorded in the float damage.
if (floatManager->HasFloatDamage()) {
// Need to check mBounds *and* mCombinedArea to find intersections
// with aLine's floats
nscoord lineBCoordBefore = aLine->BStart() + aDeltaBCoord;
nscoord lineBCoordAfter = lineBCoordBefore + aLine->BSize();
// Scrollable overflow should be sufficient for things that affect
// layout.
WritingMode wm = aState.mReflowInput.GetWritingMode();
nsSize containerSize = aState.ContainerSize();
LogicalRect overflow =
aLine->GetOverflowArea(OverflowType::Scrollable, wm, containerSize);
nscoord lineBCoordCombinedBefore = overflow.BStart(wm) + aDeltaBCoord;
nscoord lineBCoordCombinedAfter =
lineBCoordCombinedBefore + overflow.BSize(wm);
bool isDirty =
floatManager->IntersectsDamage(lineBCoordBefore, lineBCoordAfter) ||
floatManager->IntersectsDamage(lineBCoordCombinedBefore,
lineBCoordCombinedAfter);
if (isDirty) {
aLine->MarkDirty();
return;
}
}
// Check if the line is moving relative to the float manager
if (aDeltaBCoord + aState.mReflowInput.mBlockDelta != 0) {
if (aLine->IsBlock()) {
// Unconditionally reflow sliding blocks; we only really need to reflow
// if there's a float impacting this block, but the current float manager
// makes it difficult to check that. Therefore, we let the child block
// decide what it needs to reflow.
aLine->MarkDirty();
} else {
bool wasImpactedByFloat = aLine->IsImpactedByFloat();
nsFlowAreaRect floatAvailableSpace =
aState.GetFloatAvailableSpaceForBSize(
aState.mReflowInput.GetWritingMode(),
aLine->BStart() + aDeltaBCoord, aLine->BSize(), nullptr);
#ifdef REALLY_NOISY_REFLOW
printf("nsBlockFrame::PropagateFloatDamage %p was = %d, is=%d\n", this,
wasImpactedByFloat, floatAvailableSpace.HasFloats());
#endif
// Mark the line dirty if it was or is affected by a float
// We actually only really need to reflow if the amount of impact
// changes, but that's not straightforward to check
if (wasImpactedByFloat || floatAvailableSpace.HasFloats()) {
aLine->MarkDirty();
}
}
}
}
static bool LineHasClear(nsLineBox* aLine) {
return aLine->IsBlock()
? (aLine->HasFloatClearTypeBefore() ||
aLine->mFirstChild->HasAnyStateBits(
NS_BLOCK_HAS_CLEAR_CHILDREN) ||
!nsBlockFrame::BlockCanIntersectFloats(aLine->mFirstChild))
: aLine->HasFloatClearTypeAfter();
}
/**
* Reparent a whole list of floats from aOldParent to this block. The
* floats might be taken from aOldParent's overflow list. They will be
* removed from the list. They end up appended to our floats list.
*/
void nsBlockFrame::ReparentFloats(nsIFrame* aFirstFrame,
nsBlockFrame* aOldParent,
bool aReparentSiblings) {
nsFrameList list;
aOldParent->CollectFloats(aFirstFrame, list, aReparentSiblings);
if (list.NotEmpty()) {
for (nsIFrame* f : list) {
MOZ_ASSERT(!f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT),
"CollectFloats should've removed that bit");
ReparentFrame(f, aOldParent, this);
}
EnsureFloats()->AppendFrames(nullptr, std::move(list));
}
}
static void DumpLine(const BlockReflowState& aState, nsLineBox* aLine,
nscoord aDeltaBCoord, int32_t aDeltaIndent) {
#ifdef DEBUG
if (nsBlockFrame::gNoisyReflow) {
nsRect ovis(aLine->InkOverflowRect());
nsRect oscr(aLine->ScrollableOverflowRect());
nsBlockFrame::IndentBy(stdout, nsBlockFrame::gNoiseIndent + aDeltaIndent);
printf(
"line=%p mBCoord=%d dirty=%s oldBounds={%d,%d,%d,%d} "
"oldoverflow-vis={%d,%d,%d,%d} oldoverflow-scr={%d,%d,%d,%d} "
"deltaBCoord=%d mPrevBEndMargin=%d childCount=%d\n",
static_cast<void*>(aLine), aState.mBCoord,
aLine->IsDirty() ? "yes" : "no", aLine->IStart(), aLine->BStart(),
aLine->ISize(), aLine->BSize(), ovis.x, ovis.y, ovis.width, ovis.height,
oscr.x, oscr.y, oscr.width, oscr.height, aDeltaBCoord,
aState.mPrevBEndMargin.Get(), aLine->GetChildCount());
}
#endif
}
bool nsBlockFrame::LinesAreEmpty() const {
for (const auto& line : mLines) {
if (!line.IsEmpty()) {
return false;
}
}
return true;
}
bool nsBlockFrame::ReflowDirtyLines(BlockReflowState& aState) {
bool keepGoing = true;
bool repositionViews = false; // should we really need this?
bool foundAnyClears = aState.mTrailingClearFromPIF != UsedClear::None;
bool willReflowAgain = false;
bool usedOverflowWrap = false;
#ifdef DEBUG
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent);
ListTag(stdout);
printf(": reflowing dirty lines");
printf(" computedISize=%d\n", aState.mReflowInput.ComputedISize());
}
AutoNoisyIndenter indent(gNoisyReflow);
#endif
bool selfDirty = HasAnyStateBits(NS_FRAME_IS_DIRTY) ||
(aState.mReflowInput.IsBResize() &&
HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE));
// Reflow our last line if our availableBSize has increased
// so that we (and our last child) pull up content as necessary
if (aState.mReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
GetNextInFlow() &&
aState.mReflowInput.AvailableBSize() >
GetLogicalSize().BSize(aState.mReflowInput.GetWritingMode())) {
LineIterator lastLine = LinesEnd();
if (lastLine != LinesBegin()) {
--lastLine;
lastLine->MarkDirty();
}
}
// the amount by which we will slide the current line if it is not
// dirty
nscoord deltaBCoord = 0;
// whether we did NOT reflow the previous line and thus we need to
// recompute the carried out margin before the line if we want to
// reflow it or if its previous margin is dirty
bool needToRecoverState = false;
// Float continuations were reflowed in ReflowPushedFloats
bool reflowedFloat =
HasFloats() &&
GetFloats()->FirstChild()->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT);
bool lastLineMovedUp = false;
// We save up information about BR-clearance here
UsedClear inlineFloatClearType = aState.mTrailingClearFromPIF;
LineIterator line = LinesBegin(), line_end = LinesEnd();
// Determine if children of this frame could have breaks between them for
// page names.
//
// We need to check for paginated layout, the named-page pref, and if the
// available block-size is constrained.
//
// Note that we need to check for paginated layout as named-pages are only
// used during paginated reflow. We need to additionally check for
// unconstrained block-size to avoid introducing fragmentation breaks during
// "measuring" reflows within an overall paginated reflow, and to avoid
// fragmentation in monolithic containers like 'inline-block'.
//
// Because we can only break for named pages using Class A breakpoints, we
// also need to check that the block flow direction of the containing frame
// of these items (which is this block) is parallel to that of this page.
const nsPresContext* const presCtx = aState.mPresContext;
const bool canBreakForPageNames =
aState.mReflowInput.mFlags.mCanHaveClassABreakpoints &&
aState.mReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
presCtx->GetPresShell()->GetRootFrame()->GetWritingMode().IsVertical() ==
GetWritingMode().IsVertical();
// ReflowInput.mFlags.mCanHaveClassABreakpoints should respect the named
// pages pref and presCtx->IsPaginated, so we did not explicitly check these
// above when setting canBreakForPageNames.
if (canBreakForPageNames) {
MOZ_ASSERT(presCtx->IsPaginated(),
"canBreakForPageNames should not be set during non-paginated "
"reflow");
}
// Reflow the lines that are already ours
for (; line != line_end; ++line, aState.AdvanceToNextLine()) {
DumpLine(aState, line, deltaBCoord, 0);
#ifdef DEBUG
AutoNoisyIndenter indent2(gNoisyReflow);
#endif
if (selfDirty) {
line->MarkDirty();
}
// This really sucks, but we have to look inside any blocks that have clear
// elements inside them.
// XXX what can we do smarter here?
if (!line->IsDirty() && line->IsBlock() &&
line->mFirstChild->HasAnyStateBits(NS_BLOCK_HAS_CLEAR_CHILDREN) &&
aState.FloatManager()->HasAnyFloats()) {
line->MarkDirty();
}
nsIFrame* floatAvoidingBlock = nullptr;
if (line->IsBlock() &&
!nsBlockFrame::BlockCanIntersectFloats(line->mFirstChild)) {
floatAvoidingBlock = line->mFirstChild;
}
// We have to reflow the line if it's a block whose clearance
// might have changed, so detect that.
if (!line->IsDirty() &&
(line->HasFloatClearTypeBefore() || floatAvoidingBlock)) {
nscoord curBCoord = aState.mBCoord;
// See where we would be after applying any clearance due to
// BRs.
if (inlineFloatClearType != UsedClear::None) {
std::tie(curBCoord, std::ignore) =
aState.ClearFloats(curBCoord, inlineFloatClearType);
}
auto [newBCoord, result] = aState.ClearFloats(
curBCoord, line->FloatClearTypeBefore(), floatAvoidingBlock);
if (line->HasClearance()) {
// Reflow the line if it might not have clearance anymore.
if (result == ClearFloatsResult::BCoordNoChange
// aState.mBCoord is the clearance point which should be the
// block-start border-edge of the block frame. If sliding the
// block by deltaBCoord isn't going to put it in the predicted
// position, then we'd better reflow the line.
|| newBCoord != line->BStart() + deltaBCoord) {
line->MarkDirty();
}
} else {
// Reflow the line if the line might have clearance now.
if (result != ClearFloatsResult::BCoordNoChange) {
line->MarkDirty();
}
}
}
// We might have to reflow a line that is after a clearing BR.
if (inlineFloatClearType != UsedClear::None) {
std::tie(aState.mBCoord, std::ignore) =
aState.ClearFloats(aState.mBCoord, inlineFloatClearType);
if (aState.mBCoord != line->BStart() + deltaBCoord) {
// SlideLine is not going to put the line where the clearance
// put it. Reflow the line to be sure.
line->MarkDirty();
}
inlineFloatClearType = UsedClear::None;
}
bool previousMarginWasDirty = line->IsPreviousMarginDirty();
if (previousMarginWasDirty) {
// If the previous margin is dirty, reflow the current line
line->MarkDirty();
line->ClearPreviousMarginDirty();
} else if (aState.ContentBSize() != NS_UNCONSTRAINEDSIZE) {
const nscoord scrollableOverflowBEnd =
LogicalRect(line->mWritingMode, line->ScrollableOverflowRect(),
line->mContainerSize)
.BEnd(line->mWritingMode);
if (scrollableOverflowBEnd + deltaBCoord > aState.ContentBEnd()) {
// Lines that aren't dirty but get slid past our available block-size
// constraint must be reflowed.
line->MarkDirty();
}
}
if (!line->IsDirty()) {
const bool isPaginated =
// Last column can be reflowed unconstrained during column balancing.
// Hence the additional NS_FRAME_HAS_MULTI_COLUMN_ANCESTOR bit check
// as a fail-safe fallback.
aState.mReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE ||
HasAnyStateBits(NS_FRAME_HAS_MULTI_COLUMN_ANCESTOR) ||
// Table can also be reflowed unconstrained during printing.
aState.mPresContext->IsPaginated();
if (isPaginated) {
// We are in a paginated context, i.e. in columns or pages.
const bool mayContainFloats =
line->IsBlock() || line->HasFloats() || line->HadFloatPushed();
if (mayContainFloats) {
// The following if-else conditions check whether this line -- which
// might have floats in its subtree, or has floats as direct children,
// or had floats pushed -- needs to be reflowed.
if (deltaBCoord != 0 || aState.mReflowInput.IsBResize()) {
// The distance to the block-end edge might have changed. Reflow the
// line both because the breakpoints within its floats may have
// changed and because we might have to push/pull the floats in
// their entirety.
line->MarkDirty();
} else if (HasPushedFloats()) {
// We had pushed floats which haven't been drained by our
// next-in-flow, which means our parent is currently reflowing us
// again due to clearance without creating a next-in-flow for us.
// Reflow the line to redo the floats split logic to correctly set
// our reflow status.
line->MarkDirty();
} else if (aState.mReflowInput.mFlags.mMustReflowPlaceholders) {
// Reflow the line (that may containing a float's placeholder frame)
// if our parent tells us to do so.
line->MarkDirty();
} else if (aState.mReflowInput.mFlags.mMovedBlockFragments) {
// Our parent's line containing us moved to a different fragment.
// Reflow the line because the decision about whether the float fits
// may be different in a different fragment.
line->MarkDirty();
}
}
}
}
if (!line->IsDirty()) {
// See if there's any reflow damage that requires that we mark the
// line dirty.
PropagateFloatDamage(aState, line, deltaBCoord);
}
// If the container size has changed, reset mContainerSize. If the
// line's writing mode is not ltr, or if the line is not left-aligned, also
// mark the line dirty.
if (aState.ContainerSize() != line->mContainerSize) {
line->mContainerSize = aState.ContainerSize();
const bool isLastLine = line == mLines.back() && !GetNextInFlow();
const auto align = isLastLine ? StyleText()->TextAlignForLastLine()
: StyleText()->mTextAlign;
if (line->mWritingMode.IsVertical() || line->mWritingMode.IsBidiRTL() ||
!IsAlignedLeft(align, StyleVisibility()->mDirection,
StyleTextReset()->mUnicodeBidi, this)) {
line->MarkDirty();
}
}
// Check for a page break caused by CSS named pages.
//
// We should break for named pages when two frames meet at a class A
// breakpoint, where the first frame has a different end page value to the
// second frame's start page value. canBreakForPageNames is true iff
// children of this frame can form class A breakpoints, and that we are not
// in a measurement reflow or in a monolithic container such as
// 'inline-block'.
//
// We specifically do not want to cause a page-break for named pages when
// we are at the top of a page. This would otherwise happen when the
// previous sibling is an nsPageBreakFrame, or all previous siblings on the
// current page are zero-height. The latter may not be per-spec, but is
// compatible with Chrome's implementation of named pages.
const nsAtom* nextPageName = nullptr;
bool shouldBreakForPageName = false;
if (canBreakForPageNames && (!aState.mReflowInput.mFlags.mIsTopOfPage ||
!aState.IsAdjacentWithBStart())) {
const nsIFrame* const frame = line->mFirstChild;
if (!frame->IsPlaceholderFrame() && !frame->IsPageBreakFrame()) {
nextPageName = frame->GetStartPageValue();
// Walk back to the last frame that isn't a placeholder.
const nsIFrame* prevFrame = frame->GetPrevSibling();
while (prevFrame && prevFrame->IsPlaceholderFrame()) {
prevFrame = prevFrame->GetPrevSibling();
}
if (prevFrame && prevFrame->GetEndPageValue() != nextPageName) {
shouldBreakForPageName = true;
line->MarkDirty();
}
}
}
if (needToRecoverState && line->IsDirty()) {
// We need to reconstruct the block-end margin only if we didn't
// reflow the previous line and we do need to reflow (or repair
// the block-start position of) the next line.
aState.ReconstructMarginBefore(line);
}
bool reflowedPrevLine = !needToRecoverState;
if (needToRecoverState) {
needToRecoverState = false;
// Update aState.mPrevChild as if we had reflowed all of the frames in
// this line.
if (line->IsDirty()) {
NS_ASSERTION(
line->mFirstChild->GetPrevSibling() == line.prev()->LastChild(),
"unexpected line frames");
aState.mPrevChild = line->mFirstChild->GetPrevSibling();
}
}
// Now repair the line and update |aState.mBCoord| by calling
// |ReflowLine| or |SlideLine|.
// If we're going to reflow everything again, then no need to reflow
// the dirty line ... unless the line has floats, in which case we'd
// better reflow it now to refresh its float cache, which may contain
// dangling frame pointers! Ugh! This reflow of the line may be
// incorrect because we skipped reflowing previous lines (e.g., floats
// may be placed incorrectly), but that's OK because we'll mark the
// line dirty below under "if (aState.mReflowInput.mDiscoveredClearance..."
if (line->IsDirty() && (line->HasFloats() || !willReflowAgain)) {
lastLineMovedUp = true;
bool maybeReflowingForFirstTime =
line->IStart() == 0 && line->BStart() == 0 && line->ISize() == 0 &&
line->BSize() == 0;
// Compute the dirty lines "before" BEnd, after factoring in
// the running deltaBCoord value - the running value is implicit in
// aState.mBCoord.
nscoord oldB = line->BStart();
nscoord oldBMost = line->BEnd();
NS_ASSERTION(!willReflowAgain || !line->IsBlock(),
"Don't reflow blocks while willReflowAgain is true, reflow "
"of block abs-pos children depends on this");
if (shouldBreakForPageName) {
// Immediately fragment for page-name. It is possible we could break
// out of the loop right here, but this should make it more similar to
// what happens when reflow causes fragmentation.
// Set the page name, so that PushTruncatedLine does not need to
// recalculate the new page name.
PresShell()->FrameConstructor()->SetNextPageContentFramePageName(
nextPageName ? nextPageName : GetAutoPageValue());
PushTruncatedLine(aState, line, &keepGoing,
ComputeNewPageNameIfNeeded::No);
} else {
// Reflow the dirty line. If it's an incremental reflow, then force
// it to invalidate the dirty area if necessary
usedOverflowWrap |= ReflowLine(aState, line, &keepGoing);
}
if (aState.mReflowInput.WillReflowAgainForClearance()) {
line->MarkDirty();
willReflowAgain = true;
// Note that once we've entered this state, every line that gets here
// (e.g. because it has floats) gets marked dirty and reflowed again.
// in the next pass. This is important, see above.
}
if (line->HasFloats()) {
reflowedFloat = true;
}
if (!keepGoing) {
DumpLine(aState, line, deltaBCoord, -1);
if (0 == line->GetChildCount()) {
DeleteLine(aState, line, line_end);
}
break;
}
// Test to see whether the margin that should be carried out
// to the next line (NL) might have changed. In ReflowBlockFrame
// we call nextLine->MarkPreviousMarginDirty if the block's
// actual carried-out block-end margin changed. So here we only
// need to worry about the following effects:
// 1) the line was just created, and it might now be blocking
// a carried-out block-end margin from previous lines that
// used to reach NL from reaching NL
// 2) the line used to be empty, and is now not empty,
// thus blocking a carried-out block-end margin from previous lines
// that used to reach NL from reaching NL
// 3) the line wasn't empty, but now is, so a carried-out
// block-end margin from previous lines that didn't used to reach NL
// now does
// 4) the line might have changed in a way that affects NL's
// ShouldApplyBStartMargin decision. The three things that matter
// are the line's emptiness, its adjacency to the block-start edge of the
// block, and whether it has clearance (the latter only matters if the
// block was and is adjacent to the block-start and empty).
//
// If the line is empty now, we can't reliably tell if the line was empty
// before, so we just assume it was and do
// nextLine->MarkPreviousMarginDirty. This means the checks in 4) are
// redundant; if the line is empty now we don't need to check 4), but if
// the line is not empty now and we're sure it wasn't empty before, any
// adjacency and clearance changes are irrelevant to the result of
// nextLine->ShouldApplyBStartMargin.
if (line.next() != LinesEnd()) {
bool maybeWasEmpty = oldB == line.next()->BStart();
bool isEmpty = line->CachedIsEmpty();
if (maybeReflowingForFirstTime /*1*/ ||
(isEmpty || maybeWasEmpty) /*2/3/4*/) {
line.next()->MarkPreviousMarginDirty();
// since it's marked dirty, nobody will care about |deltaBCoord|
}
}
// If the line was just reflowed for the first time, then its
// old mBounds cannot be trusted so this deltaBCoord computation is
// bogus. But that's OK because we just did
// MarkPreviousMarginDirty on the next line which will force it
// to be reflowed, so this computation of deltaBCoord will not be
// used.
deltaBCoord = line->BEnd() - oldBMost;
// Now do an interrupt check. We want to do this only in the case when we
// actually reflow the line, so that if we get back in here we'll get
// further on the reflow before interrupting.
aState.mPresContext->CheckForInterrupt(this);
} else {
aState.mOverflowTracker->Skip(line->mFirstChild, aState.mReflowStatus);
// Nop except for blocks (we don't create overflow container
// continuations for any inlines atm), so only checking mFirstChild
// is enough
lastLineMovedUp = deltaBCoord < 0;
if (deltaBCoord != 0) {
SlideLine(aState, line, deltaBCoord);
} else {
repositionViews = true;
}
NS_ASSERTION(!line->IsDirty() || !line->HasFloats(),
"Possibly stale float cache here!");
if (willReflowAgain && line->IsBlock()) {
// If we're going to reflow everything again, and this line is a block,
// then there is no need to recover float state. The line may contain
// other lines with floats, but in that case RecoverStateFrom would only
// add floats to the float manager. We don't need to do that because
// everything's going to get reflowed again "for real". Calling
// RecoverStateFrom in this situation could be lethal because the
// block's descendant lines may have float caches containing dangling
// frame pointers. Ugh!
// If this line is inline, then we need to recover its state now
// to make sure that we don't forget to move its floats by deltaBCoord.
} else {
// XXX EVIL O(N^2) EVIL
aState.RecoverStateFrom(line, deltaBCoord);
}
// Keep mBCoord up to date in case we're propagating reflow damage
// and also because our final height may depend on it. If the
// line is inlines, then only update mBCoord if the line is not
// empty, because that's what PlaceLine does. (Empty blocks may
// want to update mBCoord, e.g. if they have clearance.)
if (line->IsBlock() || !line->CachedIsEmpty()) {
aState.mBCoord = line->BEnd();
}
needToRecoverState = true;
if (reflowedPrevLine && !line->IsBlock() &&
aState.mPresContext->HasPendingInterrupt()) {
// Need to make sure to pull overflows from any prev-in-flows
for (nsIFrame* inlineKid = line->mFirstChild; inlineKid;
inlineKid = inlineKid->PrincipalChildList().FirstChild()) {
inlineKid->PullOverflowsFromPrevInFlow();
}
}
}
// Record if we need to clear floats before reflowing the next
// line. Note that inlineFloatClearType will be handled and
// cleared before the next line is processed, so there is no
// need to combine break types here.
if (line->HasFloatClearTypeAfter()) {
inlineFloatClearType = line->FloatClearTypeAfter();
}
if (LineHasClear(line.get())) {
foundAnyClears = true;
}
DumpLine(aState, line, deltaBCoord, -1);
if (aState.mPresContext->HasPendingInterrupt()) {
willReflowAgain = true;
// Another option here might be to leave |line| clean if
// !HasPendingInterrupt() before the CheckForInterrupt() call, since in
// that case the line really did reflow as it should have. Not sure
// whether that would be safe, so doing this for now instead. Also not
// sure whether we really want to mark all lines dirty after an
// interrupt, but until we get better at propagating float damage we
// really do need to do it this way; see comments inside MarkLineDirty.
MarkLineDirtyForInterrupt(line);
}
}
// Handle BR-clearance from the last line of the block
if (inlineFloatClearType != UsedClear::None) {
std::tie(aState.mBCoord, std::ignore) =
aState.ClearFloats(aState.mBCoord, inlineFloatClearType);
}
if (needToRecoverState) {
// Is this expensive?
aState.ReconstructMarginBefore(line);
// Update aState.mPrevChild as if we had reflowed all of the frames in
// the last line.
NS_ASSERTION(line == line_end || line->mFirstChild->GetPrevSibling() ==
line.prev()->LastChild(),
"unexpected line frames");
aState.mPrevChild = line == line_end ? mFrames.LastChild()
: line->mFirstChild->GetPrevSibling();
}
// Should we really have to do this?
if (repositionViews) {
nsContainerFrame::PlaceFrameView(this);
}
// We can skip trying to pull up the next line if our height is constrained
// (so we can report being incomplete) and there is no next in flow or we
// were told not to or we know it will be futile, i.e.,
// -- the next in flow is not changing
// -- and we cannot have added more space for its first line to be
// pulled up into,
// -- it's an incremental reflow of a descendant
// -- and we didn't reflow any floats (so the available space
// didn't change)
// -- my chain of next-in-flows either has no first line, or its first
// line isn't dirty.
bool heightConstrained =
aState.mReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE;
bool skipPull = willReflowAgain && heightConstrained;
if (!skipPull && heightConstrained && aState.mNextInFlow &&
(aState.mReflowInput.mFlags.mNextInFlowUntouched && !lastLineMovedUp &&
!HasAnyStateBits(NS_FRAME_IS_DIRTY) && !reflowedFloat)) {
// We'll place lineIter at the last line of this block, so that
// nsBlockInFlowLineIterator::Next() will take us to the first
// line of my next-in-flow-chain. (But first, check that I
// have any lines -- if I don't, just bail out of this
// optimization.)
LineIterator lineIter = this->LinesEnd();
if (lineIter != this->LinesBegin()) {
lineIter--; // I have lines; step back from dummy iterator to last line.
nsBlockInFlowLineIterator bifLineIter(this, lineIter);
// Check for next-in-flow-chain's first line.
// (First, see if there is such a line, and second, see if it's clean)
if (!bifLineIter.Next() || !bifLineIter.GetLine()->IsDirty()) {
skipPull = true;
}
}
}
if (skipPull && aState.mNextInFlow) {
NS_ASSERTION(heightConstrained, "Height should be constrained here\n");
if (aState.mNextInFlow->IsTrueOverflowContainer()) {
aState.mReflowStatus.SetOverflowIncomplete();
} else {
aState.mReflowStatus.SetIncomplete();
}
}
if (!skipPull && aState.mNextInFlow) {
// Pull data from a next-in-flow if there's still room for more
// content here.
while (keepGoing && aState.mNextInFlow) {
// Grab first line from our next-in-flow
nsBlockFrame* nextInFlow = aState.mNextInFlow;
nsLineBox* pulledLine;
nsFrameList pulledFrames;
if (!nextInFlow->mLines.empty()) {
RemoveFirstLine(nextInFlow->mLines, nextInFlow->mFrames, &pulledLine,
&pulledFrames);
ClearLineCursors();
} else {
// Grab an overflow line if there are any
FrameLines* overflowLines = nextInFlow->GetOverflowLines();
if (!overflowLines) {
aState.mNextInFlow =
static_cast<nsBlockFrame*>(nextInFlow->GetNextInFlow());
continue;
}
bool last =
RemoveFirstLine(overflowLines->mLines, overflowLines->mFrames,
&pulledLine, &pulledFrames);
if (last) {
nextInFlow->DestroyOverflowLines();
}
}
if (pulledFrames.IsEmpty()) {
// The line is empty. Try the next one.
NS_ASSERTION(
pulledLine->GetChildCount() == 0 && !pulledLine->mFirstChild,
"bad empty line");
nextInFlow->FreeLineBox(pulledLine);
continue;
}
if (nextInFlow->MaybeHasLineCursor()) {
if (pulledLine == nextInFlow->GetLineCursorForDisplay()) {
nextInFlow->ClearLineCursorForDisplay();
}
if (pulledLine == nextInFlow->GetLineCursorForQuery()) {
nextInFlow->ClearLineCursorForQuery();
}
}
ReparentFrames(pulledFrames, nextInFlow, this);
pulledLine->SetMovedFragments();
NS_ASSERTION(pulledFrames.LastChild() == pulledLine->LastChild(),
"Unexpected last frame");
NS_ASSERTION(aState.mPrevChild || mLines.empty(),
"should have a prevchild here");
NS_ASSERTION(aState.mPrevChild == mFrames.LastChild(),
"Incorrect aState.mPrevChild before inserting line at end");
// Shift pulledLine's frames into our mFrames list.
mFrames.AppendFrames(nullptr, std::move(pulledFrames));
// Add line to our line list, and set its last child as our new prev-child
line = mLines.before_insert(LinesEnd(), pulledLine);
aState.mPrevChild = mFrames.LastChild();
// Reparent floats whose placeholders are in the line.
ReparentFloats(pulledLine->mFirstChild, nextInFlow, true);
DumpLine(aState, pulledLine, deltaBCoord, 0);
#ifdef DEBUG
AutoNoisyIndenter indent2(gNoisyReflow);
#endif
if (aState.mPresContext->HasPendingInterrupt()) {
MarkLineDirtyForInterrupt(line);
} else {
// Now reflow it and any lines that it makes during it's reflow
// (we have to loop here because reflowing the line may cause a new
// line to be created; see SplitLine's callers for examples of
// when this happens).
while (line != LinesEnd()) {
usedOverflowWrap |= ReflowLine(aState, line, &keepGoing);
if (aState.mReflowInput.WillReflowAgainForClearance()) {
line->MarkDirty();
keepGoing = false;
aState.mReflowStatus.SetIncomplete();
break;
}
DumpLine(aState, line, deltaBCoord, -1);
if (!keepGoing) {
if (0 == line->GetChildCount()) {
DeleteLine(aState, line, line_end);
}
break;
}
if (LineHasClear(line.get())) {
foundAnyClears = true;
}
if (aState.mPresContext->CheckForInterrupt(this)) {
MarkLineDirtyForInterrupt(line);
break;
}
// If this is an inline frame then its time to stop
++line;
aState.AdvanceToNextLine();
}
}
}
if (aState.mReflowStatus.IsIncomplete()) {
aState.mReflowStatus.SetNextInFlowNeedsReflow();
} // XXXfr shouldn't set this flag when nextinflow has no lines
}
// Handle an odd-ball case: a list-item with no lines
nsIFrame* outsideMarker = GetOutsideMarker();
if (outsideMarker && mLines.empty()) {
ReflowOutput metrics(aState.mReflowInput);
WritingMode wm = aState.mReflowInput.GetWritingMode();
ReflowOutsideMarker(
outsideMarker, aState, metrics,
aState.mReflowInput.ComputedPhysicalBorderPadding().top);
NS_ASSERTION(!MarkerIsEmpty(outsideMarker) || metrics.BSize(wm) == 0,
"empty ::marker frame took up space");
if (!MarkerIsEmpty(outsideMarker)) {
// There are no lines so we have to fake up some y motion so that
// we end up with *some* height.
// (Note: if we're layout-contained, we have to be sure to leave our
// ReflowOutput's BlockStartAscent() (i.e. the baseline) untouched,
// because layout-contained frames have no baseline.)
if (!aState.mReflowInput.mStyleDisplay->IsContainLayout() &&
metrics.BlockStartAscent() == ReflowOutput::ASK_FOR_BASELINE) {
nscoord ascent;
WritingMode wm = aState.mReflowInput.GetWritingMode();
if (nsLayoutUtils::GetFirstLineBaseline(wm, outsideMarker, &ascent)) {
metrics.SetBlockStartAscent(ascent);
} else {
metrics.SetBlockStartAscent(metrics.BSize(wm));
}
}
RefPtr<nsFontMetrics> fm =
nsLayoutUtils::GetInflatedFontMetricsForFrame(this);
nscoord minAscent = nsLayoutUtils::GetCenteredFontBaseline(
fm, aState.mMinLineHeight, wm.IsLineInverted());
nscoord minDescent = aState.mMinLineHeight - minAscent;
aState.mBCoord +=
std::max(minAscent, metrics.BlockStartAscent()) +
std::max(minDescent, metrics.BSize(wm) - metrics.BlockStartAscent());
nscoord offset = minAscent - metrics.BlockStartAscent();
if (offset > 0) {
outsideMarker->SetRect(outsideMarker->GetRect() + nsPoint(0, offset));
}
}
}
if (LinesAreEmpty() && ShouldHaveLineIfEmpty()) {
aState.mBCoord += aState.mMinLineHeight;
}
if (foundAnyClears) {
AddStateBits(NS_BLOCK_HAS_CLEAR_CHILDREN);
} else {
RemoveStateBits(NS_BLOCK_HAS_CLEAR_CHILDREN);
}
#ifdef DEBUG
VerifyLines(true);
VerifyOverflowSituation();
if (gNoisyReflow) {
IndentBy(stdout, gNoiseIndent - 1);
ListTag(stdout);
printf(": done reflowing dirty lines (status=%s)\n",
ToString(aState.mReflowStatus).c_str());
}
#endif
return usedOverflowWrap;
}
void nsBlockFrame::MarkLineDirtyForInterrupt(nsLineBox* aLine) {
aLine->MarkDirty();
// Just checking NS_FRAME_IS_DIRTY is ok, because we've already
// marked the lines that need to be marked dirty based on our
// vertical resize stuff. So we'll definitely reflow all those kids;
// the only question is how they should behave.
if (HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
// Mark all our child frames dirty so we make sure to reflow them
// later.
int32_t n = aLine->GetChildCount();
for (nsIFrame* f = aLine->mFirstChild; n > 0;
f = f->GetNextSibling(), --n) {
f->MarkSubtreeDirty();
}
// And mark all the floats whose reflows we might be skipping dirty too.
if (aLine->HasFloats()) {
for (nsIFrame* f : aLine->Floats()) {
f->MarkSubtreeDirty();
}
}
} else {
// Dirty all the descendant lines of block kids to handle float damage,
// since our nsFloatManager will go away by the next time we're reflowing.
// XXXbz Can we do something more like what PropagateFloatDamage does?
// Would need to sort out the exact business with mBlockDelta for that....
// This marks way too much dirty. If we ever make this better, revisit
// which lines we mark dirty in the interrupt case in ReflowDirtyLines.
nsBlockFrame* bf = do_QueryFrame(aLine->mFirstChild);
if (bf) {
MarkAllDescendantLinesDirty(bf);
}
}
}
void nsBlockFrame::DeleteLine(BlockReflowState& aState,
nsLineList::iterator aLine,
nsLineList::iterator aLineEnd) {
MOZ_ASSERT(0 == aLine->GetChildCount(), "can't delete !empty line");
if (0 == aLine->GetChildCount()) {
NS_ASSERTION(aState.mCurrentLine == aLine,
"using function more generally than designed, "
"but perhaps OK now");
nsLineBox* line = aLine;
aLine = mLines.erase(aLine);
FreeLineBox(line);
ClearLineCursors();
// Mark the previous margin of the next line dirty since we need to
// recompute its top position.
if (aLine != aLineEnd) {
aLine->MarkPreviousMarginDirty();
}
}
}
/**
* Reflow a line. The line will either contain a single block frame
* or contain 1 or more inline frames. aKeepReflowGoing indicates
* whether or not the caller should continue to reflow more lines.
* Returns true if the reflow used an overflow-wrap breakpoint.
*/
bool nsBlockFrame::ReflowLine(BlockReflowState& aState, LineIterator aLine,
bool* aKeepReflowGoing) {
MOZ_ASSERT(aLine->GetChildCount(), "reflowing empty line");
// Setup the line-layout for the new line
aState.mCurrentLine = aLine;
aLine->ClearDirty();
aLine->InvalidateCachedIsEmpty();
aLine->ClearHadFloatPushed();
// If this line contains a single block that is hidden by `content-visibility`
// don't reflow the line. If this line contains inlines and the first one is
// hidden by `content-visibility`, all of them are, so avoid reflow in that
// case as well.
// For frames that own anonymous children, even the first child is hidden by
// `content-visibility`, there could be some anonymous children need reflow,
// so we don't skip reflow this line.
nsIFrame* firstChild = aLine->mFirstChild;
if (firstChild->IsHiddenByContentVisibilityOfInFlowParentForLayout() &&
!HasAnyStateBits(NS_FRAME_OWNS_ANON_BOXES)) {
return false;
}
// Now that we know what kind of line we have, reflow it
bool usedOverflowWrap = false;
if (aLine->IsBlock()) {
ReflowBlockFrame(aState, aLine, aKeepReflowGoing);
} else {
aLine->SetLineWrapped(false);
usedOverflowWrap = ReflowInlineFrames(aState, aLine, aKeepReflowGoing);
// Store the line's float edges for overflow marker analysis if needed.
aLine->ClearFloatEdges();
if (aState.mFlags.mCanHaveOverflowMarkers) {
WritingMode wm = aLine->mWritingMode;
nsFlowAreaRect r = aState.GetFloatAvailableSpaceForBSize(
wm, aLine->BStart(), aLine->BSize(), nullptr);
if (r.HasFloats()) {
LogicalRect so = aLine->GetOverflowArea(OverflowType::Scrollable, wm,
aLine->mContainerSize);
nscoord s = r.mRect.IStart(wm);
nscoord e = r.mRect.IEnd(wm);
if (so.IEnd(wm) > e || so.IStart(wm) < s) {
// This line is overlapping a float - store the edges marking the area
// between the floats for text-overflow analysis.
aLine->SetFloatEdges(s, e);
}
}
}
}
aLine->ClearMovedFragments();
return usedOverflowWrap;
}
nsIFrame* nsBlockFrame::PullFrame(BlockReflowState& aState,
LineIterator aLine) {
// First check our remaining lines.
if (LinesEnd() != aLine.next()) {
return PullFrameFrom(aLine, this, aLine.next());
}
NS_ASSERTION(
!GetOverflowLines(),
"Our overflow lines should have been removed at the start of reflow");
// Try each next-in-flow.
nsBlockFrame* nextInFlow = aState.mNextInFlow;
while (nextInFlow) {
if (nextInFlow->mLines.empty()) {
nextInFlow->DrainSelfOverflowList();
}
if (!nextInFlow->mLines.empty()) {
return PullFrameFrom(aLine, nextInFlow, nextInFlow->mLines.begin());
}
nextInFlow = static_cast<nsBlockFrame*>(nextInFlow->GetNextInFlow());
aState.mNextInFlow = nextInFlow;
}
return nullptr;
}
nsIFrame* nsBlockFrame::PullFrameFrom(nsLineBox* aLine,
nsBlockFrame* aFromContainer,
nsLineList::iterator aFromLine) {
nsLineBox* fromLine = aFromLine;
MOZ_ASSERT(fromLine, "bad line to pull from");
MOZ_ASSERT(fromLine->GetChildCount(), "empty line");
MOZ_ASSERT(aLine->GetChildCount(), "empty line");
MOZ_ASSERT(!HasProperty(LineIteratorProperty()),
"Shouldn't have line iterators mid-reflow");
NS_ASSERTION(fromLine->IsBlock() == fromLine->mFirstChild->IsBlockOutside(),
"Disagreement about whether it's a block or not");
if (fromLine->IsBlock()) {
// If our line is not empty and the child in aFromLine is a block
// then we cannot pull up the frame into this line. In this case
// we stop pulling.
return nullptr;
}
// Take frame from fromLine
nsIFrame* frame = fromLine->mFirstChild;
nsIFrame* newFirstChild = frame->GetNextSibling();
if (aFromContainer != this) {
// The frame is being pulled from a next-in-flow; therefore we need to add
// it to our sibling list.
MOZ_ASSERT(aLine == mLines.back());
MOZ_ASSERT(aFromLine == aFromContainer->mLines.begin(),
"should only pull from first line");
aFromContainer->mFrames.RemoveFrame(frame);
// When pushing and pulling frames we need to check for whether any
// views need to be reparented.
ReparentFrame(frame, aFromContainer, this);
mFrames.AppendFrame(nullptr, frame);
// The frame might have (or contain) floats that need to be brought
// over too. (pass 'false' since there are no siblings to check)
ReparentFloats(frame, aFromContainer, false);
} else {
MOZ_ASSERT(aLine == aFromLine.prev());
}
aLine->NoteFrameAdded(frame);
fromLine->NoteFrameRemoved(frame);
if (fromLine->GetChildCount() > 0) {
// Mark line dirty now that we pulled a child
fromLine->MarkDirty();
fromLine->mFirstChild = newFirstChild;
} else {
// Free up the fromLine now that it's empty.
// Its bounds might need to be redrawn, though.
if (aFromLine.next() != aFromContainer->mLines.end()) {
aFromLine.next()->MarkPreviousMarginDirty();
}
aFromContainer->mLines.erase(aFromLine);
// aFromLine is now invalid
aFromContainer->FreeLineBox(fromLine);
}
#ifdef DEBUG
VerifyLines(true);
VerifyOverflowSituation();
#endif
return frame;
}
void nsBlockFrame::SlideLine(BlockReflowState& aState, nsLineBox* aLine,
nscoord aDeltaBCoord) {
MOZ_ASSERT(aDeltaBCoord != 0, "why slide a line nowhere?");
// Adjust line state
aLine->SlideBy(aDeltaBCoord, aState.ContainerSize());
// Adjust the frames in the line
MoveChildFramesOfLine(aLine, aDeltaBCoord);
}
void nsBlockFrame::UpdateLineContainerSize(nsLineBox* aLine,
const nsSize& aNewContainerSize) {
if (aNewContainerSize == aLine->mContainerSize) {
return;
}
// Adjust line state
nsSize sizeDelta = aLine->UpdateContainerSize(aNewContainerSize);
// Changing container width only matters if writing mode is vertical-rl
if (GetWritingMode().IsVerticalRL()) {
MoveChildFramesOfLine(aLine, sizeDelta.width);
}
}
void nsBlockFrame::MoveChildFramesOfLine(nsLineBox* aLine,
nscoord aDeltaBCoord) {
// Adjust the frames in the line
nsIFrame* kid = aLine->mFirstChild;
if (!kid) {
return;
}
WritingMode wm = GetWritingMode();
LogicalPoint translation(wm, 0, aDeltaBCoord);
if (aLine->IsBlock()) {
if (aDeltaBCoord) {
kid->MovePositionBy(wm, translation);
}
// Make sure the frame's view and any child views are updated
nsContainerFrame::PlaceFrameView(kid);
} else {
// Adjust the block-dir coordinate of the frames in the line.
// Note: we need to re-position views even if aDeltaBCoord is 0, because
// one of our parent frames may have moved and so the view's position
// relative to its parent may have changed.
int32_t n = aLine->GetChildCount();
while (--n >= 0) {
if (aDeltaBCoord) {
kid->MovePositionBy(wm, translation);
}
// Make sure the frame's view and any child views are updated
nsContainerFrame::PlaceFrameView(kid);
kid = kid->GetNextSibling();
}
}
}
static inline bool IsNonAutoNonZeroBSize(const StyleSize& aCoord) {
// The "extremum length" values (see ExtremumLength) were originally aimed at
// inline-size (or width, as it was before logicalization). For now, let them
// return false here, so we treat them like 'auto' pending a real
//
// which should more likely (but not necessarily, depending on the available
// space) be returning true.
if (aCoord.BehavesLikeInitialValueOnBlockAxis()) {
return false;
}
MOZ_ASSERT(aCoord.IsLengthPercentage());
// If we evaluate the length/percent/calc at a percentage basis of
// both nscoord_MAX and 0, and it's zero both ways, then it's a zero
// length, percent, or combination thereof. Test > 0 so we clamp
// negative calc() results to 0.
return aCoord.AsLengthPercentage().Resolve(nscoord_MAX) > 0 ||
aCoord.AsLengthPercentage().Resolve(0) > 0;
}
/* virtual */
bool nsBlockFrame::IsSelfEmpty() {
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
return true;
}
// Blocks which are margin-roots (including inline-blocks) cannot be treated
// as empty for margin-collapsing and other purposes. They're more like
// replaced elements.
if (HasAnyStateBits(NS_BLOCK_BFC)) {
return false;
}
WritingMode wm = GetWritingMode();
const nsStylePosition* position = StylePosition();
if (IsNonAutoNonZeroBSize(position->MinBSize(wm)) ||
IsNonAutoNonZeroBSize(position->BSize(wm))) {
return false;
}
// FIXME: Handle the case that both inline and block sizes are auto.
// Note: block-size could be zero or auto/intrinsic keywords here.
if (position->BSize(wm).BehavesLikeInitialValueOnBlockAxis() &&
position->mAspectRatio.HasFiniteRatio()) {
return false;
}
const nsStyleBorder* border = StyleBorder();
const nsStylePadding* padding = StylePadding();
if (border->GetComputedBorderWidth(wm.PhysicalSide(LogicalSide::BStart)) !=
0 ||
border->GetComputedBorderWidth(wm.PhysicalSide(LogicalSide::BEnd)) != 0 ||
!nsLayoutUtils::IsPaddingZero(padding->mPadding.GetBStart(wm)) ||
!nsLayoutUtils::IsPaddingZero(padding->mPadding.GetBEnd(wm))) {
return false;
}
nsIFrame* outsideMarker = GetOutsideMarker();
if (outsideMarker && !MarkerIsEmpty(outsideMarker)) {
return false;
}
return true;
}
bool nsBlockFrame::CachedIsEmpty() {
if (!IsSelfEmpty()) {
return false;
}
for (auto& line : mLines) {
if (!line.CachedIsEmpty()) {
return false;
}
}
return true;
}
bool nsBlockFrame::IsEmpty() {
if (!IsSelfEmpty()) {
return false;
}
return LinesAreEmpty();
}
bool nsBlockFrame::ShouldApplyBStartMargin(BlockReflowState& aState,
nsLineBox* aLine) {
if (aLine->mFirstChild->IsPageBreakFrame()) {
// A page break frame consumes margins adjacent to it.
return false;
}
if (aState.mFlags.mShouldApplyBStartMargin) {
// Apply short-circuit check to avoid searching the line list
return true;
}
if (!aState.IsAdjacentWithBStart()) {
// If we aren't at the start block-coordinate then something of non-zero
// height must have been placed. Therefore the childs block-start margin
// applies.
aState.mFlags.mShouldApplyBStartMargin = true;
return true;
}
// Determine if this line is "essentially" the first line
LineIterator line = LinesBegin();
if (aState.mFlags.mHasLineAdjacentToTop) {
line = aState.mLineAdjacentToTop;
}
while (line != aLine) {
if (!line->CachedIsEmpty() || line->HasClearance()) {
// A line which precedes aLine is non-empty, or has clearance,
// so therefore the block-start margin applies.
aState.mFlags.mShouldApplyBStartMargin = true;
return true;
}
// No need to apply the block-start margin if the line has floats. We
++line;
aState.mFlags.mHasLineAdjacentToTop = true;
aState.mLineAdjacentToTop = line;
}
// The line being reflowed is "essentially" the first line in the
// block. Therefore its block-start margin will be collapsed by the
// generational collapsing logic with its parent (us).
return false;
}
void nsBlockFrame::ReflowBlockFrame(BlockReflowState& aState,
LineIterator aLine,
bool* aKeepReflowGoing) {
MOZ_ASSERT(*aKeepReflowGoing, "bad caller");
nsIFrame* frame = aLine->mFirstChild;
if (!frame) {
NS_ASSERTION(false, "program error - unexpected empty line");
return;
}
// If the previous frame was a page-break-frame, then preemptively push this
// frame to the next page.
// This is primarily important for the placeholders for abspos frames, which
// measure as zero height and then would be placed on this page.
if (aState.ContentBSize() != NS_UNCONSTRAINEDSIZE) {
const nsIFrame* const prev = frame->GetPrevSibling();
if (prev && prev->IsPageBreakFrame()) {
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
return;
}
}
// Prepare the block reflow engine
nsBlockReflowContext brc(aState.mPresContext, aState.mReflowInput);
WritingMode cbWM = frame->GetContainingBlock()->GetWritingMode();
UsedClear clearType = frame->StyleDisplay()->UsedClear(cbWM);
if (aState.mTrailingClearFromPIF != UsedClear::None) {
clearType = nsLayoutUtils::CombineClearType(clearType,
aState.mTrailingClearFromPIF);
aState.mTrailingClearFromPIF = UsedClear::None;
}
// Clear past floats before the block if the clear style is not none
aLine->ClearForcedLineBreak();
if (clearType != UsedClear::None) {
aLine->SetFloatClearTypeBefore(clearType);
}
// See if we should apply the block-start margin. If the block frame being
// reflowed is a continuation, then we don't apply its block-start margin
// because it's not significant. Otherwise, dig deeper.
bool applyBStartMargin =
!frame->GetPrevContinuation() && ShouldApplyBStartMargin(aState, aLine);
if (applyBStartMargin) {
// The HasClearance setting is only valid if ShouldApplyBStartMargin
// returned false (in which case the block-start margin-root set our
// clearance flag). Otherwise clear it now. We'll set it later on
// ourselves if necessary.
aLine->ClearHasClearance();
}
bool treatWithClearance = aLine->HasClearance();
bool mightClearFloats = clearType != UsedClear::None;
nsIFrame* floatAvoidingBlock = nullptr;
if (!nsBlockFrame::BlockCanIntersectFloats(frame)) {
mightClearFloats = true;
floatAvoidingBlock = frame;
}
// If our block-start margin was counted as part of some parent's block-start
// margin collapse, and we are being speculatively reflowed assuming this
// frame DID NOT need clearance, then we need to check that
// assumption.
if (!treatWithClearance && !applyBStartMargin && mightClearFloats &&
aState.mReflowInput.mDiscoveredClearance) {
nscoord curBCoord = aState.mBCoord + aState.mPrevBEndMargin.Get();
if (auto [clearBCoord, result] =
aState.ClearFloats(curBCoord, clearType, floatAvoidingBlock);
result != ClearFloatsResult::BCoordNoChange) {
Unused << clearBCoord;
// Only record the first frame that requires clearance
if (!*aState.mReflowInput.mDiscoveredClearance) {
*aState.mReflowInput.mDiscoveredClearance = frame;
}
aState.mPrevChild = frame;
// Exactly what we do now is flexible since we'll definitely be
// reflowed.
return;
}
}
if (treatWithClearance) {
applyBStartMargin = true;
}
nsIFrame* clearanceFrame = nullptr;
const nscoord startingBCoord = aState.mBCoord;
const CollapsingMargin incomingMargin = aState.mPrevBEndMargin;
nscoord clearance;
// Save the original position of the frame so that we can reposition
// its view as needed.
nsPoint originalPosition = frame->GetPosition();
while (true) {
clearance = 0;
nscoord bStartMargin = 0;
bool mayNeedRetry = false;
bool clearedFloats = false;
bool clearedPushedOrSplitFloat = false;
if (applyBStartMargin) {
// Precompute the blocks block-start margin value so that we can get the
// correct available space (there might be a float that's
// already been placed below the aState.mPrevBEndMargin
// Setup a reflowInput to get the style computed block-start margin
// value. We'll use a reason of `resize' so that we don't fudge
// any incremental reflow input.
// The availSpace here is irrelevant to our needs - all we want
// out if this setup is the block-start margin value which doesn't depend
// on the childs available space.
// XXX building a complete ReflowInput just to get the block-start
// margin seems like a waste. And we do this for almost every block!
WritingMode wm = frame->GetWritingMode();
LogicalSize availSpace = aState.ContentSize(wm);
ReflowInput reflowInput(aState.mPresContext, aState.mReflowInput, frame,
availSpace);
if (treatWithClearance) {
aState.mBCoord += aState.mPrevBEndMargin.Get();
aState.mPrevBEndMargin.Zero();
}
// Now compute the collapsed margin-block-start value into
// aState.mPrevBEndMargin, assuming that all child margins
// collapse down to clearanceFrame.
brc.ComputeCollapsedBStartMargin(reflowInput, &aState.mPrevBEndMargin,
clearanceFrame, &mayNeedRetry);
// XXX optimization; we could check the collapsing children to see if they
// are sure to require clearance, and so avoid retrying them
if (clearanceFrame) {
// Don't allow retries on the second pass. The clearance decisions for
// the blocks whose block-start margins collapse with ours are now
// fixed.
mayNeedRetry = false;
}
if (!treatWithClearance && !clearanceFrame && mightClearFloats) {
// We don't know if we need clearance and this is the first,
// optimistic pass. So determine whether *this block* needs
// clearance. Note that we do not allow the decision for whether
// this block has clearance to change on the second pass; that
// decision is only allowed to be made under the optimistic
// first pass.
nscoord curBCoord = aState.mBCoord + aState.mPrevBEndMargin.Get();
if (auto [clearBCoord, result] =
aState.ClearFloats(curBCoord, clearType, floatAvoidingBlock);
result != ClearFloatsResult::BCoordNoChange) {
Unused << clearBCoord;
// Looks like we need clearance and we didn't know about it already.
// So recompute collapsed margin
treatWithClearance = true;
// Remember this decision, needed for incremental reflow
aLine->SetHasClearance();
// Apply incoming margins
aState.mBCoord += aState.mPrevBEndMargin.Get();
aState.mPrevBEndMargin.Zero();
// Compute the collapsed margin again, ignoring the incoming margin
// this time
mayNeedRetry = false;
brc.ComputeCollapsedBStartMargin(reflowInput, &aState.mPrevBEndMargin,
clearanceFrame, &mayNeedRetry);
}
}
// Temporarily advance the running block-direction value so that the
// GetFloatAvailableSpace method will return the right available space.
// This undone as soon as the horizontal margins are computed.
bStartMargin = aState.mPrevBEndMargin.Get();
if (treatWithClearance) {
nscoord currentBCoord = aState.mBCoord;
// advance mBCoord to the clear position.
auto [clearBCoord, result] =
aState.ClearFloats(aState.mBCoord, clearType, floatAvoidingBlock);
aState.mBCoord = clearBCoord;
clearedFloats = result != ClearFloatsResult::BCoordNoChange;
clearedPushedOrSplitFloat =
result == ClearFloatsResult::FloatsPushedOrSplit;
// Compute clearance. It's the amount we need to add to the block-start
// border-edge of the frame, after applying collapsed margins
// from the frame and its children, to get it to line up with
// the block-end of the floats. The former is
// currentBCoord + bStartMargin, the latter is the current
// aState.mBCoord.
// Note that negative clearance is possible
clearance = aState.mBCoord - (currentBCoord + bStartMargin);
// Add clearance to our block-start margin while we compute available
// space for the frame
bStartMargin += clearance;
// Note that aState.mBCoord should stay where it is: at the block-start
// border-edge of the frame
} else {
// Advance aState.mBCoord to the block-start border-edge of the frame.
aState.mBCoord += bStartMargin;
}
}
aLine->SetLineIsImpactedByFloat(false);
// Here aState.mBCoord is the block-start border-edge of the block.
// Compute the available space for the block
nsFlowAreaRect floatAvailableSpace = aState.GetFloatAvailableSpace(cbWM);
WritingMode wm = aState.mReflowInput.GetWritingMode();
LogicalRect availSpace = aState.ComputeBlockAvailSpace(
frame, floatAvailableSpace, (floatAvoidingBlock));
// The check for
// (!aState.mReflowInput.mFlags.mIsTopOfPage || clearedFloats)
// is to some degree out of paranoia: if we reliably eat up block-start
// margins at the top of the page as we ought to, it wouldn't be
// needed.
if ((!aState.mReflowInput.mFlags.mIsTopOfPage || clearedFloats) &&
(availSpace.BSize(wm) < 0 || clearedPushedOrSplitFloat)) {
// We know already that this child block won't fit on this
// page/column due to the block-start margin or the clearance. So we
// need to get out of here now. (If we don't, most blocks will handle
// things fine, and report break-before, but zero-height blocks
// won't, and will thus make their parent overly-large and force
// *it* to be pushed in its entirety.)
aState.mBCoord = startingBCoord;
aState.mPrevBEndMargin = incomingMargin;
if (ShouldAvoidBreakInside(aState.mReflowInput)) {
SetBreakBeforeStatusBeforeLine(aState, aLine, aKeepReflowGoing);
} else {
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
}
return;
}
// Now put the block-dir coordinate back to the start of the
// block-start-margin + clearance.
aState.mBCoord -= bStartMargin;
availSpace.BStart(wm) -= bStartMargin;
if (NS_UNCONSTRAINEDSIZE != availSpace.BSize(wm)) {
availSpace.BSize(wm) += bStartMargin;
}
// Construct the reflow input for the block.
Maybe<ReflowInput> childReflowInput;
Maybe<LogicalSize> cbSize;
LogicalSize availSize = availSpace.Size(wm);
bool columnSetWrapperHasNoBSizeLeft = false;
if (Style()->GetPseudoType() == PseudoStyleType::columnContent) {
// Calculate the multicol containing block's block size so that the
// children with percentage block size get correct percentage basis.
const ReflowInput* cbReflowInput =
aState.mReflowInput.mParentReflowInput->mCBReflowInput;
MOZ_ASSERT(cbReflowInput->mFrame->StyleColumn()->IsColumnContainerStyle(),
"Get unexpected reflow input of multicol containing block!");
// Use column-width as the containing block's inline-size, i.e. the column
// content's computed inline-size.
cbSize.emplace(LogicalSize(wm, aState.mReflowInput.ComputedISize(),
cbReflowInput->ComputedBSize())
.ConvertTo(frame->GetWritingMode(), wm));
// If a ColumnSetWrapper is in a balancing column content, it may be
// pushed or pulled back and forth between column contents. Always add
// NS_FRAME_HAS_DIRTY_CHILDREN bit to it so that its ColumnSet children
// can have a chance to reflow under current block size constraint.
if (aState.mReflowInput.mFlags.mIsColumnBalancing &&
frame->IsColumnSetWrapperFrame()) {
frame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
}
} else if (IsColumnSetWrapperFrame()) {
// If we are reflowing our ColumnSet children, we want to apply our block
// size constraint to the available block size when constructing reflow
// input for ColumnSet so that ColumnSet can use it to compute its max
// column block size.
if (frame->IsColumnSetFrame()) {
nscoord contentBSize = aState.mReflowInput.ComputedBSize();
if (aState.mReflowInput.ComputedMaxBSize() != NS_UNCONSTRAINEDSIZE) {
contentBSize =
std::min(contentBSize, aState.mReflowInput.ComputedMaxBSize());
}
if (contentBSize != NS_UNCONSTRAINEDSIZE) {
// To get the remaining content block-size, subtract the content
// block-size consumed by our previous continuations.
contentBSize -= aState.mConsumedBSize;
// ColumnSet is not the outermost frame in the column container, so it
// cannot have any margin. We don't need to consider any margin that
// can be generated by "box-decoration-break: clone" as we do in
// BlockReflowState::ComputeBlockAvailSpace().
const nscoord availContentBSize = std::max(
0, contentBSize - (aState.mBCoord - aState.ContentBStart()));
if (availSize.BSize(wm) >= availContentBSize) {
availSize.BSize(wm) = availContentBSize;
columnSetWrapperHasNoBSizeLeft = true;
}
}
}
}
childReflowInput.emplace(aState.mPresContext, aState.mReflowInput, frame,
availSize.ConvertTo(frame->GetWritingMode(), wm),
cbSize);
childReflowInput->mFlags.mColumnSetWrapperHasNoBSizeLeft =
columnSetWrapperHasNoBSizeLeft;
if (aLine->MovedFragments()) {
// We only need to set this the first reflow, since if we reflow
// again (and replace childReflowInput) we'll be reflowing it
// again in the same fragment as the previous time.
childReflowInput->mFlags.mMovedBlockFragments = true;
}
nsFloatManager::SavedState floatManagerState;
nsReflowStatus frameReflowStatus;
do {
if (floatAvailableSpace.HasFloats()) {
// Set if floatAvailableSpace.HasFloats() is true for any
// iteration of the loop.
aLine->SetLineIsImpactedByFloat(true);
}
// We might need to store into mDiscoveredClearance later if it's
// currently null; we want to overwrite any writes that
// brc.ReflowBlock() below does, so we need to remember now
// whether it's empty.
const bool shouldStoreClearance =
aState.mReflowInput.mDiscoveredClearance &&
!*aState.mReflowInput.mDiscoveredClearance;
// Reflow the block into the available space
if (mayNeedRetry || floatAvoidingBlock) {
aState.FloatManager()->PushState(&floatManagerState);
}
if (mayNeedRetry) {
childReflowInput->mDiscoveredClearance = &clearanceFrame;
} else if (!applyBStartMargin) {
childReflowInput->mDiscoveredClearance =
aState.mReflowInput.mDiscoveredClearance;
}
frameReflowStatus.Reset();
brc.ReflowBlock(availSpace, applyBStartMargin, aState.mPrevBEndMargin,
clearance, aLine.get(), *childReflowInput,
frameReflowStatus, aState);
if (frameReflowStatus.IsInlineBreakBefore()) {
// No need to retry this loop if there is a break opportunity before the
// child block.
break;
}
// Now the block has a height. Using that height, get the
// available space again and call ComputeBlockAvailSpace again.
// If ComputeBlockAvailSpace gives a different result, we need to
// reflow again.
if (!floatAvoidingBlock) {
break;
}
LogicalRect oldFloatAvailableSpaceRect(floatAvailableSpace.mRect);
floatAvailableSpace = aState.GetFloatAvailableSpaceForBSize(
cbWM, aState.mBCoord + bStartMargin, brc.GetMetrics().BSize(wm),
&floatManagerState);
NS_ASSERTION(floatAvailableSpace.mRect.BStart(wm) ==
oldFloatAvailableSpaceRect.BStart(wm),
"yikes");
// Restore the height to the position of the next band.
floatAvailableSpace.mRect.BSize(wm) =
oldFloatAvailableSpaceRect.BSize(wm);
// Determine whether the available space shrunk on either side,
// because (the first time round) we now know the block's height,
// and it may intersect additional floats, or (on later
// iterations) because narrowing the width relative to the
// previous time may cause the block to become taller. Note that
// since we're reflowing the block, narrowing the width might also
// make it shorter, so we must pass aCanGrow as true.
if (!AvailableSpaceShrunk(wm, oldFloatAvailableSpaceRect,
floatAvailableSpace.mRect, true)) {
// The size and position we chose before are fine (i.e., they
// don't cause intersecting with floats that requires a change
// in size or position), so we're done.
break;
}
bool advanced = false;
if (!aState.FloatAvoidingBlockFitsInAvailSpace(floatAvoidingBlock,
floatAvailableSpace)) {
// Advance to the next band.
nscoord newBCoord = aState.mBCoord;
if (aState.AdvanceToNextBand(floatAvailableSpace.mRect, &newBCoord)) {
advanced = true;
}
// ClearFloats might be able to advance us further once we're there.
std::tie(aState.mBCoord, std::ignore) =
aState.ClearFloats(newBCoord, UsedClear::None, floatAvoidingBlock);
// Start over with a new available space rect at the new height.
floatAvailableSpace = aState.GetFloatAvailableSpaceWithState(
cbWM, aState.mBCoord, ShapeType::ShapeOutside, &floatManagerState);
}
const LogicalRect oldAvailSpace = availSpace;
availSpace = aState.ComputeBlockAvailSpace(frame, floatAvailableSpace,
(floatAvoidingBlock));
if (!advanced && availSpace.IsEqualEdges(oldAvailSpace)) {
break;
}
// We need another reflow.
aState.FloatManager()->PopState(&floatManagerState);
if (!treatWithClearance && !applyBStartMargin &&
aState.mReflowInput.mDiscoveredClearance) {
// We set shouldStoreClearance above to record only the first
// frame that requires clearance.
if (shouldStoreClearance) {
*aState.mReflowInput.mDiscoveredClearance = frame;
}
aState.mPrevChild = frame;
// Exactly what we do now is flexible since we'll definitely be
// reflowed.
return;
}
if (advanced) {
// We're pushing down the border-box, so we don't apply margin anymore.
// This should never cause us to move up since the call to
// GetFloatAvailableSpaceForBSize above included the margin.
applyBStartMargin = false;
bStartMargin = 0;
treatWithClearance = true; // avoid hitting test above
clearance = 0;
}
childReflowInput.reset();
childReflowInput.emplace(
aState.mPresContext, aState.mReflowInput, frame,
availSpace.Size(wm).ConvertTo(frame->GetWritingMode(), wm));
} while (true);
if (mayNeedRetry && clearanceFrame) {
// Found a clearance frame, so we need to reflow |frame| a second time.
// Restore the states and start over again.
aState.FloatManager()->PopState(&floatManagerState);
aState.mBCoord = startingBCoord;
aState.mPrevBEndMargin = incomingMargin;
continue;
}
aState.mPrevChild = frame;
if (childReflowInput->WillReflowAgainForClearance()) {
// If an ancestor of ours is going to reflow for clearance, we
// need to avoid calling PlaceBlock, because it unsets dirty bits
// on the child block (both itself, and through its call to
// nsIFrame::DidReflow), and those dirty bits imply dirtiness for
// all of the child block, including the lines it didn't reflow.
NS_ASSERTION(originalPosition == frame->GetPosition(),
"we need to call PositionChildViews");
return;
}
#if defined(REFLOW_STATUS_COVERAGE)
RecordReflowStatus(true, frameReflowStatus);
#endif
if (frameReflowStatus.IsInlineBreakBefore()) {
// None of the child block fits.
if (ShouldAvoidBreakInside(aState.mReflowInput)) {
SetBreakBeforeStatusBeforeLine(aState, aLine, aKeepReflowGoing);
} else {
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
}
} else {
// Note: line-break-after a block is a nop
// Try to place the child block.
// Don't force the block to fit if we have positive clearance, because
// pushing it to the next page would give it more room.
// Don't force the block to fit if it's impacted by a float. If it is,
// then pushing it to the next page would give it more room. Note that
// isImpacted doesn't include impact from the block's own floats.
bool forceFit = aState.IsAdjacentWithBStart() && clearance <= 0 &&
!floatAvailableSpace.HasFloats();
CollapsingMargin collapsedBEndMargin;
OverflowAreas overflowAreas;
*aKeepReflowGoing =
brc.PlaceBlock(*childReflowInput, forceFit, aLine.get(),
collapsedBEndMargin, overflowAreas, frameReflowStatus);
if (!frameReflowStatus.IsFullyComplete() &&
ShouldAvoidBreakInside(aState.mReflowInput)) {
*aKeepReflowGoing = false;
aLine->MarkDirty();
}
if (aLine->SetCarriedOutBEndMargin(collapsedBEndMargin)) {
LineIterator nextLine = aLine;
++nextLine;
if (nextLine != LinesEnd()) {
nextLine->MarkPreviousMarginDirty();
}
}
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
auto lineFrameBounds = GetLineFrameInFlowBounds(*aLine, *frame);
MOZ_ASSERT(aLine->GetChildCount() == 1,
"More than one child in block line?");
// Inline-line (i.e. Multiple frames in one line) handled in one of
// other callsites.
aLine->SetInFlowChildBounds(lineFrameBounds);
}
aLine->SetOverflowAreas(overflowAreas);
if (*aKeepReflowGoing) {
// Some of the child block fit
// Advance to new Y position
nscoord newBCoord = aLine->BEnd();
aState.mBCoord = newBCoord;
// Continue the block frame now if it didn't completely fit in
// the available space.
if (!frameReflowStatus.IsFullyComplete()) {
bool madeContinuation = CreateContinuationFor(aState, nullptr, frame);
nsIFrame* nextFrame = frame->GetNextInFlow();
NS_ASSERTION(nextFrame,
"We're supposed to have a next-in-flow by now");
if (frameReflowStatus.IsIncomplete()) {
// If nextFrame used to be an overflow container, make it a normal
// block
if (!madeContinuation &&
nextFrame->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
nsOverflowContinuationTracker::AutoFinish fini(
aState.mOverflowTracker, frame);
nsContainerFrame* parent = nextFrame->GetParent();
parent->StealFrame(nextFrame);
if (parent != this) {
ReparentFrame(nextFrame, parent, this);
}
mFrames.InsertFrame(nullptr, frame, nextFrame);
madeContinuation = true; // needs to be added to mLines
nextFrame->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
frameReflowStatus.SetNextInFlowNeedsReflow();
}
// Push continuation to a new line, but only if we actually made
// one.
if (madeContinuation) {
nsLineBox* line = NewLineBox(nextFrame, true);
mLines.after_insert(aLine, line);
}
PushTruncatedLine(aState, aLine.next(), aKeepReflowGoing);
// If we need to reflow the continuation of the block child,
// then we'd better reflow our continuation
if (frameReflowStatus.NextInFlowNeedsReflow()) {
aState.mReflowStatus.SetNextInFlowNeedsReflow();
// We also need to make that continuation's line dirty so
// it gets reflowed when we reflow our next in flow. The
// nif's line must always be either a line of the nif's
// parent block (only if we didn't make a continuation) or
// else one of our own overflow lines. In the latter case
// the line is already marked dirty, so just handle the
// first case.
if (!madeContinuation) {
nsBlockFrame* nifBlock = do_QueryFrame(nextFrame->GetParent());
NS_ASSERTION(
nifBlock,
"A block's child's next in flow's parent must be a block!");
for (auto& line : nifBlock->Lines()) {
if (line.Contains(nextFrame)) {
line.MarkDirty();
break;
}
}
}
}
// The block-end margin for a block is only applied on the last
// flow block. Since we just continued the child block frame,
// we know that line->mFirstChild is not the last flow block
// therefore zero out the running margin value.
#ifdef NOISY_BLOCK_DIR_MARGINS
ListTag(stdout);
printf(": reflow incomplete, frame=");
frame->ListTag(stdout);
printf(" prevBEndMargin=%d, setting to zero\n",
aState.mPrevBEndMargin.get());
#endif
aState.mPrevBEndMargin.Zero();
} else { // frame is complete but its overflow is not complete
// Disconnect the next-in-flow and put it in our overflow tracker
if (!madeContinuation &&
!nextFrame->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
// It already exists, but as a normal next-in-flow, so we need
// to dig it out of the child lists.
nextFrame->GetParent()->StealFrame(nextFrame);
} else if (madeContinuation) {
mFrames.RemoveFrame(nextFrame);
}
// Put it in our overflow list
aState.mOverflowTracker->Insert(nextFrame, frameReflowStatus);
aState.mReflowStatus.MergeCompletionStatusFrom(frameReflowStatus);
#ifdef NOISY_BLOCK_DIR_MARGINS
ListTag(stdout);
printf(": reflow complete but overflow incomplete for ");
frame->ListTag(stdout);
printf(" prevBEndMargin=%d collapsedBEndMargin=%d\n",
aState.mPrevBEndMargin.get(), collapsedBEndMargin.get());
#endif
aState.mPrevBEndMargin = collapsedBEndMargin;
}
} else { // frame is fully complete
#ifdef NOISY_BLOCK_DIR_MARGINS
ListTag(stdout);
printf(": reflow complete for ");
frame->ListTag(stdout);
printf(" prevBEndMargin=%d collapsedBEndMargin=%d\n",
aState.mPrevBEndMargin.get(), collapsedBEndMargin.get());
#endif
aState.mPrevBEndMargin = collapsedBEndMargin;
}
#ifdef NOISY_BLOCK_DIR_MARGINS
ListTag(stdout);
printf(": frame=");
frame->ListTag(stdout);
printf(" carriedOutBEndMargin=%d collapsedBEndMargin=%d => %d\n",
brc.GetCarriedOutBEndMargin().get(), collapsedBEndMargin.get(),
aState.mPrevBEndMargin.get());
#endif
} else {
if (!frameReflowStatus.IsFullyComplete()) {
// The frame reported an incomplete status, but then it also didn't
// fit. This means we need to reflow it again so that it can
// (again) report the incomplete status.
frame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
}
if ((aLine == mLines.front() && !GetPrevInFlow()) ||
ShouldAvoidBreakInside(aState.mReflowInput)) {
// If it's our very first line *or* we're not at the top of the page
// and we have page-break-inside:avoid, then we need to be pushed to
// our parent's next-in-flow.
SetBreakBeforeStatusBeforeLine(aState, aLine, aKeepReflowGoing);
} else {
// Push the line that didn't fit and any lines that follow it
// to our next-in-flow.
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
}
}
}
break; // out of the reflow retry loop
}
// Now that we've got its final position all figured out, position any child
// views it may have. Note that the case when frame has a view got handled
// by FinishReflowChild, but that function didn't have the coordinates needed
// to correctly decide whether to reposition child views.
if (originalPosition != frame->GetPosition() && !frame->HasView()) {
nsContainerFrame::PositionChildViews(frame);
}
#ifdef DEBUG
VerifyLines(true);
#endif
}
// Returns true if an overflow-wrap break was used.
bool nsBlockFrame::ReflowInlineFrames(BlockReflowState& aState,
LineIterator aLine,
bool* aKeepReflowGoing) {
*aKeepReflowGoing = true;
bool usedOverflowWrap = false;
aLine->SetLineIsImpactedByFloat(false);
// Setup initial coordinate system for reflowing the inline frames
// into. Apply a previous block frame's block-end margin first.
if (ShouldApplyBStartMargin(aState, aLine)) {
aState.mBCoord += aState.mPrevBEndMargin.Get();
}
nsFlowAreaRect floatAvailableSpace =
aState.GetFloatAvailableSpace(GetWritingMode());
LineReflowStatus lineReflowStatus;
do {
nscoord availableSpaceBSize = 0;
aState.mLineBSize.reset();
do {
bool allowPullUp = true;
nsIFrame* forceBreakInFrame = nullptr;
int32_t forceBreakOffset = -1;
gfxBreakPriority forceBreakPriority = gfxBreakPriority::eNoBreak;
do {
nsFloatManager::SavedState floatManagerState;
aState.FloatManager()->PushState(&floatManagerState);
// Once upon a time we allocated the first 30 nsLineLayout objects
// on the stack, and then we switched to the heap. At that time
// these objects were large (1100 bytes on a 32 bit system).
// Then the nsLineLayout object was shrunk to 156 bytes by
// removing some internal buffers. Given that it is so much
// smaller, the complexity of 2 different ways of allocating
// no longer makes sense. Now we always allocate on the stack.
nsLineLayout lineLayout(aState.mPresContext, aState.FloatManager(),
aState.mReflowInput, &aLine, nullptr);
lineLayout.Init(&aState, aState.mMinLineHeight, aState.mLineNumber);
if (forceBreakInFrame) {
lineLayout.ForceBreakAtPosition(forceBreakInFrame, forceBreakOffset);
}
DoReflowInlineFrames(aState, lineLayout, aLine, floatAvailableSpace,
availableSpaceBSize, &floatManagerState,
aKeepReflowGoing, &lineReflowStatus, allowPullUp);
usedOverflowWrap = lineLayout.EndLineReflow();
if (LineReflowStatus::RedoNoPull == lineReflowStatus ||
LineReflowStatus::RedoMoreFloats == lineReflowStatus ||
LineReflowStatus::RedoNextBand == lineReflowStatus) {
if (lineLayout.NeedsBackup()) {
NS_ASSERTION(!forceBreakInFrame,
"Backing up twice; this should never be necessary");
// If there is no saved break position, then this will set
// set forceBreakInFrame to null and we won't back up, which is
// correct.
forceBreakInFrame = lineLayout.GetLastOptionalBreakPosition(
&forceBreakOffset, &forceBreakPriority);
} else {
forceBreakInFrame = nullptr;
}
// restore the float manager state
aState.FloatManager()->PopState(&floatManagerState);
// Clear out float lists
aState.mCurrentLineFloats.Clear();
aState.mBelowCurrentLineFloats.Clear();
aState.mNoWrapFloats.Clear();
}
// Don't allow pullup on a subsequent LineReflowStatus::RedoNoPull pass
allowPullUp = false;
} while (LineReflowStatus::RedoNoPull == lineReflowStatus);
} while (LineReflowStatus::RedoMoreFloats == lineReflowStatus);
} while (LineReflowStatus::RedoNextBand == lineReflowStatus);
return usedOverflowWrap;
}
void nsBlockFrame::SetBreakBeforeStatusBeforeLine(BlockReflowState& aState,
LineIterator aLine,
bool* aKeepReflowGoing) {
aState.mReflowStatus.SetInlineLineBreakBeforeAndReset();
// Reflow the line again when we reflow at our new position.
aLine->MarkDirty();
*aKeepReflowGoing = false;
}
void nsBlockFrame::PushTruncatedLine(
BlockReflowState& aState, LineIterator aLine, bool* aKeepReflowGoing,
ComputeNewPageNameIfNeeded aComputeNewPageName) {
PushLines(aState, aLine.prev());
*aKeepReflowGoing = false;
if (aComputeNewPageName == ComputeNewPageNameIfNeeded::Yes) {
// mCanHaveClassABreakpoints can only be true during paginated reflow, and
// we expect this function to only be called when the available bsize is
// constrained.
const WritingMode wm = GetWritingMode();
const bool canBreakForPageNames =
aState.mReflowInput.mFlags.mCanHaveClassABreakpoints &&
!PresShell()->GetRootFrame()->GetWritingMode().IsOrthogonalTo(wm);
if (canBreakForPageNames) {
PresShell()->FrameConstructor()->MaybeSetNextPageContentFramePageName(
aLine->mFirstChild);
}
}
aState.mReflowStatus.SetIncomplete();
}
void nsBlockFrame::DoReflowInlineFrames(
BlockReflowState& aState, nsLineLayout& aLineLayout, LineIterator aLine,
nsFlowAreaRect& aFloatAvailableSpace, nscoord& aAvailableSpaceBSize,
nsFloatManager::SavedState* aFloatStateBeforeLine, bool* aKeepReflowGoing,
LineReflowStatus* aLineReflowStatus, bool aAllowPullUp) {
// Forget all of the floats on the line
aLine->ClearFloats();
aState.mFloatOverflowAreas.Clear();
// We need to set this flag on the line if any of our reflow passes
// are impacted by floats.
if (aFloatAvailableSpace.HasFloats()) {
aLine->SetLineIsImpactedByFloat(true);
}
#ifdef REALLY_NOISY_REFLOW
printf("nsBlockFrame::DoReflowInlineFrames %p impacted = %d\n", this,
aFloatAvailableSpace.HasFloats());
#endif
WritingMode outerWM = aState.mReflowInput.GetWritingMode();
WritingMode lineWM = WritingModeForLine(outerWM, aLine->mFirstChild);
LogicalRect lineRect = aFloatAvailableSpace.mRect.ConvertTo(
lineWM, outerWM, aState.ContainerSize());
nscoord iStart = lineRect.IStart(lineWM);
nscoord availISize = lineRect.ISize(lineWM);
nscoord availBSize;
if (aState.mReflowInput.AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
availBSize = NS_UNCONSTRAINEDSIZE;
} else {
/* XXX get the height right! */
availBSize = lineRect.BSize(lineWM);
}
// Make sure to enable resize optimization before we call BeginLineReflow
// because it might get disabled there
aLine->EnableResizeReflowOptimization();
aLineLayout.BeginLineReflow(iStart, aState.mBCoord, availISize, availBSize,
aFloatAvailableSpace.HasFloats(),
false /*XXX isTopOfPage*/, lineWM,
aState.mContainerSize, aState.mInsetForBalance);
aState.mFlags.mIsLineLayoutEmpty = false;
// XXX Unfortunately we need to know this before reflowing the first
// inline frame in the line. FIX ME.
if (0 == aLineLayout.GetLineNumber() &&
HasAllStateBits(NS_BLOCK_HAS_FIRST_LETTER_CHILD |
NS_BLOCK_HAS_FIRST_LETTER_STYLE)) {
aLineLayout.SetFirstLetterStyleOK(true);
}
NS_ASSERTION(!(HasAnyStateBits(NS_BLOCK_HAS_FIRST_LETTER_CHILD) &&
GetPrevContinuation()),
"first letter child bit should only be on first continuation");
// Reflow the frames that are already on the line first
LineReflowStatus lineReflowStatus = LineReflowStatus::OK;
int32_t i;
nsIFrame* frame = aLine->mFirstChild;
if (aFloatAvailableSpace.HasFloats()) {
// There is a soft break opportunity at the start of the line, because
// we can always move this line down below float(s).
if (aLineLayout.NotifyOptionalBreakPosition(
frame, 0, true, gfxBreakPriority::eNormalBreak)) {
lineReflowStatus = LineReflowStatus::RedoNextBand;
}
}
// need to repeatedly call GetChildCount here, because the child
// count can change during the loop!
for (i = 0;
LineReflowStatus::OK == lineReflowStatus && i < aLine->GetChildCount();
i++, frame = frame->GetNextSibling()) {
SetLineCursorForDisplay(aLine);
ReflowInlineFrame(aState, aLineLayout, aLine, frame, &lineReflowStatus);
if (LineReflowStatus::OK != lineReflowStatus) {
// It is possible that one or more of next lines are empty
// (because of DeleteNextInFlowChild). If so, delete them now
// in case we are finished.
++aLine;
while ((aLine != LinesEnd()) && (0 == aLine->GetChildCount())) {
// XXX Is this still necessary now that DeleteNextInFlowChild
// uses DoRemoveFrame?
nsLineBox* toremove = aLine;
aLine = mLines.erase(aLine);
NS_ASSERTION(nullptr == toremove->mFirstChild, "bad empty line");
FreeLineBox(toremove);
ClearLineCursors();
}
--aLine;
NS_ASSERTION(lineReflowStatus != LineReflowStatus::Truncated,
"ReflowInlineFrame should never determine that a line "
"needs to go to the next page/column");
}
}
// Don't pull up new frames into lines with continuation placeholders
if (aAllowPullUp) {
// Pull frames and reflow them until we can't
while (LineReflowStatus::OK == lineReflowStatus) {
frame = PullFrame(aState, aLine);
if (!frame) {
break;
}
while (LineReflowStatus::OK == lineReflowStatus) {
int32_t oldCount = aLine->GetChildCount();
SetLineCursorForDisplay(aLine);
ReflowInlineFrame(aState, aLineLayout, aLine, frame, &lineReflowStatus);
if (aLine->GetChildCount() != oldCount) {
// We just created a continuation for aFrame AND its going
// to end up on this line (e.g. :first-letter
// situation). Therefore we have to loop here before trying
// to pull another frame.
frame = frame->GetNextSibling();
} else {
break;
}
}
}
}
ClearLineCursors();
aState.mFlags.mIsLineLayoutEmpty = aLineLayout.LineIsEmpty();
// We only need to backup if the line isn't going to be reflowed again anyway
bool needsBackup = aLineLayout.NeedsBackup() &&
(lineReflowStatus == LineReflowStatus::Stop ||
lineReflowStatus == LineReflowStatus::OK);
if (needsBackup && aLineLayout.HaveForcedBreakPosition()) {
NS_WARNING(
"We shouldn't be backing up more than once! "
"Someone must have set a break opportunity beyond the available width, "
"even though there were better break opportunities before it");
needsBackup = false;
}
if (needsBackup) {
// We need to try backing up to before a text run
// XXX It's possible, in fact not unusual, for the break opportunity to
// already be the end of the line. We should detect that and optimize to not
// re-do the line.
if (aLineLayout.HasOptionalBreakPosition()) {
// We can back up!
lineReflowStatus = LineReflowStatus::RedoNoPull;
}
} else {
// In case we reflow this line again, remember that we don't
// need to force any breaking
aLineLayout.ClearOptionalBreakPosition();
}
if (LineReflowStatus::RedoNextBand == lineReflowStatus) {
// This happens only when we have a line that is impacted by
// floats and the first element in the line doesn't fit with
// the floats.
//
// If there's block space available, we either try to reflow the line
// past the current band (if it's non-zero and the band definitely won't
// widen around a shape-outside), otherwise we try one pixel down. If
// there's no block space available, we push the line to the next
// page/column.
NS_ASSERTION(
NS_UNCONSTRAINEDSIZE != aFloatAvailableSpace.mRect.BSize(outerWM),
"unconstrained block size on totally empty line");
// See the analogous code for blocks in BlockReflowState::ClearFloats.
nscoord bandBSize = aFloatAvailableSpace.mRect.BSize(outerWM);
if (bandBSize > 0 ||
NS_UNCONSTRAINEDSIZE == aState.mReflowInput.AvailableBSize()) {
NS_ASSERTION(bandBSize == 0 || aFloatAvailableSpace.HasFloats(),
"redo line on totally empty line with non-empty band...");
// We should never hit this case if we've placed floats on the
// line; if we have, then the GetFloatAvailableSpace call is wrong
// and needs to happen after the caller pops the float manager
// state.
aState.FloatManager()->AssertStateMatches(aFloatStateBeforeLine);
if (!aFloatAvailableSpace.MayWiden() && bandBSize > 0) {
// Move it down far enough to clear the current band.
aState.mBCoord += bandBSize;
} else {
// Move it down by one dev pixel.
aState.mBCoord += aState.mPresContext->DevPixelsToAppUnits(1);
}
aFloatAvailableSpace = aState.GetFloatAvailableSpace(GetWritingMode());
} else {
// There's nowhere to retry placing the line, so we want to push
// it to the next page/column where its contents can fit not
// next to a float.
lineReflowStatus = LineReflowStatus::Truncated;
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
}
// XXX: a small optimization can be done here when paginating:
// if the new Y coordinate is past the end of the block then
// push the line and return now instead of later on after we are
// past the float.
} else if (LineReflowStatus::Truncated != lineReflowStatus &&
LineReflowStatus::RedoNoPull != lineReflowStatus) {
// If we are propagating out a break-before status then there is
// no point in placing the line.
if (!aState.mReflowStatus.IsInlineBreakBefore()) {
if (!PlaceLine(aState, aLineLayout, aLine, aFloatStateBeforeLine,
aFloatAvailableSpace, aAvailableSpaceBSize,
aKeepReflowGoing)) {
lineReflowStatus = LineReflowStatus::RedoMoreFloats;
// PlaceLine already called GetFloatAvailableSpaceForBSize or its
// variant for us.
}
}
}
#ifdef DEBUG
if (gNoisyReflow) {
printf("Line reflow status = %s\n",
LineReflowStatusToString(lineReflowStatus));
}
#endif
if (aLineLayout.GetDirtyNextLine()) {
// aLine may have been pushed to the overflow lines.
FrameLines* overflowLines = GetOverflowLines();
// We can't just compare iterators front() to aLine here, since they may be
// in different lists.
bool pushedToOverflowLines =
overflowLines && overflowLines->mLines.front() == aLine.get();
if (pushedToOverflowLines) {
// aLine is stale, it's associated with the main line list but it should
// be associated with the overflow line list now
aLine = overflowLines->mLines.begin();
}
nsBlockInFlowLineIterator iter(this, aLine, pushedToOverflowLines);
if (iter.Next() && iter.GetLine()->IsInline()) {
iter.GetLine()->MarkDirty();
if (iter.GetContainer() != this) {
aState.mReflowStatus.SetNextInFlowNeedsReflow();
}
}
}
*aLineReflowStatus = lineReflowStatus;
}
/**
* Reflow an inline frame. The reflow status is mapped from the frames
* reflow status to the lines reflow status (not to our reflow status).
* The line reflow status is simple: true means keep placing frames
* on the line; false means don't (the line is done). If the line
* has some sort of breaking affect then aLine's break-type will be set
* to something other than UsedClear::None.
*/
void nsBlockFrame::ReflowInlineFrame(BlockReflowState& aState,
nsLineLayout& aLineLayout,
LineIterator aLine, nsIFrame* aFrame,
LineReflowStatus* aLineReflowStatus) {
MOZ_ASSERT(aFrame);
*aLineReflowStatus = LineReflowStatus::OK;
#ifdef NOISY_FIRST_LETTER
ListTag(stdout);
printf(": reflowing ");
aFrame->ListTag(stdout);
printf(" reflowingFirstLetter=%s\n",
aLineLayout.GetFirstLetterStyleOK() ? "on" : "off");
#endif
if (aFrame->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
ph->ForgetLineIsEmptySoFar();
}
// Reflow the inline frame
nsReflowStatus frameReflowStatus;
bool pushedFrame;
aLineLayout.ReflowFrame(aFrame, frameReflowStatus, nullptr, pushedFrame);
if (frameReflowStatus.NextInFlowNeedsReflow()) {
aLineLayout.SetDirtyNextLine();
}
#ifdef REALLY_NOISY_REFLOW
aFrame->ListTag(stdout);
printf(": status=%s\n", ToString(frameReflowStatus).c_str());
#endif
#if defined(REFLOW_STATUS_COVERAGE)
RecordReflowStatus(false, frameReflowStatus);
#endif
// Send post-reflow notification
aState.mPrevChild = aFrame;
/* XXX
This is where we need to add logic to handle some odd behavior.
For one thing, we should usually place at least one thing next
to a left float, even when that float takes up all the width on a line.
*/
// Process the child frames reflow status. There are 5 cases:
// complete, not-complete, break-before, break-after-complete,
// break-after-not-complete. There are two situations: we are a
// block or we are an inline. This makes a total of 10 cases
// (fortunately, there is some overlap).
aLine->ClearForcedLineBreak();
if (frameReflowStatus.IsInlineBreak() ||
aState.mTrailingClearFromPIF != UsedClear::None) {
// Always abort the line reflow (because a line break is the
// minimal amount of break we do).
*aLineReflowStatus = LineReflowStatus::Stop;
// XXX what should aLine's break-type be set to in all these cases?
if (frameReflowStatus.IsInlineBreakBefore()) {
// Break-before cases.
if (aFrame == aLine->mFirstChild) {
// If we break before the first frame on the line then we must
// be trying to place content where there's no room (e.g. on a
// line with wide floats). Inform the caller to reflow the
// line after skipping past a float.
*aLineReflowStatus = LineReflowStatus::RedoNextBand;
} else {
// It's not the first child on this line so go ahead and split
// the line. We will see the frame again on the next-line.
SplitLine(aState, aLineLayout, aLine, aFrame, aLineReflowStatus);
// If we're splitting the line because the frame didn't fit and it
// was pushed, then mark the line as having word wrapped. We need to
// know that if we're shrink wrapping our width
if (pushedFrame) {
aLine->SetLineWrapped(true);
}
}
} else {
MOZ_ASSERT(frameReflowStatus.IsInlineBreakAfter() ||
aState.mTrailingClearFromPIF != UsedClear::None,
"We should've handled inline break-before in the if-branch!");
// If a float split and its prev-in-flow was followed by a <BR>, then
// combine the <BR>'s float clear type with the inline's float clear type
// (the inline will be the very next frame after the split float).
UsedClear clearType = frameReflowStatus.FloatClearType();
if (aState.mTrailingClearFromPIF != UsedClear::None) {
clearType = nsLayoutUtils::CombineClearType(
clearType, aState.mTrailingClearFromPIF);
aState.mTrailingClearFromPIF = UsedClear::None;
}
// Break-after cases
if (clearType != UsedClear::None || aLineLayout.GetLineEndsInBR()) {
aLine->SetForcedLineBreakAfter(clearType);
}
if (frameReflowStatus.IsComplete()) {
// Split line, but after the frame just reflowed
SplitLine(aState, aLineLayout, aLine, aFrame->GetNextSibling(),
aLineReflowStatus);
if (frameReflowStatus.IsInlineBreakAfter() &&
!aLineLayout.GetLineEndsInBR()) {
aLineLayout.SetDirtyNextLine();
}
}
}
}
if (!frameReflowStatus.IsFullyComplete()) {
// Create a continuation for the incomplete frame. Note that the
// frame may already have a continuation.
CreateContinuationFor(aState, aLine, aFrame);
// Remember that the line has wrapped
if (!aLineLayout.GetLineEndsInBR()) {
aLine->SetLineWrapped(true);
}
// If we just ended a first-letter frame or reflowed a placeholder then
// don't split the line and don't stop the line reflow...
// But if we are going to stop anyways we'd better split the line.
if ((!frameReflowStatus.FirstLetterComplete() &&
!aFrame->IsPlaceholderFrame()) ||
*aLineReflowStatus == LineReflowStatus::Stop) {
// Split line after the current frame
*aLineReflowStatus = LineReflowStatus::Stop;
SplitLine(aState, aLineLayout, aLine, aFrame->GetNextSibling(),
aLineReflowStatus);
}
}
}
bool nsBlockFrame::CreateContinuationFor(BlockReflowState& aState,
nsLineBox* aLine, nsIFrame* aFrame) {
nsIFrame* newFrame = nullptr;
if (!aFrame->GetNextInFlow()) {
newFrame =
PresShell()->FrameConstructor()->CreateContinuingFrame(aFrame, this);
mFrames.InsertFrame(nullptr, aFrame, newFrame);
if (aLine) {
aLine->NoteFrameAdded(newFrame);
}
}
#ifdef DEBUG
VerifyLines(false);
#endif
return !!newFrame;
}
void nsBlockFrame::SplitFloat(BlockReflowState& aState, nsIFrame* aFloat,
const nsReflowStatus& aFloatStatus) {
MOZ_ASSERT(!aFloatStatus.IsFullyComplete(),
"why split the frame if it's fully complete?");
MOZ_ASSERT(aState.mBlock == this);
nsIFrame* nextInFlow = aFloat->GetNextInFlow();
if (nextInFlow) {
nsContainerFrame* oldParent = nextInFlow->GetParent();
oldParent->StealFrame(nextInFlow);
if (oldParent != this) {
ReparentFrame(nextInFlow, oldParent, this);
}
if (!aFloatStatus.IsOverflowIncomplete()) {
nextInFlow->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
}
} else {
nextInFlow =
PresShell()->FrameConstructor()->CreateContinuingFrame(aFloat, this);
}
if (aFloatStatus.IsOverflowIncomplete()) {
nextInFlow->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
}
UsedFloat floatStyle =
aFloat->StyleDisplay()->UsedFloat(aState.mReflowInput.GetWritingMode());
if (floatStyle == UsedFloat::Left) {
aState.FloatManager()->SetSplitLeftFloatAcrossBreak();
} else {
MOZ_ASSERT(floatStyle == UsedFloat::Right, "Unexpected float side!");
aState.FloatManager()->SetSplitRightFloatAcrossBreak();
}
aState.AppendPushedFloatChain(nextInFlow);
if (MOZ_LIKELY(!HasAnyStateBits(NS_BLOCK_BFC)) ||
MOZ_UNLIKELY(IsTrueOverflowContainer())) {
aState.mReflowStatus.SetOverflowIncomplete();
} else {
aState.mReflowStatus.SetIncomplete();
}
}
static bool CheckPlaceholderInLine(nsIFrame* aBlock, nsLineBox* aLine,
nsIFrame* aFloat) {
if (!aFloat) {
return true;
}
NS_ASSERTION(!aFloat->GetPrevContinuation(),
"float in a line should never be a continuation");
NS_ASSERTION(!aFloat->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT),
"float in a line should never be a pushed float");
nsIFrame* ph = aFloat->FirstInFlow()->GetPlaceholderFrame();
for (nsIFrame* f = ph; f; f = f->GetParent()) {
if (f->GetParent() == aBlock) {
return aLine->Contains(f);
}
}
NS_ASSERTION(false, "aBlock is not an ancestor of aFrame!");
return true;
}
void nsBlockFrame::SplitLine(BlockReflowState& aState,
nsLineLayout& aLineLayout, LineIterator aLine,
nsIFrame* aFrame,
LineReflowStatus* aLineReflowStatus) {
MOZ_ASSERT(aLine->IsInline(), "illegal SplitLine on block line");
int32_t pushCount =
aLine->GetChildCount() - aLineLayout.GetCurrentSpanCount();
MOZ_ASSERT(pushCount >= 0, "bad push count");
#ifdef DEBUG
if (gNoisyReflow) {
nsIFrame::IndentBy(stdout, gNoiseIndent);
printf("split line: from line=%p pushCount=%d aFrame=",
static_cast<void*>(aLine.get()), pushCount);
if (aFrame) {
aFrame->ListTag(stdout);
} else {
printf("(null)");
}
printf("\n");
if (gReallyNoisyReflow) {
aLine->List(stdout, gNoiseIndent + 1);
}
}
#endif
if (0 != pushCount) {
MOZ_ASSERT(aLine->GetChildCount() > pushCount, "bad push");
MOZ_ASSERT(nullptr != aFrame, "whoops");
#ifdef DEBUG
{
nsIFrame* f = aFrame;
int32_t count = pushCount;
while (f && count > 0) {
f = f->GetNextSibling();
--count;
}
NS_ASSERTION(count == 0, "Not enough frames to push");
}
#endif
// Put frames being split out into their own line
nsLineBox* newLine = NewLineBox(aLine, aFrame, pushCount);
mLines.after_insert(aLine, newLine);
#ifdef DEBUG
if (gReallyNoisyReflow) {
newLine->List(stdout, gNoiseIndent + 1);
}
#endif
// Let line layout know that some frames are no longer part of its
// state.
aLineLayout.SplitLineTo(aLine->GetChildCount());
// If floats have been placed whose placeholders have been pushed to the new
// line, we need to reflow the old line again. We don't want to look at the
// frames in the new line, because as a large paragraph is laid out the
// we'd get O(N^2) performance. So instead we just check that the last
// float and the last below-current-line float are still in aLine.
if (!CheckPlaceholderInLine(
this, aLine,
aLine->HasFloats() ? aLine->Floats().LastElement() : nullptr) ||
!CheckPlaceholderInLine(
this, aLine,
aState.mBelowCurrentLineFloats.SafeLastElement(nullptr))) {
*aLineReflowStatus = LineReflowStatus::RedoNoPull;
}
#ifdef DEBUG
VerifyLines(true);
#endif
}
}
bool nsBlockFrame::IsLastLine(BlockReflowState& aState, LineIterator aLine) {
while (++aLine != LinesEnd()) {
// There is another line
if (0 != aLine->GetChildCount()) {
// If the next line is a block line then this line is the last in a
// group of inline lines.
return aLine->IsBlock();
}
// The next line is empty, try the next one
}
// Try our next-in-flows lines to answer the question
nsBlockFrame* nextInFlow = (nsBlockFrame*)GetNextInFlow();
while (nullptr != nextInFlow) {
for (const auto& line : nextInFlow->Lines()) {
if (0 != line.GetChildCount()) {
return line.IsBlock();
}
}
nextInFlow = (nsBlockFrame*)nextInFlow->GetNextInFlow();
}
// This is the last line - so don't allow justification
return true;
}
bool nsBlockFrame::PlaceLine(BlockReflowState& aState,
nsLineLayout& aLineLayout, LineIterator aLine,
nsFloatManager::SavedState* aFloatStateBeforeLine,
nsFlowAreaRect& aFlowArea,
nscoord& aAvailableSpaceBSize,
bool* aKeepReflowGoing) {
// Try to position the floats in a nowrap context.
aLineLayout.FlushNoWrapFloats();
// Trim extra white-space from the line before placing the frames
aLineLayout.TrimTrailingWhiteSpace();
// Vertically align the frames on this line.
//
// According to the CSS2 spec, section 12.6.1, the "marker" box
// participates in the height calculation of the list-item box's
// first line box.
//
// There are exactly two places a ::marker can be placed: near the
// first or second line. It's only placed on the second line in a
// rare case: when the first line is empty.
WritingMode wm = aState.mReflowInput.GetWritingMode();
bool addedMarker = false;
nsIFrame* outsideMarker = GetOutsideMarker();
if (outsideMarker &&
((aLine == mLines.front() &&
(!aLineLayout.IsZeroBSize() || (aLine == mLines.back()))) ||
(mLines.front() != mLines.back() && 0 == mLines.front()->BSize() &&
aLine == mLines.begin().next()))) {
ReflowOutput metrics(aState.mReflowInput);
ReflowOutsideMarker(outsideMarker, aState, metrics, aState.mBCoord);
NS_ASSERTION(!MarkerIsEmpty(outsideMarker) || metrics.BSize(wm) == 0,
"empty ::marker frame took up space");
aLineLayout.AddMarkerFrame(outsideMarker, metrics);
addedMarker = true;
}
aLineLayout.VerticalAlignLine();
// We want to consider the floats in the current line when determining
// whether the float available space is shrunk. If mLineBSize doesn't
// exist, we are in the first pass trying to place the line. Calling
// GetFloatAvailableSpace() like we did in BlockReflowState::AddFloat()
// for UpdateBand().
// floatAvailableSpaceWithOldLineBSize is the float available space with
// the old BSize, but including the floats that were added in this line.
LogicalRect floatAvailableSpaceWithOldLineBSize =
aState.mLineBSize.isNothing()
? aState.GetFloatAvailableSpace(wm, aLine->BStart()).mRect
: aState
.GetFloatAvailableSpaceForBSize(
wm, aLine->BStart(), aState.mLineBSize.value(), nullptr)
.mRect;
// As we redo for floats, we can't reduce the amount of BSize we're
// checking.
aAvailableSpaceBSize = std::max(aAvailableSpaceBSize, aLine->BSize());
LogicalRect floatAvailableSpaceWithLineBSize =
aState
.GetFloatAvailableSpaceForBSize(wm, aLine->BStart(),
aAvailableSpaceBSize, nullptr)
.mRect;
// If the available space between the floats is smaller now that we
// know the BSize, return false (and cause another pass with
// LineReflowStatus::RedoMoreFloats). We ensure aAvailableSpaceBSize
// never decreases, which means that we can't reduce the set of floats
// we intersect, which means that the available space cannot grow.
if (AvailableSpaceShrunk(wm, floatAvailableSpaceWithOldLineBSize,
floatAvailableSpaceWithLineBSize, false)) {
// Prepare data for redoing the line.
aState.mLineBSize = Some(aLine->BSize());
// Since we want to redo the line, we update aFlowArea by using the
// aFloatStateBeforeLine, which is the float manager's state before the
// line is placed.
LogicalRect oldFloatAvailableSpace(aFlowArea.mRect);
aFlowArea = aState.GetFloatAvailableSpaceForBSize(
wm, aLine->BStart(), aAvailableSpaceBSize, aFloatStateBeforeLine);
NS_ASSERTION(
aFlowArea.mRect.BStart(wm) == oldFloatAvailableSpace.BStart(wm),
"yikes");
// Restore the BSize to the position of the next band.
aFlowArea.mRect.BSize(wm) = oldFloatAvailableSpace.BSize(wm);
// Enforce both IStart() and IEnd() never move outwards to prevent
// infinite grow-shrink loops.
const nscoord iStartDiff =
aFlowArea.mRect.IStart(wm) - oldFloatAvailableSpace.IStart(wm);
const nscoord iEndDiff =
aFlowArea.mRect.IEnd(wm) - oldFloatAvailableSpace.IEnd(wm);
if (iStartDiff < 0) {
aFlowArea.mRect.IStart(wm) -= iStartDiff;
aFlowArea.mRect.ISize(wm) += iStartDiff;
}
if (iEndDiff > 0) {
aFlowArea.mRect.ISize(wm) -= iEndDiff;
}
return false;
}
#ifdef DEBUG
if (!GetParent()->IsAbsurdSizeAssertSuppressed()) {
static nscoord lastHeight = 0;
if (ABSURD_SIZE(aLine->BStart())) {
lastHeight = aLine->BStart();
if (abs(aLine->BStart() - lastHeight) > ABSURD_COORD / 10) {
nsIFrame::ListTag(stdout);
printf(": line=%p y=%d line.bounds.height=%d\n",
static_cast<void*>(aLine.get()), aLine->BStart(),
aLine->BSize());
}
} else {
lastHeight = 0;
}
}
#endif
// Only block frames horizontally align their children because
// inline frames "shrink-wrap" around their children (therefore
// there is no extra horizontal space).
const nsStyleText* styleText = StyleText();
/**
* We don't care checking for IsLastLine properly if we don't care (if it
* can't change the used text-align value for the line).
*
* In other words, isLastLine really means isLastLineAndWeCare.
*/
const bool isLastLine =
!IsInSVGTextSubtree() &&
styleText->TextAlignForLastLine() != styleText->mTextAlign &&
(aLineLayout.GetLineEndsInBR() || IsLastLine(aState, aLine));
aLineLayout.TextAlignLine(aLine, isLastLine);
// From here on, pfd->mBounds rectangles are incorrect because bidi
// might have moved frames around!
OverflowAreas overflowAreas;
aLineLayout.RelativePositionFrames(overflowAreas);
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
Maybe<nsRect> inFlowBounds;
int32_t n = aLine->GetChildCount();
for (nsIFrame* lineFrame = aLine->mFirstChild; n > 0;
lineFrame = lineFrame->GetNextSibling(), --n) {
auto lineFrameBounds = GetLineFrameInFlowBounds(*aLine, *lineFrame);
if (!lineFrameBounds) {
continue;
}
if (inFlowBounds) {
*inFlowBounds = inFlowBounds->UnionEdges(*lineFrameBounds);
} else {
inFlowBounds = Some(*lineFrameBounds);
}
}
aLine->SetInFlowChildBounds(inFlowBounds);
}
aLine->SetOverflowAreas(overflowAreas);
if (addedMarker) {
aLineLayout.RemoveMarkerFrame(GetOutsideMarker());
}
// Inline lines do not have margins themselves; however they are
// impacted by prior block margins. If this line ends up having some
// height then we zero out the previous block-end margin value that was
// already applied to the line's starting Y coordinate. Otherwise we
// leave it be so that the previous blocks block-end margin can be
// collapsed with a block that follows.
nscoord newBCoord;
if (!aLine->CachedIsEmpty()) {
// This line has some height. Therefore the application of the
// previous-bottom-margin should stick.
aState.mPrevBEndMargin.Zero();
newBCoord = aLine->BEnd();
} else {
// Don't let the previous-bottom-margin value affect the newBCoord
// coordinate (it was applied in ReflowInlineFrames speculatively)
// since the line is empty.
// We already called |ShouldApplyBStartMargin|, and if we applied it
// then mShouldApplyBStartMargin is set.
nscoord dy = aState.mFlags.mShouldApplyBStartMargin
? -aState.mPrevBEndMargin.Get()
: 0;
newBCoord = aState.mBCoord + dy;
}
if (!aState.mReflowStatus.IsFullyComplete() &&
ShouldAvoidBreakInside(aState.mReflowInput)) {
aLine->AppendFloats(std::move(aState.mCurrentLineFloats));
SetBreakBeforeStatusBeforeLine(aState, aLine, aKeepReflowGoing);
return true;
}
// See if the line fit (our first line always does).
if (mLines.front() != aLine &&
aState.ContentBSize() != NS_UNCONSTRAINEDSIZE &&
newBCoord > aState.ContentBEnd()) {
NS_ASSERTION(aState.mCurrentLine == aLine, "oops");
if (ShouldAvoidBreakInside(aState.mReflowInput)) {
// All our content doesn't fit, start on the next page.
SetBreakBeforeStatusBeforeLine(aState, aLine, aKeepReflowGoing);
} else {
// Push aLine and all of its children and anything else that
// follows to our next-in-flow.
PushTruncatedLine(aState, aLine, aKeepReflowGoing);
}
return true;
}
// Note that any early return before this update of aState.mBCoord
// must either (a) return false or (b) set aKeepReflowGoing to false.
// Otherwise we'll keep reflowing later lines at an incorrect
// position, and we might not come back and clean up the damage later.
aState.mBCoord = newBCoord;
// Add the already placed current-line floats to the line
aLine->AppendFloats(std::move(aState.mCurrentLineFloats));
// Any below current line floats to place?
if (!aState.mBelowCurrentLineFloats.IsEmpty()) {
// Reflow the below-current-line floats, which places on the line's
// float list.
aState.PlaceBelowCurrentLineFloats(aLine);
}
// When a line has floats, factor them into the overflow areas computations.
if (aLine->HasFloats()) {
// Union the float overflow areas (stored in aState) and the value computed
// by the line layout code.
OverflowAreas lineOverflowAreas = aState.mFloatOverflowAreas;
lineOverflowAreas.UnionWith(aLine->GetOverflowAreas());
aLine->SetOverflowAreas(lineOverflowAreas);
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
auto itr = aLine->Floats().begin();
// Guaranteed to have at least 1 element since `HasFloats()` is true.
auto floatRect = GetNormalMarginRect(*itr);
++itr;
for (; itr != aLine->Floats().end(); ++itr) {
floatRect = floatRect.UnionEdges(GetNormalMarginRect(*itr));
}
auto inFlowBounds = aLine->GetInFlowChildBounds();
aLine->SetInFlowChildBounds(
Some(inFlowBounds ? inFlowBounds->UnionEdges(floatRect) : floatRect));
}
#ifdef NOISY_OVERFLOW_AREAS
printf("%s: Line %p, InkOverflowRect=%s, ScrollableOverflowRect=%s\n",
ListTag().get(), aLine.get(),
ToString(aLine->InkOverflowRect()).c_str(),
ToString(aLine->ScrollableOverflowRect()).c_str());
#endif
}
// Apply break-after clearing if necessary
// This must stay in sync with |ReflowDirtyLines|.
if (aLine->HasFloatClearTypeAfter()) {
std::tie(aState.mBCoord, std::ignore) =
aState.ClearFloats(aState.mBCoord, aLine->FloatClearTypeAfter());
}
return true;
}
void nsBlockFrame::PushLines(BlockReflowState& aState,
nsLineList::iterator aLineBefore) {
// NOTE: aLineBefore is always a normal line, not an overflow line.
// The following expression will assert otherwise.
DebugOnly<bool> check = aLineBefore == mLines.begin();
nsLineList::iterator overBegin(aLineBefore.next());
// PushTruncatedPlaceholderLine sometimes pushes the first line. Ugh.
bool firstLine = overBegin == LinesBegin();
if (overBegin != LinesEnd()) {
// Remove floats in the lines from floats list.
nsFrameList floats;
CollectFloats(overBegin->mFirstChild, floats, true);
if (floats.NotEmpty()) {
#ifdef DEBUG
for (nsIFrame* f : floats) {
MOZ_ASSERT(!f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT),
"CollectFloats should've removed that bit");
}
#endif
// Push the floats onto the front of the overflow out-of-flows list
nsAutoOOFFrameList oofs(this);
oofs.mList.InsertFrames(nullptr, nullptr, std::move(floats));
}
// overflow lines can already exist in some cases, in particular,
// when shrinkwrapping and we discover that the shrinkwap causes
// the height of some child block to grow which creates additional
// overflowing content. In such cases we must prepend the new
// overflow to the existing overflow.
FrameLines* overflowLines = RemoveOverflowLines();
if (!overflowLines) {
// XXXldb use presshell arena!
overflowLines = new FrameLines();
}
if (overflowLines) {
nsIFrame* lineBeforeLastFrame;
if (firstLine) {
lineBeforeLastFrame = nullptr; // removes all frames
} else {
nsIFrame* f = overBegin->mFirstChild;
lineBeforeLastFrame = f ? f->GetPrevSibling() : mFrames.LastChild();
NS_ASSERTION(!f || lineBeforeLastFrame == aLineBefore->LastChild(),
"unexpected line frames");
}
nsFrameList pushedFrames = mFrames.TakeFramesAfter(lineBeforeLastFrame);
overflowLines->mFrames.InsertFrames(nullptr, nullptr,
std::move(pushedFrames));
overflowLines->mLines.splice(overflowLines->mLines.begin(), mLines,
overBegin, LinesEnd());
NS_ASSERTION(!overflowLines->mLines.empty(), "should not be empty");
// this takes ownership but it won't delete it immediately so we
// can keep using it.
SetOverflowLines(overflowLines);
// Mark all the overflow lines dirty so that they get reflowed when
// they are pulled up by our next-in-flow.
nsLineBox* cursor = GetLineCursorForDisplay();
// XXXldb Can this get called O(N) times making the whole thing O(N^2)?
for (LineIterator line = overflowLines->mLines.begin(),
line_end = overflowLines->mLines.end();
line != line_end; ++line) {
if (line == cursor) {
ClearLineCursors();
}
line->MarkDirty();
line->MarkPreviousMarginDirty();
line->SetMovedFragments();
line->SetBoundsEmpty();
if (line->HasFloats()) {
line->ClearFloats();
}
}
}
}
#ifdef DEBUG
VerifyOverflowSituation();
#endif
}
// The overflowLines property is stored as a pointer to a line list,
// which must be deleted. However, the following functions all maintain
// the invariant that the property is never set if the list is empty.
bool nsBlockFrame::DrainOverflowLines() {
#ifdef DEBUG
VerifyOverflowSituation();
#endif
// Steal the prev-in-flow's overflow lines and prepend them.
bool didFindOverflow = false;
nsBlockFrame* prevBlock = static_cast<nsBlockFrame*>(GetPrevInFlow());
if (prevBlock) {
prevBlock->ClearLineCursors();
FrameLines* overflowLines = prevBlock->RemoveOverflowLines();
if (overflowLines) {
// Make all the frames on the overflow line list mine.
ReparentFrames(overflowLines->mFrames, prevBlock, this);
// Collect overflow containers from our OverflowContainers list that are
// continuations from the frames we picked up from our prev-in-flow, then
// prepend those to ExcessOverflowContainers to ensure the continuations
// are ordered.
if (GetOverflowContainers()) {
nsFrameList ocContinuations;
for (auto* f : overflowLines->mFrames) {
auto* cont = f;
bool done = false;
while (!done && (cont = cont->GetNextContinuation()) &&
cont->GetParent() == this) {
bool onlyChild = !cont->GetPrevSibling() && !cont->GetNextSibling();
if (cont->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER) &&
TryRemoveFrame(OverflowContainersProperty(), cont)) {
ocContinuations.AppendFrame(nullptr, cont);
done = onlyChild;
continue;
}
break;
}
if (done) {
break;
}
}
if (!ocContinuations.IsEmpty()) {
if (nsFrameList* eoc = GetExcessOverflowContainers()) {
eoc->InsertFrames(nullptr, nullptr, std::move(ocContinuations));
} else {
SetExcessOverflowContainers(std::move(ocContinuations));
}
}
}
// Make the overflow out-of-flow frames mine too.
nsAutoOOFFrameList oofs(prevBlock);
if (oofs.mList.NotEmpty()) {
// In case we own any next-in-flows of any of the drained frames, then
// move those to the PushedFloat list.
nsFrameList pushedFloats;
for (nsIFrame* f : oofs.mList) {
nsIFrame* nif = f->GetNextInFlow();
for (; nif && nif->GetParent() == this; nif = nif->GetNextInFlow()) {
MOZ_ASSERT(nif->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT));
RemoveFloat(nif);
pushedFloats.AppendFrame(nullptr, nif);
}
}
ReparentFrames(oofs.mList, prevBlock, this);
EnsureFloats()->InsertFrames(nullptr, nullptr, std::move(oofs.mList));
if (!pushedFloats.IsEmpty()) {
nsFrameList* pf = EnsurePushedFloats();
pf->InsertFrames(nullptr, nullptr, std::move(pushedFloats));
}
}
if (!mLines.empty()) {
// Remember to recompute the margins on the first line. This will
// also recompute the correct deltaBCoord if necessary.
mLines.front()->MarkPreviousMarginDirty();
}
// The overflow lines have already been marked dirty and their previous
// margins marked dirty also.
// Prepend the overflow frames/lines to our principal list.
mFrames.InsertFrames(nullptr, nullptr, std::move(overflowLines->mFrames));
mLines.splice(mLines.begin(), overflowLines->mLines);
NS_ASSERTION(overflowLines->mLines.empty(), "splice should empty list");
delete overflowLines;
didFindOverflow = true;
}
}
// Now append our own overflow lines.
return DrainSelfOverflowList() || didFindOverflow;
}
bool nsBlockFrame::DrainSelfOverflowList() {
UniquePtr<FrameLines> ourOverflowLines(RemoveOverflowLines());
if (!ourOverflowLines) {
return false;
}
// No need to reparent frames in our own overflow lines/oofs, because they're
// already ours. But we should put overflow floats back in our floats list.
// (explicit scope to remove the OOF list before VerifyOverflowSituation)
{
nsAutoOOFFrameList oofs(this);
if (oofs.mList.NotEmpty()) {
#ifdef DEBUG
for (nsIFrame* f : oofs.mList) {
MOZ_ASSERT(!f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT),
"CollectFloats should've removed that bit");
}
#endif
// The overflow floats go after our regular floats.
EnsureFloats()->AppendFrames(nullptr, std::move(oofs).mList);
}
}
if (!ourOverflowLines->mLines.empty()) {
mFrames.AppendFrames(nullptr, std::move(ourOverflowLines->mFrames));
mLines.splice(mLines.end(), ourOverflowLines->mLines);
}
#ifdef DEBUG
VerifyOverflowSituation();
#endif
return true;
}
/**
* Pushed floats are floats whose placeholders are in a previous
* continuation. They might themselves be next-continuations of a float
* that partially fit in an earlier continuation, or they might be the
* first continuation of a float that couldn't be placed at all.
*
* Pushed floats live permanently at the beginning of a block's float
* list, where they must live *before* any floats whose placeholders are
* in that block.
*
* Temporarily, during reflow, they also live on the pushed floats list,
* which only holds them between (a) when one continuation pushes them to
* its pushed floats list because they don't fit and (b) when the next
* continuation pulls them onto the beginning of its float list.
*
* DrainPushedFloats sets up pushed floats the way we need them at the
* start of reflow; they are then reflowed by ReflowPushedFloats (which
* might push some of them on). Floats with placeholders in this block
* are reflowed by (BlockReflowState/nsLineLayout)::AddFloat, which
* also maintains these invariants.
*
* DrainSelfPushedFloats moves any pushed floats from this block's own
* pushed floats list back into floats list. DrainPushedFloats additionally
* moves frames from its prev-in-flow's pushed floats list into floats list.
*/
void nsBlockFrame::DrainSelfPushedFloats() {
// If we're getting reflowed multiple times without our
// next-continuation being reflowed, we might need to pull back floats
// that we just put in the list to be pushed to our next-in-flow.
// We don't want to pull back any next-in-flows of floats on our own
// float list, and we only need to pull back first-in-flows whose
// placeholders were in earlier blocks (since first-in-flows whose
// placeholders are in this block will get pulled appropriately by
// AddFloat, and will then be more likely to be in the correct order).
mozilla::PresShell* presShell = PresShell();
nsFrameList* ourPushedFloats = GetPushedFloats();
if (ourPushedFloats) {
nsFrameList* floats = GetFloats();
// When we pull back floats, we want to put them with the pushed
// floats, which must live at the start of our float list, but we
// want them at the end of those pushed floats.
// FIXME: This isn't quite right! What if they're all pushed floats?
nsIFrame* insertionPrevSibling = nullptr; /* beginning of list */
for (nsIFrame* f = floats ? floats->FirstChild() : nullptr;
f && f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT);
f = f->GetNextSibling()) {
insertionPrevSibling = f;
}
nsIFrame* f = ourPushedFloats->LastChild();
while (f) {
nsIFrame* prevSibling = f->GetPrevSibling();
nsPlaceholderFrame* placeholder = f->GetPlaceholderFrame();
nsIFrame* floatOriginalParent =
presShell->FrameConstructor()->GetFloatContainingBlock(placeholder);
if (floatOriginalParent != this) {
// This is a first continuation that was pushed from one of our
// previous continuations. Take it out of the pushed floats
// list and put it in our floats list, before any of our
// floats, but after other pushed floats.
ourPushedFloats->RemoveFrame(f);
if (!floats) {
floats = EnsureFloats();
}
floats->InsertFrame(nullptr, insertionPrevSibling, f);
}
f = prevSibling;
}
if (ourPushedFloats->IsEmpty()) {
StealPushedFloats()->Delete(presShell);
}
}
}
void nsBlockFrame::DrainPushedFloats() {
DrainSelfPushedFloats();
// After our prev-in-flow has completed reflow, it may have a pushed
// floats list, containing floats that we need to own. Take these.
nsBlockFrame* prevBlock = static_cast<nsBlockFrame*>(GetPrevInFlow());
if (prevBlock) {
AutoFrameListPtr list(PresContext(), prevBlock->StealPushedFloats());
if (list && list->NotEmpty()) {
EnsureFloats()->InsertFrames(this, nullptr, std::move(*list));
}
}
}
nsBlockFrame::FrameLines* nsBlockFrame::GetOverflowLines() const {
if (!HasOverflowLines()) {
return nullptr;
}
FrameLines* prop = GetProperty(OverflowLinesProperty());
NS_ASSERTION(
prop && !prop->mLines.empty() &&
prop->mLines.front()->GetChildCount() == 0
? prop->mFrames.IsEmpty()
: prop->mLines.front()->mFirstChild == prop->mFrames.FirstChild(),
"value should always be stored and non-empty when state set");
return prop;
}
nsBlockFrame::FrameLines* nsBlockFrame::RemoveOverflowLines() {
if (!HasOverflowLines()) {
return nullptr;
}
FrameLines* prop = TakeProperty(OverflowLinesProperty());
NS_ASSERTION(
prop && !prop->mLines.empty() &&
prop->mLines.front()->GetChildCount() == 0
? prop->mFrames.IsEmpty()
: prop->mLines.front()->mFirstChild == prop->mFrames.FirstChild(),
"value should always be stored and non-empty when state set");
RemoveStateBits(NS_BLOCK_HAS_OVERFLOW_LINES);
return prop;
}
void nsBlockFrame::DestroyOverflowLines() {
NS_ASSERTION(HasOverflowLines(), "huh?");
FrameLines* prop = TakeProperty(OverflowLinesProperty());
NS_ASSERTION(prop && prop->mLines.empty(),
"value should always be stored but empty when destroying");
RemoveStateBits(NS_BLOCK_HAS_OVERFLOW_LINES);
delete prop;
}
// This takes ownership of aOverflowLines.
// XXX We should allocate overflowLines from presShell arena!
void nsBlockFrame::SetOverflowLines(FrameLines* aOverflowLines) {
NS_ASSERTION(aOverflowLines, "null lines");
NS_ASSERTION(!aOverflowLines->mLines.empty(), "empty lines");
NS_ASSERTION(aOverflowLines->mLines.front()->mFirstChild ==
aOverflowLines->mFrames.FirstChild(),
"invalid overflow lines / frames");
NS_ASSERTION(!HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_LINES),
"Overwriting existing overflow lines");
// Verify that we won't overwrite an existing overflow list
NS_ASSERTION(!GetProperty(OverflowLinesProperty()), "existing overflow list");
SetProperty(OverflowLinesProperty(), aOverflowLines);
AddStateBits(NS_BLOCK_HAS_OVERFLOW_LINES);
}
nsFrameList* nsBlockFrame::GetOverflowOutOfFlows() const {
if (!HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS)) {
return nullptr;
}
nsFrameList* result = GetProperty(OverflowOutOfFlowsProperty());
NS_ASSERTION(result, "value should always be non-empty when state set");
return result;
}
void nsBlockFrame::SetOverflowOutOfFlows(nsFrameList&& aList,
nsFrameList* aPropValue) {
MOZ_ASSERT(
HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS) == !!aPropValue,
"state does not match value");
if (aList.IsEmpty()) {
if (!HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS)) {
return;
}
nsFrameList* list = TakeProperty(OverflowOutOfFlowsProperty());
NS_ASSERTION(aPropValue == list, "prop value mismatch");
list->Clear();
list->Delete(PresShell());
RemoveStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS);
} else if (HasAnyStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS)) {
NS_ASSERTION(aPropValue == GetProperty(OverflowOutOfFlowsProperty()),
"prop value mismatch");
*aPropValue = std::move(aList);
} else {
SetProperty(OverflowOutOfFlowsProperty(),
new (PresShell()) nsFrameList(std::move(aList)));
AddStateBits(NS_BLOCK_HAS_OVERFLOW_OUT_OF_FLOWS);
}
}
nsIFrame* nsBlockFrame::GetInsideMarker() const {
if (!HasMarker()) {
return nullptr;
}
if (nsIFrame* frame = GetProperty(InsideMarkerProperty())) {
return frame;
}
return nullptr;
}
nsIFrame* nsBlockFrame::GetOutsideMarker() const {
nsFrameList* list = GetOutsideMarkerList();
return list ? list->FirstChild() : nullptr;
}
nsFrameList* nsBlockFrame::GetOutsideMarkerList() const {
if (!HasMarker()) {
return nullptr;
}
if (nsFrameList* list = GetProperty(OutsideMarkerProperty())) {
MOZ_ASSERT(list->GetLength() == 1, "bogus outside ::marker list");
return list;
}
return nullptr;
}
bool nsBlockFrame::HasFloats() const {
const bool isStateBitSet = HasAnyStateBits(NS_BLOCK_HAS_FLOATS);
MOZ_ASSERT(
isStateBitSet == HasProperty(FloatsProperty()),
"State bit should accurately reflect presence/absence of the property!");
return isStateBitSet;
}
nsFrameList* nsBlockFrame::GetFloats() const {
if (!HasFloats()) {
return nullptr;
}
nsFrameList* list = GetProperty(FloatsProperty());
MOZ_ASSERT(list, "List should always be valid when the property is set!");
MOZ_ASSERT(list->NotEmpty(),
"Someone forgot to delete the list when it is empty!");
return list;
}
nsFrameList* nsBlockFrame::EnsureFloats() {
nsFrameList* list = GetFloats();
if (list) {
return list;
}
list = new (PresShell()) nsFrameList;
SetProperty(FloatsProperty(), list);
AddStateBits(NS_BLOCK_HAS_FLOATS);
return list;
}
nsFrameList* nsBlockFrame::StealFloats() {
if (!HasFloats()) {
return nullptr;
}
nsFrameList* list = TakeProperty(FloatsProperty());
RemoveStateBits(NS_BLOCK_HAS_FLOATS);
MOZ_ASSERT(list, "List should always be valid when the property is set!");
return list;
}
bool nsBlockFrame::HasPushedFloats() const {
const bool isStateBitSet = HasAnyStateBits(NS_BLOCK_HAS_PUSHED_FLOATS);
MOZ_ASSERT(
isStateBitSet == HasProperty(PushedFloatsProperty()),
"State bit should accurately reflect presence/absence of the property!");
return isStateBitSet;
}
nsFrameList* nsBlockFrame::GetPushedFloats() const {
if (!HasPushedFloats()) {
return nullptr;
}
nsFrameList* list = GetProperty(PushedFloatsProperty());
MOZ_ASSERT(list, "List should always be valid when the property is set!");
MOZ_ASSERT(list->NotEmpty(),
"Someone forgot to delete the list when it is empty!");
return list;
}
nsFrameList* nsBlockFrame::EnsurePushedFloats() {
nsFrameList* result = GetPushedFloats();
if (result) {
return result;
}
result = new (PresShell()) nsFrameList;
SetProperty(PushedFloatsProperty(), result);
AddStateBits(NS_BLOCK_HAS_PUSHED_FLOATS);
return result;
}
nsFrameList* nsBlockFrame::StealPushedFloats() {
if (!HasPushedFloats()) {
return nullptr;
}
nsFrameList* list = TakeProperty(PushedFloatsProperty());
RemoveStateBits(NS_BLOCK_HAS_PUSHED_FLOATS);
MOZ_ASSERT(list, "List should always be valid when the property is set!");
return list;
}
//////////////////////////////////////////////////////////////////////
// Frame list manipulation routines
void nsBlockFrame::AppendFrames(ChildListID aListID, nsFrameList&& aFrameList) {
if (aFrameList.IsEmpty()) {
return;
}
if (aListID != FrameChildListID::Principal) {
if (FrameChildListID::Float == aListID) {
DrainSelfPushedFloats(); // ensure the last frame is in floats list.
EnsureFloats()->AppendFrames(nullptr, std::move(aFrameList));
return;
}
MOZ_ASSERT(FrameChildListID::NoReflowPrincipal == aListID,
"unexpected child list");
}
// Find the proper last-child for where the append should go
nsIFrame* lastKid = mFrames.LastChild();
NS_ASSERTION(
(mLines.empty() ? nullptr : mLines.back()->LastChild()) == lastKid,
"out-of-sync mLines / mFrames");
#ifdef NOISY_REFLOW_REASON
ListTag(stdout);
printf(": append ");
for (nsIFrame* frame : aFrameList) {
frame->ListTag(stdout);
}
if (lastKid) {
printf(" after ");
lastKid->ListTag(stdout);
}
printf("\n");
#endif
if (IsInSVGTextSubtree()) {
MOZ_ASSERT(GetParent()->IsSVGTextFrame(),
"unexpected block frame in SVG text");
// SVGTextFrame just before the parser adds more descendant nodes.
GetParent()->AddStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY);
}
AddFrames(std::move(aFrameList), lastKid, nullptr);
if (aListID != FrameChildListID::NoReflowPrincipal) {
PresShell()->FrameNeedsReflow(
this, IntrinsicDirty::FrameAndAncestors,
NS_FRAME_HAS_DIRTY_CHILDREN); // XXX sufficient?
}
}
void nsBlockFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame,
const nsLineList::iterator* aPrevFrameLine,
nsFrameList&& aFrameList) {
NS_ASSERTION(!aPrevFrame || aPrevFrame->GetParent() == this,
"inserting after sibling frame with different parent");
if (aListID != FrameChildListID::Principal) {
if (FrameChildListID::Float == aListID) {
DrainSelfPushedFloats(); // ensure aPrevFrame is in floats list.
EnsureFloats()->InsertFrames(this, aPrevFrame, std::move(aFrameList));
return;
}
MOZ_ASSERT(FrameChildListID::NoReflowPrincipal == aListID,
"unexpected child list");
}
#ifdef NOISY_REFLOW_REASON
ListTag(stdout);
printf(": insert ");
for (nsIFrame* frame : aFrameList) {
frame->ListTag(stdout);
}
if (aPrevFrame) {
printf(" after ");
aPrevFrame->ListTag(stdout);
}
printf("\n");
#endif
AddFrames(std::move(aFrameList), aPrevFrame, aPrevFrameLine);
if (aListID != FrameChildListID::NoReflowPrincipal) {
PresShell()->FrameNeedsReflow(
this, IntrinsicDirty::FrameAndAncestors,
NS_FRAME_HAS_DIRTY_CHILDREN); // XXX sufficient?
}
}
void nsBlockFrame::RemoveFrame(DestroyContext& aContext, ChildListID aListID,
nsIFrame* aOldFrame) {
#ifdef NOISY_REFLOW_REASON
ListTag(stdout);
printf(": remove ");
aOldFrame->ListTag(stdout);
printf("\n");
#endif
if (aListID == FrameChildListID::Principal) {
bool hasFloats = BlockHasAnyFloats(aOldFrame);
DoRemoveFrame(aContext, aOldFrame, REMOVE_FIXED_CONTINUATIONS);
if (hasFloats) {
MarkSameFloatManagerLinesDirty(this);
}
} else if (FrameChildListID::Float == aListID) {
// Make sure to mark affected lines dirty for the float frame
// we are removing; this way is a bit messy, but so is the rest of the code.
NS_ASSERTION(!aOldFrame->GetPrevContinuation(),
"RemoveFrame should not be called on pushed floats.");
for (nsIFrame* f = aOldFrame;
f && !f->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
f = f->GetNextContinuation()) {
MarkSameFloatManagerLinesDirty(
static_cast<nsBlockFrame*>(f->GetParent()));
}
DoRemoveOutOfFlowFrame(aContext, aOldFrame);
} else if (FrameChildListID::NoReflowPrincipal == aListID) {
// Skip the call to |FrameNeedsReflow| below by returning now.
DoRemoveFrame(aContext, aOldFrame, REMOVE_FIXED_CONTINUATIONS);
return;
} else {
MOZ_CRASH("unexpected child list");
}
PresShell()->FrameNeedsReflow(
this, IntrinsicDirty::FrameAndAncestors,
NS_FRAME_HAS_DIRTY_CHILDREN); // XXX sufficient?
}
static bool ShouldPutNextSiblingOnNewLine(nsIFrame* aLastFrame) {
LayoutFrameType type = aLastFrame->Type();
if (type == LayoutFrameType::Br) {
return true;
}
if (type == LayoutFrameType::Text &&
!aLastFrame->HasAnyStateBits(TEXT_OFFSETS_NEED_FIXING)) {
return aLastFrame->HasSignificantTerminalNewline();
}
return false;
}
void nsBlockFrame::AddFrames(nsFrameList&& aFrameList, nsIFrame* aPrevSibling,
const nsLineList::iterator* aPrevSiblingLine) {
// Clear our line cursor, since our lines may change.
ClearLineCursors();
if (aFrameList.IsEmpty()) {
return;
}
// Attempt to find the line that contains the previous sibling
nsLineList* lineList = &mLines;
nsFrameList* frames = &mFrames;
nsLineList::iterator prevSibLine;
int32_t prevSiblingIndex;
if (aPrevSiblingLine) {
MOZ_ASSERT(aPrevSibling);
prevSibLine = *aPrevSiblingLine;
FrameLines* overflowLines = GetOverflowLines();
MOZ_ASSERT(prevSibLine.IsInSameList(mLines.begin()) ||
(overflowLines &&
prevSibLine.IsInSameList(overflowLines->mLines.begin())),
"must be one of our line lists");
if (overflowLines) {
// We need to find out which list it's actually in. Assume that
// *if* we have overflow lines, that our primary lines aren't
// huge, but our overflow lines might be.
nsLineList::iterator line = mLines.begin(), lineEnd = mLines.end();
while (line != lineEnd) {
if (line == prevSibLine) {
break;
}
++line;
}
if (line == lineEnd) {
// By elimination, the line must be in our overflow lines.
lineList = &overflowLines->mLines;
frames = &overflowLines->mFrames;
}
}
nsLineList::iterator nextLine = prevSibLine.next();
nsIFrame* lastFrameInLine = nextLine == lineList->end()
? frames->LastChild()
: nextLine->mFirstChild->GetPrevSibling();
prevSiblingIndex = prevSibLine->RLIndexOf(aPrevSibling, lastFrameInLine);
MOZ_ASSERT(prevSiblingIndex >= 0,
"aPrevSibling must be in aPrevSiblingLine");
} else {
prevSibLine = lineList->end();
prevSiblingIndex = -1;
if (aPrevSibling) {
// XXX_perf This is technically O(N^2) in some cases, but by using
// RFind instead of Find, we make it O(N) in the most common case,
// which is appending content.
// Find the line that contains the previous sibling
if (!nsLineBox::RFindLineContaining(aPrevSibling, lineList->begin(),
prevSibLine, mFrames.LastChild(),
&prevSiblingIndex)) {
// Not in mLines - try overflow lines.
FrameLines* overflowLines = GetOverflowLines();
bool found = false;
if (overflowLines) {
prevSibLine = overflowLines->mLines.end();
prevSiblingIndex = -1;
found = nsLineBox::RFindLineContaining(
aPrevSibling, overflowLines->mLines.begin(), prevSibLine,
overflowLines->mFrames.LastChild(), &prevSiblingIndex);
}
if (MOZ_LIKELY(found)) {
lineList = &overflowLines->mLines;
frames = &overflowLines->mFrames;
} else {
// Note: defensive code! RFindLineContaining must not return
// false in this case, so if it does...
MOZ_ASSERT_UNREACHABLE("prev sibling not in line list");
aPrevSibling = nullptr;
prevSibLine = lineList->end();
}
}
}
}
// Find the frame following aPrevSibling so that we can join up the
// two lists of frames.
if (aPrevSibling) {
// Split line containing aPrevSibling in two if the insertion
// point is somewhere in the middle of the line.
int32_t rem = prevSibLine->GetChildCount() - prevSiblingIndex - 1;
if (rem) {
// Split the line in two where the frame(s) are being inserted.
nsLineBox* line =
NewLineBox(prevSibLine, aPrevSibling->GetNextSibling(), rem);
lineList->after_insert(prevSibLine, line);
// Mark prevSibLine dirty and as needing textrun invalidation, since
// we may be breaking up text in the line. Its previous line may also
// need to be invalidated because it may be able to pull some text up.
MarkLineDirty(prevSibLine, lineList);
// The new line will also need its textruns recomputed because of the
// frame changes.
line->MarkDirty();
line->SetInvalidateTextRuns(true);
}
} else if (!lineList->empty()) {
lineList->front()->MarkDirty();
lineList->front()->SetInvalidateTextRuns(true);
}
const nsFrameList::Slice& newFrames =
frames->InsertFrames(nullptr, aPrevSibling, std::move(aFrameList));
// Walk through the new frames being added and update the line data
// structures to fit.
for (nsIFrame* newFrame : newFrames) {
NS_ASSERTION(!aPrevSibling || aPrevSibling->GetNextSibling() == newFrame,
"Unexpected aPrevSibling");
NS_ASSERTION(
!newFrame->IsPlaceholderFrame() ||
(!newFrame->IsAbsolutelyPositioned() && !newFrame->IsFloating()),
"Placeholders should not float or be positioned");
bool isBlock = newFrame->IsBlockOutside();
// If the frame is a block frame, or if there is no previous line or if the
// previous line is a block line we need to make a new line. We also make
// a new line, as an optimization, in the two cases we know we'll need it:
// if the previous line ended with a <br>, or if it has significant
// whitespace and ended in a newline.
if (isBlock || prevSibLine == lineList->end() || prevSibLine->IsBlock() ||
(aPrevSibling && ShouldPutNextSiblingOnNewLine(aPrevSibling))) {
// Create a new line for the frame and add its line to the line
// list.
nsLineBox* line = NewLineBox(newFrame, isBlock);
if (prevSibLine != lineList->end()) {
// Append new line after prevSibLine
lineList->after_insert(prevSibLine, line);
++prevSibLine;
} else {
// New line is going before the other lines
lineList->push_front(line);
prevSibLine = lineList->begin();
}
} else {
prevSibLine->NoteFrameAdded(newFrame);
// We're adding inline content to prevSibLine, so we need to mark it
// dirty, ensure its textruns are recomputed, and possibly do the same
// to its previous line since that line may be able to pull content up.
MarkLineDirty(prevSibLine, lineList);
}
aPrevSibling = newFrame;
}
#ifdef DEBUG
MOZ_ASSERT(aFrameList.IsEmpty());
VerifyLines(true);
#endif
}
nsContainerFrame* nsBlockFrame::GetRubyContentPseudoFrame() {
auto* firstChild = PrincipalChildList().FirstChild();
if (firstChild && firstChild->IsRubyFrame() &&
firstChild->Style()->GetPseudoType() ==
PseudoStyleType::blockRubyContent) {
return static_cast<nsContainerFrame*>(firstChild);
}
return nullptr;
}
nsContainerFrame* nsBlockFrame::GetContentInsertionFrame() {
// 'display:block ruby' use the inner (Ruby) frame for insertions.
if (auto* rubyContentPseudoFrame = GetRubyContentPseudoFrame()) {
return rubyContentPseudoFrame;
}
return this;
}
void nsBlockFrame::AppendDirectlyOwnedAnonBoxes(
nsTArray<OwnedAnonBox>& aResult) {
if (auto* rubyContentPseudoFrame = GetRubyContentPseudoFrame()) {
aResult.AppendElement(OwnedAnonBox(rubyContentPseudoFrame));
}
}
void nsBlockFrame::RemoveFloatFromFloatCache(nsIFrame* aFloat) {
// Find which line contains the float, so we can update
// the float cache.
for (auto& line : Lines()) {
if (line.IsInline() && line.RemoveFloat(aFloat)) {
break;
}
}
}
void nsBlockFrame::RemoveFloat(nsIFrame* aFloat) {
MOZ_ASSERT(aFloat);
// Floats live in floats list, pushed floats list, or overflow out-of-flow
// list.
MOZ_ASSERT(
GetChildList(FrameChildListID::Float).ContainsFrame(aFloat) ||
GetChildList(FrameChildListID::PushedFloats).ContainsFrame(aFloat) ||
GetChildList(FrameChildListID::OverflowOutOfFlow)
.ContainsFrame(aFloat),
"aFloat is not our child or on an unexpected frame list");
bool didStartRemovingFloat = false;
if (nsFrameList* floats = GetFloats()) {
didStartRemovingFloat = true;
if (floats->StartRemoveFrame(aFloat)) {
if (floats->IsEmpty()) {
StealFloats()->Delete(PresShell());
}
return;
}
}
if (nsFrameList* pushedFloats = GetPushedFloats()) {
bool found;
if (didStartRemovingFloat) {
found = pushedFloats->ContinueRemoveFrame(aFloat);
} else {
didStartRemovingFloat = true;
found = pushedFloats->StartRemoveFrame(aFloat);
}
if (found) {
if (pushedFloats->IsEmpty()) {
StealPushedFloats()->Delete(PresShell());
}
return;
}
}
{
nsAutoOOFFrameList oofs(this);
if (didStartRemovingFloat ? oofs.mList.ContinueRemoveFrame(aFloat)
: oofs.mList.StartRemoveFrame(aFloat)) {
return;
}
}
}
void nsBlockFrame::DoRemoveOutOfFlowFrame(DestroyContext& aContext,
nsIFrame* aFrame) {
// The containing block is always the parent of aFrame.
nsBlockFrame* block = (nsBlockFrame*)aFrame->GetParent();
// Remove aFrame from the appropriate list.
if (aFrame->IsAbsolutelyPositioned()) {
// This also deletes the next-in-flows
block->GetAbsoluteContainingBlock()->RemoveFrame(
aContext, FrameChildListID::Absolute, aFrame);
} else {
// First remove aFrame's next-in-flows.
if (nsIFrame* nif = aFrame->GetNextInFlow()) {
nif->GetParent()->DeleteNextInFlowChild(aContext, nif, false);
}
// Now remove aFrame from its child list and Destroy it.
block->RemoveFloatFromFloatCache(aFrame);
block->RemoveFloat(aFrame);
aFrame->Destroy(aContext);
}
}
/**
* This helps us iterate over the list of all normal + overflow lines
*/
void nsBlockFrame::TryAllLines(nsLineList::iterator* aIterator,
nsLineList::iterator* aStartIterator,
nsLineList::iterator* aEndIterator,
bool* aInOverflowLines,
FrameLines** aOverflowLines) {
if (*aIterator == *aEndIterator) {
if (!*aInOverflowLines) {
// Try the overflow lines
*aInOverflowLines = true;
FrameLines* lines = GetOverflowLines();
if (lines) {
*aStartIterator = lines->mLines.begin();
*aIterator = *aStartIterator;
*aEndIterator = lines->mLines.end();
*aOverflowLines = lines;
}
}
}
}
nsBlockInFlowLineIterator::nsBlockInFlowLineIterator(nsBlockFrame* aFrame,
LineIterator aLine)
: mFrame(aFrame), mLine(aLine), mLineList(&aFrame->mLines) {
// This will assert if aLine isn't in mLines of aFrame:
DebugOnly<bool> check = aLine == mFrame->LinesBegin();
}
nsBlockInFlowLineIterator::nsBlockInFlowLineIterator(nsBlockFrame* aFrame,
LineIterator aLine,
bool aInOverflow)
: mFrame(aFrame),
mLine(aLine),
mLineList(aInOverflow ? &aFrame->GetOverflowLines()->mLines
: &aFrame->mLines) {}
nsBlockInFlowLineIterator::nsBlockInFlowLineIterator(nsBlockFrame* aFrame,
bool* aFoundValidLine)
: mFrame(aFrame), mLineList(&aFrame->mLines) {
mLine = aFrame->LinesBegin();
*aFoundValidLine = FindValidLine();
}
static bool AnonymousBoxIsBFC(const ComputedStyle* aStyle) {
switch (aStyle->GetPseudoType()) {
case PseudoStyleType::fieldsetContent:
case PseudoStyleType::columnContent:
case PseudoStyleType::buttonContent:
case PseudoStyleType::cellContent:
case PseudoStyleType::scrolledContent:
case PseudoStyleType::anonymousItem:
return true;
default:
return false;
}
}
static bool StyleEstablishesBFC(const ComputedStyle* aStyle) {
// paint/layout containment boxes and multi-column containers establish an
// independent formatting context.
const auto* disp = aStyle->StyleDisplay();
return disp->IsContainPaint() || disp->IsContainLayout() ||
disp->mContainerType != StyleContainerType::Normal ||
disp->DisplayInside() == StyleDisplayInside::FlowRoot ||
disp->IsAbsolutelyPositionedStyle() || disp->IsFloatingStyle() ||
aStyle->StylePosition()->mAlignContent.primary !=
StyleAlignFlags::NORMAL ||
aStyle->IsRootElementStyle() || AnonymousBoxIsBFC(aStyle);
}
static bool EstablishesBFC(const nsBlockFrame* aFrame) {
if (aFrame->HasAnyClassFlag(LayoutFrameClassFlags::BlockFormattingContext)) {
return true;
}
if (nsIFrame* parent = aFrame->GetParent()) {
if (parent->IsFieldSetFrame()) {
// A rendered legend always establishes a new formatting context, and so
// does the fieldset content frame, so we can just return true here.
return true;
}
const auto wm = aFrame->GetWritingMode();
const auto parentWM = parent->GetWritingMode();
if (wm.GetBlockDir() != parentWM.GetBlockDir() ||
wm.IsVerticalSideways() != parentWM.IsVerticalSideways()) {
// If a box has a different writing-mode value than its containing block
// [...] if the box is a block container, then it establishes a new block
// formatting context.
return true;
}
}
if (aFrame->IsColumnSpan()) {
return true;
}
if (aFrame->IsSuppressedScrollableBlockForPrint()) {
return true;
}
const auto* style = aFrame->Style();
if (style->GetPseudoType() == PseudoStyleType::marker) {
if (aFrame->GetParent() &&
aFrame->GetParent()->StyleList()->mListStylePosition ==
StyleListStylePosition::Outside) {
// An outside ::marker needs to be an independent formatting context
// to avoid being influenced by the float manager etc.
return true;
}
}
return StyleEstablishesBFC(style);
}
void nsBlockFrame::DidSetComputedStyle(ComputedStyle* aOldStyle) {
nsContainerFrame::DidSetComputedStyle(aOldStyle);
if (IsInSVGTextSubtree() &&
(StyleSVGReset()->HasNonScalingStroke() &&
(!aOldStyle || !aOldStyle->StyleSVGReset()->HasNonScalingStroke()))) {
nsIFrame* textFrame =
nsLayoutUtils::GetClosestFrameOfType(this, LayoutFrameType::SVGText);
MOZ_ASSERT(textFrame, "Expecting to find an SVG text frame");
SVGUtils::UpdateNonScalingStrokeStateBit(textFrame);
}
if (!aOldStyle) {
return;
}
const bool isBFC = EstablishesBFC(this);
if (HasAnyStateBits(NS_BLOCK_BFC) != isBFC) {
if (MaybeHasFloats()) {
// If the frame contains floats, this update may change their float
// manager. Be safe by dirtying all descendant lines of the nearest
// ancestor's float manager.
RemoveStateBits(NS_BLOCK_BFC);
MarkSameFloatManagerLinesDirty(this);
}
AddOrRemoveStateBits(NS_BLOCK_BFC, isBFC);
}
}
void nsBlockFrame::UpdateFirstLetterStyle(ServoRestyleState& aRestyleState) {
nsIFrame* letterFrame = GetFirstLetter();
if (!letterFrame) {
return;
}
// Figure out what the right style parent is. This needs to match
// nsCSSFrameConstructor::CreateLetterFrame.
nsIFrame* inFlowFrame = letterFrame;
if (inFlowFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
inFlowFrame = inFlowFrame->GetPlaceholderFrame();
}
nsIFrame* styleParent = CorrectStyleParentFrame(inFlowFrame->GetParent(),
PseudoStyleType::firstLetter);
ComputedStyle* parentStyle = styleParent->Style();
RefPtr<ComputedStyle> firstLetterStyle =
aRestyleState.StyleSet().ResolvePseudoElementStyle(
*mContent->AsElement(), PseudoStyleType::firstLetter, nullptr,
parentStyle);
// Note that we don't need to worry about changehints for the continuation
// styles: those will be handled by the styleParent already.
RefPtr<ComputedStyle> continuationStyle =
aRestyleState.StyleSet().ResolveStyleForFirstLetterContinuation(
parentStyle);
UpdateStyleOfOwnedChildFrame(letterFrame, firstLetterStyle, aRestyleState,
Some(continuationStyle.get()));
// We also want to update the style on the textframe inside the first-letter.
// We don't need to compute a changehint for this, though, since any changes
// to it are handled by the first-letter anyway.
nsIFrame* textFrame = letterFrame->PrincipalChildList().FirstChild();
RefPtr<ComputedStyle> firstTextStyle =
aRestyleState.StyleSet().ResolveStyleForText(textFrame->GetContent(),
firstLetterStyle);
textFrame->SetComputedStyle(firstTextStyle);
// We don't need to update style for textFrame's continuations: it's already
// set up to inherit from parentStyle, which is what we want.
}
static nsIFrame* FindChildContaining(nsBlockFrame* aFrame,
nsIFrame* aFindFrame) {
NS_ASSERTION(aFrame, "must have frame");
nsIFrame* child;
while (true) {
nsIFrame* block = aFrame;
do {
child = nsLayoutUtils::FindChildContainingDescendant(block, aFindFrame);
if (child) {
break;
}
block = block->GetNextContinuation();
} while (block);
if (!child) {
return nullptr;
}
if (!child->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
break;
}
aFindFrame = child->GetPlaceholderFrame();
}
return child;
}
nsBlockInFlowLineIterator::nsBlockInFlowLineIterator(nsBlockFrame* aFrame,
nsIFrame* aFindFrame,
bool* aFoundValidLine)
: mFrame(aFrame), mLineList(&aFrame->mLines) {
*aFoundValidLine = false;
nsIFrame* child = FindChildContaining(aFrame, aFindFrame);
if (!child) {
return;
}
LineIterator line_end = aFrame->LinesEnd();
mLine = aFrame->LinesBegin();
if (mLine != line_end && mLine.next() == line_end &&
!aFrame->HasOverflowLines()) {
// The block has a single line - that must be it!
*aFoundValidLine = true;
return;
}
// Try to use the cursor if it exists, otherwise fall back to the first line
if (nsLineBox* const cursor = aFrame->GetLineCursorForQuery()) {
mLine = line_end;
// Perform a simultaneous forward and reverse search starting from the
// line cursor.
nsBlockFrame::LineIterator line = aFrame->LinesBeginFrom(cursor);
nsBlockFrame::ReverseLineIterator rline = aFrame->LinesRBeginFrom(cursor);
nsBlockFrame::ReverseLineIterator rline_end = aFrame->LinesREnd();
// rline is positioned on the line containing 'cursor', so it's not
// rline_end. So we can safely increment it (i.e. move it to one line
// earlier) to start searching there.
++rline;
while (line != line_end || rline != rline_end) {
if (line != line_end) {
if (line->Contains(child)) {
mLine = line;
break;
}
++line;
}
if (rline != rline_end) {
if (rline->Contains(child)) {
mLine = rline;
break;
}
++rline;
}
}
if (mLine != line_end) {
*aFoundValidLine = true;
if (mLine != cursor) {
aFrame->SetProperty(nsBlockFrame::LineCursorPropertyQuery(), mLine);
}
return;
}
} else {
for (mLine = aFrame->LinesBegin(); mLine != line_end; ++mLine) {
if (mLine->Contains(child)) {
*aFoundValidLine = true;
return;
}
}
}
// Didn't find the line
MOZ_ASSERT(mLine == line_end, "mLine should be line_end at this point");
// If we reach here, it means that we have not been able to find the
// desired frame in our in-flow lines. So we should start looking at
// our overflow lines. In order to do that, we set mLine to the end
// iterator so that FindValidLine starts to look at overflow lines,
// if any.
if (!FindValidLine()) {
return;
}
do {
if (mLine->Contains(child)) {
*aFoundValidLine = true;
return;
}
} while (Next());
}
nsBlockFrame::LineIterator nsBlockInFlowLineIterator::End() {
return mLineList->end();
}
bool nsBlockInFlowLineIterator::IsLastLineInList() {
LineIterator end = End();
return mLine != end && mLine.next() == end;
}
bool nsBlockInFlowLineIterator::Next() {
++mLine;
return FindValidLine();
}
bool nsBlockInFlowLineIterator::Prev() {
LineIterator begin = mLineList->begin();
if (mLine != begin) {
--mLine;
return true;
}
bool currentlyInOverflowLines = GetInOverflow();
while (true) {
if (currentlyInOverflowLines) {
mLineList = &mFrame->mLines;
mLine = mLineList->end();
if (mLine != mLineList->begin()) {
--mLine;
return true;
}
} else {
mFrame = static_cast<nsBlockFrame*>(mFrame->GetPrevInFlow());
if (!mFrame) {
return false;
}
nsBlockFrame::FrameLines* overflowLines = mFrame->GetOverflowLines();
if (overflowLines) {
mLineList = &overflowLines->mLines;
mLine = mLineList->end();
NS_ASSERTION(mLine != mLineList->begin(), "empty overflow line list?");
--mLine;
return true;
}
}
currentlyInOverflowLines = !currentlyInOverflowLines;
}
}
bool nsBlockInFlowLineIterator::FindValidLine() {
LineIterator end = mLineList->end();
if (mLine != end) {
return true;
}
bool currentlyInOverflowLines = GetInOverflow();
while (true) {
if (currentlyInOverflowLines) {
mFrame = static_cast<nsBlockFrame*>(mFrame->GetNextInFlow());
if (!mFrame) {
return false;
}
mLineList = &mFrame->mLines;
mLine = mLineList->begin();
if (mLine != mLineList->end()) {
return true;
}
} else {
nsBlockFrame::FrameLines* overflowLines = mFrame->GetOverflowLines();
if (overflowLines) {
mLineList = &overflowLines->mLines;
mLine = mLineList->begin();
NS_ASSERTION(mLine != mLineList->end(), "empty overflow line list?");
return true;
}
}
currentlyInOverflowLines = !currentlyInOverflowLines;
}
}
// This function removes aDeletedFrame and all its continuations. It
// is optimized for deleting a whole series of frames. The easy
// implementation would invoke itself recursively on
// aDeletedFrame->GetNextContinuation, then locate the line containing
// aDeletedFrame and remove aDeletedFrame from that line. But here we
// start by locating aDeletedFrame and then scanning from that point
// on looking for continuations.
void nsBlockFrame::DoRemoveFrame(DestroyContext& aContext,
nsIFrame* aDeletedFrame, uint32_t aFlags) {
// We use the line cursor to attempt to optimize removal, but must ensure
// it is cleared if lines change such that it may become invalid.
if (aDeletedFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW |
NS_FRAME_IS_OVERFLOW_CONTAINER)) {
if (!aDeletedFrame->GetPrevInFlow()) {
NS_ASSERTION(aDeletedFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"Expected out-of-flow frame");
DoRemoveOutOfFlowFrame(aContext, aDeletedFrame);
} else {
// FIXME(emilio): aContext is lost here, maybe it's not a big deal?
nsContainerFrame::DeleteNextInFlowChild(aContext, aDeletedFrame,
(aFlags & FRAMES_ARE_EMPTY) != 0);
}
return;
}
// Find the line that contains deletedFrame. Start from the line cursor
// (if available) and search to the end of the normal line list, then
// from the start to the line cursor, and last the overflow lines.
nsLineList::iterator line_start = mLines.begin(), line_end = mLines.end();
nsLineList::iterator line = line_start;
bool found = false;
if (nsLineBox* cursor = GetLineCursorForDisplay()) {
for (line.SetPosition(cursor); line != line_end; ++line) {
if (line->Contains(aDeletedFrame)) {
found = true;
break;
}
}
if (!found) {
// Setup for a shorter TryAllLines normal line search to avoid searching
// the [cursor .. line_end] range again.
line = line_start;
line_end.SetPosition(cursor);
}
}
FrameLines* overflowLines = nullptr;
bool searchingOverflowList = false;
if (!found) {
// Make sure we look in the overflow lines even if the normal line
// list is empty.
TryAllLines(&line, &line_start, &line_end, &searchingOverflowList,
&overflowLines);
while (line != line_end) {
if (line->Contains(aDeletedFrame)) {
break;
}
++line;
TryAllLines(&line, &line_start, &line_end, &searchingOverflowList,
&overflowLines);
}
if (!searchingOverflowList && (GetStateBits() & NS_BLOCK_HAS_LINE_CURSOR)) {
// Restore line_end since we shortened the search to the cursor.
line_end = mLines.end();
// Clear our line cursors, since our normal line list may change.
ClearLineCursors();
}
}
if (line == line_end) {
NS_ERROR("can't find deleted frame in lines");
return;
}
if (!(aFlags & FRAMES_ARE_EMPTY)) {
if (line != line_start) {
line.prev()->MarkDirty();
line.prev()->SetInvalidateTextRuns(true);
} else if (searchingOverflowList && !mLines.empty()) {
mLines.back()->MarkDirty();
mLines.back()->SetInvalidateTextRuns(true);
}
}
while (line != line_end && aDeletedFrame) {
MOZ_ASSERT(this == aDeletedFrame->GetParent(), "messed up delete code");
MOZ_ASSERT(line->Contains(aDeletedFrame), "frame not in line");
if (!(aFlags & FRAMES_ARE_EMPTY)) {
line->MarkDirty();
line->SetInvalidateTextRuns(true);
}
// If the frame being deleted is the last one on the line then
// optimize away the line->Contains(next-in-flow) call below.
bool isLastFrameOnLine = 1 == line->GetChildCount();
if (!isLastFrameOnLine) {
LineIterator next = line.next();
nsIFrame* lastFrame =
next != line_end
? next->mFirstChild->GetPrevSibling()
: (searchingOverflowList ? overflowLines->mFrames.LastChild()
: mFrames.LastChild());
NS_ASSERTION(next == line_end || lastFrame == line->LastChild(),
"unexpected line frames");
isLastFrameOnLine = lastFrame == aDeletedFrame;
}
// Remove aDeletedFrame from the line
if (line->mFirstChild == aDeletedFrame) {
// We should be setting this to null if aDeletedFrame
// is the only frame on the line. HOWEVER in that case
// we will be removing the line anyway, see below.
line->mFirstChild = aDeletedFrame->GetNextSibling();
}
// Hmm, this won't do anything if we're removing a frame in the first
// overflow line... Hopefully doesn't matter
--line;
if (line != line_end && !line->IsBlock()) {
// Since we just removed a frame that follows some inline
// frames, we need to reflow the previous line.
line->MarkDirty();
}
++line;
// Take aDeletedFrame out of the sibling list. Note that
// prevSibling will only be nullptr when we are deleting the very
// first frame in the main or overflow list.
if (searchingOverflowList) {
overflowLines->mFrames.RemoveFrame(aDeletedFrame);
} else {
mFrames.RemoveFrame(aDeletedFrame);
}
// Update the child count of the line to be accurate
line->NoteFrameRemoved(aDeletedFrame);
// Destroy frame; capture its next continuation first in case we need
// to destroy that too.
nsIFrame* deletedNextContinuation =
(aFlags & REMOVE_FIXED_CONTINUATIONS)
? aDeletedFrame->GetNextContinuation()
: aDeletedFrame->GetNextInFlow();
#ifdef NOISY_REMOVE_FRAME
printf("DoRemoveFrame: %s line=%p frame=",
searchingOverflowList ? "overflow" : "normal", line.get());
aDeletedFrame->ListTag(stdout);
printf(" prevSibling=%p deletedNextContinuation=%p\n",
aDeletedFrame->GetPrevSibling(), deletedNextContinuation);
#endif
// If next-in-flow is an overflow container, must remove it first.
// FIXME: Can we do this unconditionally?
if (deletedNextContinuation && deletedNextContinuation->HasAnyStateBits(
NS_FRAME_IS_OVERFLOW_CONTAINER)) {
deletedNextContinuation->GetParent()->DeleteNextInFlowChild(
aContext, deletedNextContinuation, false);
deletedNextContinuation = nullptr;
}
aDeletedFrame->Destroy(aContext);
aDeletedFrame = deletedNextContinuation;
bool haveAdvancedToNextLine = false;
// If line is empty, remove it now.
if (0 == line->GetChildCount()) {
#ifdef NOISY_REMOVE_FRAME
printf("DoRemoveFrame: %s line=%p became empty so it will be removed\n",
searchingOverflowList ? "overflow" : "normal", line.get());
#endif
nsLineBox* cur = line;
if (!searchingOverflowList) {
line = mLines.erase(line);
ClearLineCursors();
// Invalidate the space taken up by the line.
// XXX We need to do this if we're removing a frame as a result of
// a call to RemoveFrame(), but we may not need to do this in all
// cases...
#ifdef NOISY_BLOCK_INVALIDATE
nsRect inkOverflow(cur->InkOverflowRect());
printf("%p invalidate 10 (%d, %d, %d, %d)\n", this, inkOverflow.x,
inkOverflow.y, inkOverflow.width, inkOverflow.height);
#endif
} else {
line = overflowLines->mLines.erase(line);
if (overflowLines->mLines.empty()) {
DestroyOverflowLines();
overflowLines = nullptr;
// We just invalidated our iterators. Since we were in
// the overflow lines list, which is now empty, set them
// so we're at the end of the regular line list.
line_start = mLines.begin();
line_end = mLines.end();
line = line_end;
}
}
FreeLineBox(cur);
// If we're removing a line, ReflowDirtyLines isn't going to
// know that it needs to slide lines unless something is marked
// dirty. So mark the previous margin of the next line dirty if
// there is one.
if (line != line_end) {
line->MarkPreviousMarginDirty();
}
haveAdvancedToNextLine = true;
} else {
// Make the line that just lost a frame dirty, and advance to
// the next line.
if (!deletedNextContinuation || isLastFrameOnLine ||
!line->Contains(deletedNextContinuation)) {
line->MarkDirty();
++line;
haveAdvancedToNextLine = true;
}
}
if (deletedNextContinuation) {
// See if we should keep looking in the current flow's line list.
if (deletedNextContinuation->GetParent() != this) {
// The deceased frames continuation is not a child of the
// current block. So break out of the loop so that we advance
// to the next parent.
//
// If we have a continuation in a different block then all bets are
// off regarding whether we are deleting frames without actual content,
// so don't propagate FRAMES_ARE_EMPTY any further.
aFlags &= ~FRAMES_ARE_EMPTY;
break;
}
// If we advanced to the next line then check if we should switch to the
// overflow line list.
if (haveAdvancedToNextLine) {
if (line != line_end && !searchingOverflowList &&
!line->Contains(deletedNextContinuation)) {
// We have advanced to the next *normal* line but the next-in-flow
// is not there - force a switch to the overflow line list.
line = line_end;
}
TryAllLines(&line, &line_start, &line_end, &searchingOverflowList,
&overflowLines);
#ifdef NOISY_REMOVE_FRAME
printf("DoRemoveFrame: now on %s line=%p\n",
searchingOverflowList ? "overflow" : "normal", line.get());
#endif
}
}
}
if (!(aFlags & FRAMES_ARE_EMPTY) && line.next() != line_end) {
line.next()->MarkDirty();
line.next()->SetInvalidateTextRuns(true);
}
#ifdef DEBUG
VerifyLines(true);
VerifyOverflowSituation();
#endif
// Advance to next flow block if the frame has more continuations.
if (!aDeletedFrame) {
return;
}
nsBlockFrame* nextBlock = do_QueryFrame(aDeletedFrame->GetParent());
NS_ASSERTION(nextBlock, "Our child's continuation's parent is not a block?");
uint32_t flags = (aFlags & REMOVE_FIXED_CONTINUATIONS);
nextBlock->DoRemoveFrame(aContext, aDeletedFrame, flags);
}
static bool FindBlockLineFor(nsIFrame* aChild, nsLineList::iterator aBegin,
nsLineList::iterator aEnd,
nsLineList::iterator* aResult) {
MOZ_ASSERT(aChild->IsBlockOutside());
for (nsLineList::iterator line = aBegin; line != aEnd; ++line) {
MOZ_ASSERT(line->GetChildCount() > 0);
if (line->IsBlock() && line->mFirstChild == aChild) {
MOZ_ASSERT(line->GetChildCount() == 1);
*aResult = line;
return true;
}
}
return false;
}
static bool FindInlineLineFor(nsIFrame* aChild, const nsFrameList& aFrameList,
nsLineList::iterator aBegin,
nsLineList::iterator aEnd,
nsLineList::iterator* aResult) {
MOZ_ASSERT(!aChild->IsBlockOutside());
for (nsLineList::iterator line = aBegin; line != aEnd; ++line) {
MOZ_ASSERT(line->GetChildCount() > 0);
if (!line->IsBlock()) {
// Optimize by comparing the line's last child first.
nsLineList::iterator next = line.next();
if (aChild == (next == aEnd ? aFrameList.LastChild()
: next->mFirstChild->GetPrevSibling()) ||
line->Contains(aChild)) {
*aResult = line;
return true;
}
}
}
return false;
}
static bool FindLineFor(nsIFrame* aChild, const nsFrameList& aFrameList,
nsLineList::iterator aBegin, nsLineList::iterator aEnd,
nsLineList::iterator* aResult) {
return aChild->IsBlockOutside()
? FindBlockLineFor(aChild, aBegin, aEnd, aResult)
: FindInlineLineFor(aChild, aFrameList, aBegin, aEnd, aResult);
}
void nsBlockFrame::StealFrame(nsIFrame* aChild) {
MOZ_ASSERT(aChild->GetParent() == this);
if (aChild->IsFloating()) {
RemoveFloat(aChild);
return;
}
if (MaybeStealOverflowContainerFrame(aChild)) {
return;
}
MOZ_ASSERT(!aChild->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW));
nsLineList::iterator line;
if (FindLineFor(aChild, mFrames, mLines.begin(), mLines.end(), &line)) {
RemoveFrameFromLine(aChild, line, mFrames, mLines);
} else {
FrameLines* overflowLines = GetOverflowLines();
DebugOnly<bool> found;
found = FindLineFor(aChild, overflowLines->mFrames,
overflowLines->mLines.begin(),
overflowLines->mLines.end(), &line);
MOZ_ASSERT(found, "Why can't we find aChild in our overflow lines?");
RemoveFrameFromLine(aChild, line, overflowLines->mFrames,
overflowLines->mLines);
if (overflowLines->mLines.empty()) {
DestroyOverflowLines();
}
}
}
void nsBlockFrame::RemoveFrameFromLine(nsIFrame* aChild,
nsLineList::iterator aLine,
nsFrameList& aFrameList,
nsLineList& aLineList) {
aFrameList.RemoveFrame(aChild);
if (aChild == aLine->mFirstChild) {
aLine->mFirstChild = aChild->GetNextSibling();
}
aLine->NoteFrameRemoved(aChild);
if (aLine->GetChildCount() > 0) {
aLine->MarkDirty();
} else {
// The line became empty - destroy it.
nsLineBox* lineBox = aLine;
aLine = aLineList.erase(aLine);
if (aLine != aLineList.end()) {
aLine->MarkPreviousMarginDirty();
}
FreeLineBox(lineBox);
ClearLineCursors();
}
}
void nsBlockFrame::DeleteNextInFlowChild(DestroyContext& aContext,
nsIFrame* aNextInFlow,
bool aDeletingEmptyFrames) {
MOZ_ASSERT(aNextInFlow->GetPrevInFlow(), "bad next-in-flow");
if (aNextInFlow->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW |
NS_FRAME_IS_OVERFLOW_CONTAINER)) {
nsContainerFrame::DeleteNextInFlowChild(aContext, aNextInFlow,
aDeletingEmptyFrames);
} else {
#ifdef DEBUG
if (aDeletingEmptyFrames) {
nsLayoutUtils::AssertTreeOnlyEmptyNextInFlows(aNextInFlow);
}
#endif
DoRemoveFrame(aContext, aNextInFlow,
aDeletingEmptyFrames ? FRAMES_ARE_EMPTY : 0);
}
}
const nsStyleText* nsBlockFrame::StyleTextForLineLayout() {
// Return the pointer to an unmodified style text
return StyleText();
}
void nsBlockFrame::ReflowFloat(BlockReflowState& aState, ReflowInput& aFloatRI,
nsIFrame* aFloat,
nsReflowStatus& aReflowStatus) {
MOZ_ASSERT(aReflowStatus.IsEmpty(),
"Caller should pass a fresh reflow status!");
MOZ_ASSERT(aFloat->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"aFloat must be an out-of-flow frame");
WritingMode wm = aState.mReflowInput.GetWritingMode();
// Setup a block reflow context to reflow the float.
nsBlockReflowContext brc(aState.mPresContext, aState.mReflowInput);
nsIFrame* clearanceFrame = nullptr;
do {
CollapsingMargin margin;
bool mayNeedRetry = false;
aFloatRI.mDiscoveredClearance = nullptr;
// Only first in flow gets a block-start margin.
if (!aFloat->GetPrevInFlow()) {
brc.ComputeCollapsedBStartMargin(aFloatRI, &margin, clearanceFrame,
&mayNeedRetry);
if (mayNeedRetry && !clearanceFrame) {
aFloatRI.mDiscoveredClearance = &clearanceFrame;
// We don't need to push the float manager state because the the block
// has its own float manager that will be destroyed and recreated
}
}
// When reflowing a float, aSpace argument doesn't matter because we pass
// nullptr to aLine and we don't call nsBlockReflowContext::PlaceBlock()
// later.
brc.ReflowBlock(LogicalRect(wm), true, margin, 0, nullptr, aFloatRI,
aReflowStatus, aState);
} while (clearanceFrame);
if (aFloat->IsLetterFrame()) {
// We never split floating first letters; an incomplete status for such
// frames simply means that there is more content to be reflowed on the
// line.
if (aReflowStatus.IsIncomplete()) {
aReflowStatus.Reset();
}
}
NS_ASSERTION(aReflowStatus.IsFullyComplete() ||
aFloatRI.AvailableBSize() != NS_UNCONSTRAINEDSIZE,
"The status can only be incomplete or overflow-incomplete if "
"the available block-size is constrained!");
if (aReflowStatus.NextInFlowNeedsReflow()) {
aState.mReflowStatus.SetNextInFlowNeedsReflow();
}
const ReflowOutput& metrics = brc.GetMetrics();
// Set the rect, make sure the view is properly sized and positioned,
// and tell the frame we're done reflowing it
// XXXldb This seems like the wrong place to be doing this -- shouldn't
// we be doing this in BlockReflowState::FlowAndPlaceFloat after
// we've positioned the float, and shouldn't we be doing the equivalent
// of |PlaceFrameView| here?
WritingMode metricsWM = metrics.GetWritingMode();
aFloat->SetSize(metricsWM, metrics.Size(metricsWM));
if (aFloat->HasView()) {
nsContainerFrame::SyncFrameViewAfterReflow(
aState.mPresContext, aFloat, aFloat->GetView(), metrics.InkOverflow(),
ReflowChildFlags::NoMoveView);
}
aFloat->DidReflow(aState.mPresContext, &aFloatRI);
}
UsedClear nsBlockFrame::FindTrailingClear() {
for (nsBlockFrame* b = this; b;
b = static_cast<nsBlockFrame*>(b->GetPrevInFlow())) {
auto endLine = b->LinesRBegin();
if (endLine != b->LinesREnd()) {
return endLine->FloatClearTypeAfter();
}
}
return UsedClear::None;
}
void nsBlockFrame::ReflowPushedFloats(BlockReflowState& aState,
OverflowAreas& aOverflowAreas) {
// Pushed floats live at the start of our float list; see comment
// above nsBlockFrame::DrainPushedFloats.
nsFrameList* floats = GetFloats();
nsIFrame* f = floats ? floats->FirstChild() : nullptr;
nsIFrame* prev = nullptr;
while (f && f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT)) {
MOZ_ASSERT(prev == f->GetPrevSibling());
// When we push a first-continuation float in a non-initial reflow,
// it's possible that we end up with two continuations with the same
// parent. This happens if, on the previous reflow of the block or
// a previous reflow of the line containing the block, the float was
// split between continuations A and B of the parent, but on the
// current reflow, none of the float can fit in A.
//
// When this happens, we might even have the two continuations
// out-of-order due to the management of the pushed floats. In
// particular, if the float's placeholder was in a pushed line that
// we reflowed before it was pushed, and we split the float during
// that reflow, we might have the continuation of the float before
// the float itself. (In the general case, however, it's correct
// for floats in the pushed floats list to come before floats
// anchored in pushed lines; however, in this case it's wrong. We
// should probably find a way to fix it somehow, since it leads to
// incorrect layout in some cases.)
//
// When we have these out-of-order continuations, we might hit the
// next-continuation before the previous-continuation. When that
// happens, just push it. When we reflow the next continuation,
// we'll either pull all of its content back and destroy it (by
// calling DeleteNextInFlowChild), or nsBlockFrame::SplitFloat will
// pull it out of its current position and push it again (and
// potentially repeat this cycle for the next continuation, although
// hopefully then they'll be in the right order).
//
// We should also need this code for the in-order case if the first
// continuation of a float gets moved across more than one
// continuation of the containing block. In this case we'd manage
// to push the second continuation without this check, but not the
// third and later.
nsIFrame* prevContinuation = f->GetPrevContinuation();
if (prevContinuation && prevContinuation->GetParent() == f->GetParent()) {
floats->RemoveFrame(f);
if (floats->IsEmpty()) {
StealFloats()->Delete(PresShell());
floats = nullptr;
}
aState.AppendPushedFloatChain(f);
if (!floats) {
// The floats list becomes empty after removing |f|. Bail out.
f = prev = nullptr;
break;
}
// Even if we think |floats| is valid, AppendPushedFloatChain() can also
// push |f|'s next-in-flows in our floats list to our pushed floats list.
// If all the floats in the floats list are pushed, the floats list will
// be deleted, and |floats| will be stale and poisoned. Therefore, we need
// to get the floats list again to check its validity.
floats = GetFloats();
if (!floats) {
f = prev = nullptr;
break;
}
f = !prev ? floats->FirstChild() : prev->GetNextSibling();
continue;
}
// Always call FlowAndPlaceFloat; we might need to place this float if it
// didn't belong to this block the last time it was reflowed. Note that if
// the float doesn't get placed, we don't consider its overflow areas.
// (Not-getting-placed means it didn't fit and we pushed it instead of
// placing it, and its position could be stale.)
if (aState.FlowAndPlaceFloat(f) ==
BlockReflowState::PlaceFloatResult::Placed) {
ConsiderChildOverflow(aOverflowAreas, f);
}
// If f is the only child in the floats list, pushing it to the pushed
// floats list in FlowAndPlaceFloat() can result in the floats list being
// deleted. Get the floats list again.
floats = GetFloats();
if (!floats) {
f = prev = nullptr;
break;
}
nsIFrame* next = !prev ? floats->FirstChild() : prev->GetNextSibling();
if (next == f) {
// We didn't push |f| so its next-sibling is next.
next = f->GetNextSibling();
prev = f;
} // else: we did push |f| so |prev|'s new next-sibling is next.
f = next;
}
// If there are pushed or split floats, then we may need to continue BR
// clearance
if (auto [bCoord, result] = aState.ClearFloats(0, UsedClear::Both);
result != ClearFloatsResult::BCoordNoChange) {
Unused << bCoord;
if (auto* prevBlock = static_cast<nsBlockFrame*>(GetPrevInFlow())) {
aState.mTrailingClearFromPIF = prevBlock->FindTrailingClear();
}
}
}
void nsBlockFrame::RecoverFloats(nsFloatManager& aFloatManager, WritingMode aWM,
const nsSize& aContainerSize) {
// Recover our own floats
nsIFrame* stop = nullptr; // Stop before we reach pushed floats that
// belong to our next-in-flow
const nsFrameList* floats = GetFloats();
for (nsIFrame* f = floats ? floats->FirstChild() : nullptr; f && f != stop;
f = f->GetNextSibling()) {
LogicalRect region = nsFloatManager::GetRegionFor(aWM, f, aContainerSize);
aFloatManager.AddFloat(f, region, aWM, aContainerSize);
if (!stop && f->GetNextInFlow()) {
stop = f->GetNextInFlow();
}
}
// Recurse into our overflow container children
for (nsIFrame* oc =
GetChildList(FrameChildListID::OverflowContainers).FirstChild();
oc; oc = oc->GetNextSibling()) {
RecoverFloatsFor(oc, aFloatManager, aWM, aContainerSize);
}
// Recurse into our normal children
for (const auto& line : Lines()) {
if (line.IsBlock()) {
RecoverFloatsFor(line.mFirstChild, aFloatManager, aWM, aContainerSize);
}
}
}
void nsBlockFrame::RecoverFloatsFor(nsIFrame* aFrame,
nsFloatManager& aFloatManager,
WritingMode aWM,
const nsSize& aContainerSize) {
MOZ_ASSERT(aFrame, "null frame");
// Only blocks have floats
nsBlockFrame* block = do_QueryFrame(aFrame);
// Don't recover any state inside a block that has its own float manager
// (we don't currently have any blocks like this, though, thanks to our
// use of extra frames for 'overflow')
if (block && !nsBlockFrame::BlockNeedsFloatManager(block)) {
// If the element is relatively positioned, then adjust x and y
// accordingly so that we consider relatively positioned frames
// at their original position.
const LogicalRect rect = block->GetLogicalNormalRect(aWM, aContainerSize);
nscoord lineLeft = rect.LineLeft(aWM, aContainerSize);
nscoord blockStart = rect.BStart(aWM);
aFloatManager.Translate(lineLeft, blockStart);
block->RecoverFloats(aFloatManager, aWM, aContainerSize);
aFloatManager.Translate(-lineLeft, -blockStart);
}
}
bool nsBlockFrame::HasPushedFloatsFromPrevContinuation() const {
if (const nsFrameList* floats = GetFloats()) {
// If we have pushed floats, then they should be at the beginning of our
// float list.
if (floats->FirstChild()->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT)) {
return true;
}
#ifdef DEBUG
// Double-check the above assertion that pushed floats should be at the
// beginning of our floats list.
for (nsIFrame* f : *floats) {
NS_ASSERTION(!f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT),
"pushed floats must be at the beginning of the float list");
}
#endif
}
// We may have a pending push of pushed floats, too.
return HasPushedFloats();
}
//////////////////////////////////////////////////////////////////////
// Painting, event handling
#ifdef DEBUG
static void ComputeInkOverflowArea(nsLineList& aLines, nscoord aWidth,
nscoord aHeight, nsRect& aResult) {
nscoord xa = 0, ya = 0, xb = aWidth, yb = aHeight;
for (nsLineList::iterator line = aLines.begin(), line_end = aLines.end();
line != line_end; ++line) {
// Compute min and max x/y values for the reflowed frame's
// combined areas
nsRect inkOverflow(line->InkOverflowRect());
nscoord x = inkOverflow.x;
nscoord y = inkOverflow.y;
nscoord xmost = x + inkOverflow.width;
nscoord ymost = y + inkOverflow.height;
if (x < xa) {
xa = x;
}
if (xmost > xb) {
xb = xmost;
}
if (y < ya) {
ya = y;
}
if (ymost > yb) {
yb = ymost;
}
}
aResult.x = xa;
aResult.y = ya;
aResult.width = xb - xa;
aResult.height = yb - ya;
}
#endif
#ifdef DEBUG
static void DebugOutputDrawLine(int32_t aDepth, nsLineBox* aLine, bool aDrawn) {
if (nsBlockFrame::gNoisyDamageRepair) {
nsIFrame::IndentBy(stdout, aDepth + 1);
nsRect lineArea = aLine->InkOverflowRect();
printf("%s line=%p bounds=%d,%d,%d,%d ca=%d,%d,%d,%d\n",
aDrawn ? "draw" : "skip", static_cast<void*>(aLine), aLine->IStart(),
aLine->BStart(), aLine->ISize(), aLine->BSize(), lineArea.x,
lineArea.y, lineArea.width, lineArea.height);
}
}
#endif
static void DisplayLine(nsDisplayListBuilder* aBuilder,
nsBlockFrame::LineIterator& aLine,
const bool aLineInLine, const nsDisplayListSet& aLists,
nsBlockFrame* aFrame, TextOverflow* aTextOverflow,
uint32_t aLineNumberForTextOverflow, int32_t aDepth,
int32_t& aDrawnLines, bool& aFoundLineClamp) {
#ifdef DEBUG
if (nsBlockFrame::gLamePaintMetrics) {
aDrawnLines++;
}
const bool intersect =
aLine->InkOverflowRect().Intersects(aBuilder->GetDirtyRect());
DebugOutputDrawLine(aDepth, aLine.get(), intersect);
#endif
// Collect our line's display items in a temporary nsDisplayListCollection,
// so that we can apply any "text-overflow" clipping to the entire collection
// without affecting previous lines.
nsDisplayListCollection collection(aBuilder);
// Block-level child backgrounds go on the blockBorderBackgrounds list ...
// Inline-level child backgrounds go on the regular child content list.
nsDisplayListSet childLists(
collection,
aLineInLine ? collection.Content() : collection.BlockBorderBackgrounds());
auto flags =
aLineInLine
? nsIFrame::DisplayChildFlags(nsIFrame::DisplayChildFlag::Inline)
: nsIFrame::DisplayChildFlags();
nsIFrame* kid = aLine->mFirstChild;
int32_t n = aLine->GetChildCount();
while (--n >= 0) {
aFrame->BuildDisplayListForChild(aBuilder, kid, childLists, flags);
kid = kid->GetNextSibling();
}
if (aFrame->HasLineClampEllipsisDescendant() && !aLineInLine) {
if (nsBlockFrame* f = GetAsLineClampDescendant(aLine->mFirstChild)) {
if (f->HasLineClampEllipsis() || f->HasLineClampEllipsisDescendant()) {
aFoundLineClamp = true;
}
}
}
if (aTextOverflow && aLineInLine) {
aTextOverflow->ProcessLine(collection, aLine.get(),
aLineNumberForTextOverflow);
}
collection.MoveTo(aLists);
}
void nsBlockFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
int32_t drawnLines; // Will only be used if set (gLamePaintMetrics).
int32_t depth = 0;
#ifdef DEBUG
if (gNoisyDamageRepair) {
nsRect dirty = aBuilder->GetDirtyRect();
depth = GetDepth();
nsRect ca;
::ComputeInkOverflowArea(mLines, mRect.width, mRect.height, ca);
nsIFrame::IndentBy(stdout, depth);
ListTag(stdout);
printf(": bounds=%d,%d,%d,%d dirty(absolute)=%d,%d,%d,%d ca=%d,%d,%d,%d\n",
mRect.x, mRect.y, mRect.width, mRect.height, dirty.x, dirty.y,
dirty.width, dirty.height, ca.x, ca.y, ca.width, ca.height);
}
PRTime start = 0; // Initialize these variables to silence the compiler.
if (gLamePaintMetrics) {
start = PR_Now();
drawnLines = 0;
}
#endif
// TODO(heycam): Should we boost the load priority of any shape-outside
// images using CATEGORY_DISPLAY, now that this block is being displayed?
// We don't have a float manager here.
DisplayBorderBackgroundOutline(aBuilder, aLists);
if (GetPrevInFlow()) {
DisplayOverflowContainers(aBuilder, aLists);
for (nsIFrame* f : GetChildList(FrameChildListID::Float)) {
if (f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT)) {
BuildDisplayListForChild(aBuilder, f, aLists);
}
}
}
aBuilder->MarkFramesForDisplayList(this,
GetChildList(FrameChildListID::Float));
if (nsIFrame* outsideMarker = GetOutsideMarker()) {
// Display outside ::marker manually.
BuildDisplayListForChild(aBuilder, outsideMarker, aLists);
}
// Prepare for text-overflow processing.
Maybe<TextOverflow> textOverflow =
TextOverflow::WillProcessLines(aBuilder, this);
const bool hasDescendantPlaceHolders =
HasAnyStateBits(NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO) ||
ForceDescendIntoIfVisible() || aBuilder->GetIncludeAllOutOfFlows();
const auto ShouldDescendIntoLine = [&](const nsRect& aLineArea) -> bool {
// TODO(miko): Unfortunately |descendAlways| cannot be cached, because with
// some frame trees, building display list for child lines can change it.
const bool descendAlways =
HasAnyStateBits(NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO) ||
aBuilder->GetIncludeAllOutOfFlows();
return descendAlways || aLineArea.Intersects(aBuilder->GetDirtyRect()) ||
(ForceDescendIntoIfVisible() &&
aLineArea.Intersects(aBuilder->GetVisibleRect()));
};
Maybe<nscolor> backplateColor;
// We'll try to draw an accessibility backplate behind text (to ensure it's
// readable over any possible background-images), if all of the following
// hold:
// (A) we are not honoring the document colors
// (B) the backplate feature is preffed on
// (C) the force color adjust property is set to auto
if (PresContext()->ForcingColors() &&
StaticPrefs::browser_display_permit_backplate() &&
StyleText()->mForcedColorAdjust != StyleForcedColorAdjust::None) {
backplateColor.emplace(GetBackplateColor(this));
}
// Don't use the line cursor if we might have a descendant placeholder ...
// it might skip lines that contain placeholders but don't themselves
// intersect with the dirty area.
// In particular, we really want to check ShouldDescendIntoFrame()
// on all our child frames, but that might be expensive. So we
// approximate it by checking it on |this|; if it's true for any
// frame in our child list, it's also true for |this|.
// Also skip the cursor if we're creating text overflow markers,
// since we need to know what line number we're up to in order
// to generate unique display item keys.
// Lastly, the cursor should be skipped if we're drawing
// backplates behind text. When backplating we consider consecutive
// runs of text as a whole, which requires we iterate through all lines
// to find our backplate size.
nsLineBox* cursor =
(hasDescendantPlaceHolders || textOverflow.isSome() || backplateColor ||
HasLineClampEllipsis() || HasLineClampEllipsisDescendant())
? nullptr
: GetFirstLineContaining(aBuilder->GetDirtyRect().y);
LineIterator line_end = LinesEnd();
TextOverflow* textOverflowPtr = textOverflow.ptrOr(nullptr);
bool foundClamp = false;
if (cursor) {
for (LineIterator line = mLines.begin(cursor); line != line_end; ++line) {
const nsRect lineArea = line->InkOverflowRect();
if (!lineArea.IsEmpty()) {
// Because we have a cursor, the combinedArea.ys are non-decreasing.
// Once we've passed aDirtyRect.YMost(), we can never see it again.
if (lineArea.y >= aBuilder->GetDirtyRect().YMost()) {
break;
}
MOZ_ASSERT(textOverflow.isNothing());
if (ShouldDescendIntoLine(lineArea)) {
DisplayLine(aBuilder, line, line->IsInline(), aLists, this, nullptr,
0, depth, drawnLines, foundClamp);
MOZ_ASSERT(!foundClamp);
}
}
}
} else {
bool nonDecreasingYs = true;
uint32_t lineCount = 0;
nscoord lastY = INT32_MIN;
nscoord lastYMost = INT32_MIN;
// A frame's display list cannot contain more than one copy of a
// given display item unless the items are uniquely identifiable.
// Because backplate occasionally requires multiple
// SolidColor items, we use an index (backplateIndex) to maintain
// uniqueness among them. Note this is a mapping of index to
// item, and the mapping is stable even if the dirty rect changes.
uint16_t backplateIndex = 0;
nsRect curBackplateArea;
auto AddBackplate = [&]() {
aLists.BorderBackground()->AppendNewToTopWithIndex<nsDisplaySolidColor>(
aBuilder, this, backplateIndex, curBackplateArea,
backplateColor.value());
};
for (LineIterator line = LinesBegin(); line != line_end; ++line) {
const nsRect lineArea = line->InkOverflowRect();
const bool lineInLine = line->IsInline();
if ((lineInLine && textOverflowPtr) || ShouldDescendIntoLine(lineArea)) {
DisplayLine(aBuilder, line, lineInLine, aLists, this, textOverflowPtr,
lineCount, depth, drawnLines, foundClamp);
}
if (!lineInLine && !curBackplateArea.IsEmpty()) {
// If we have encountered a non-inline line but were previously
// forming a backplate, we should add the backplate to the display
// list as-is and render future backplates disjointly.
MOZ_ASSERT(backplateColor,
"if this master switch is off, curBackplateArea "
"must be empty and we shouldn't get here");
AddBackplate();
backplateIndex++;
curBackplateArea = nsRect();
}
if (!lineArea.IsEmpty()) {
if (lineArea.y < lastY || lineArea.YMost() < lastYMost) {
nonDecreasingYs = false;
}
lastY = lineArea.y;
lastYMost = lineArea.YMost();
if (lineInLine && backplateColor && LineHasVisibleInlineText(line)) {
nsRect lineBackplate = GetLineTextArea(line, aBuilder) +
aBuilder->ToReferenceFrame(this);
if (curBackplateArea.IsEmpty()) {
curBackplateArea = lineBackplate;
} else {
curBackplateArea.OrWith(lineBackplate);
}
}
}
foundClamp = foundClamp || line->HasLineClampEllipsis();
if (foundClamp) {
break;
}
lineCount++;
}
if (nonDecreasingYs && lineCount >= MIN_LINES_NEEDING_CURSOR) {
SetupLineCursorForDisplay();
}
if (!curBackplateArea.IsEmpty()) {
AddBackplate();
}
}
if (textOverflow.isSome()) {
// Put any text-overflow:ellipsis markers on top of the non-positioned
// content of the block's lines. (If we ever start sorting the Content()
// list this will end up in the wrong place.)
aLists.Content()->AppendToTop(&textOverflow->GetMarkers());
}
#ifdef DEBUG
if (gLamePaintMetrics) {
PRTime end = PR_Now();
int32_t numLines = mLines.size();
if (!numLines) {
numLines = 1;
}
PRTime lines, deltaPerLine, delta;
lines = int64_t(numLines);
delta = end - start;
deltaPerLine = delta / lines;
ListTag(stdout);
char buf[400];
SprintfLiteral(buf,
": %" PRId64 " elapsed (%" PRId64
" per line) lines=%d drawn=%d skip=%d",
delta, deltaPerLine, numLines, drawnLines,
numLines - drawnLines);
printf("%s\n", buf);
}
#endif
}
#ifdef ACCESSIBILITY
a11y::AccType nsBlockFrame::AccessibleType() {
if (IsTableCaption()) {
return GetRect().IsEmpty() ? a11y::eNoType : a11y::eHTMLCaptionType;
}
// block frame may be for <hr>
if (mContent->IsHTMLElement(nsGkAtoms::hr)) {
return a11y::eHTMLHRType;
}
if (!HasMarker() || !PresContext()) {
// XXXsmaug What if we're in the shadow dom?
if (!mContent->GetParent()) {
// Don't create accessible objects for the root content node, they are
// redundant with the nsDocAccessible object created with the document
// node
return a11y::eNoType;
}
if (mContent == mContent->OwnerDoc()->GetBody()) {
// Don't create accessible objects for the body, they are redundant with
// the nsDocAccessible object created with the document node
return a11y::eNoType;
}
// Not a list item with a ::marker, treat as normal HTML container.
return a11y::eHyperTextType;
}
// Create special list item accessible since we have a ::marker.
return a11y::eHTMLLiType;
}
#endif
void nsBlockFrame::SetupLineCursorForDisplay() {
if (mLines.empty() || HasProperty(LineCursorPropertyDisplay())) {
return;
}
SetProperty(LineCursorPropertyDisplay(), mLines.front());
AddStateBits(NS_BLOCK_HAS_LINE_CURSOR);
}
void nsBlockFrame::SetupLineCursorForQuery() {
if (mLines.empty() || HasProperty(LineCursorPropertyQuery())) {
return;
}
SetProperty(LineCursorPropertyQuery(), mLines.front());
AddStateBits(NS_BLOCK_HAS_LINE_CURSOR);
}
nsLineBox* nsBlockFrame::GetFirstLineContaining(nscoord y) {
// Although this looks like a "querying" method, it is used by the
// display-list building code, so uses the Display cursor.
nsLineBox* property = GetLineCursorForDisplay();
if (!property) {
return nullptr;
}
LineIterator cursor = mLines.begin(property);
nsRect cursorArea = cursor->InkOverflowRect();
while ((cursorArea.IsEmpty() || cursorArea.YMost() > y) &&
cursor != mLines.front()) {
cursor = cursor.prev();
cursorArea = cursor->InkOverflowRect();
}
while ((cursorArea.IsEmpty() || cursorArea.YMost() <= y) &&
cursor != mLines.back()) {
cursor = cursor.next();
cursorArea = cursor->InkOverflowRect();
}
if (cursor.get() != property) {
SetProperty(LineCursorPropertyDisplay(), cursor.get());
}
return cursor.get();
}
/* virtual */
void nsBlockFrame::ChildIsDirty(nsIFrame* aChild) {
// See if the child is absolutely positioned
if (aChild->IsAbsolutelyPositioned()) {
// do nothing
} else if (aChild == GetOutsideMarker()) {
// The ::marker lives in the first line, unless the first line has
// height 0 and there is a second line, in which case it lives
// in the second line.
LineIterator markerLine = LinesBegin();
if (markerLine != LinesEnd() && markerLine->BSize() == 0 &&
markerLine != mLines.back()) {
markerLine = markerLine.next();
}
if (markerLine != LinesEnd()) {
MarkLineDirty(markerLine, &mLines);
}
// otherwise we have an empty line list, and ReflowDirtyLines
// will handle reflowing the ::marker.
} else {
// Note that we should go through our children to mark lines dirty
// before the next reflow. Doing it now could make things O(N^2)
// since finding the right line is O(N).
// We don't need to worry about marking lines on the overflow list
// as dirty; we're guaranteed to reflow them if we take them off the
// overflow list.
// However, we might have gotten a float, in which case we need to
// reflow the line containing its placeholder. So find the
// ancestor-or-self of the placeholder that's a child of the block,
// and mark it as NS_FRAME_HAS_DIRTY_CHILDREN too, so that we mark
// its line dirty when we handle NS_BLOCK_LOOK_FOR_DIRTY_FRAMES.
// We need to take some care to handle the case where a float is in
// a different continuation than its placeholder, including marking
// an extra block with NS_BLOCK_LOOK_FOR_DIRTY_FRAMES.
if (!aChild->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
AddStateBits(NS_BLOCK_LOOK_FOR_DIRTY_FRAMES);
} else {
NS_ASSERTION(aChild->IsFloating(), "should be a float");
nsIFrame* thisFC = FirstContinuation();
nsIFrame* placeholderPath = aChild->GetPlaceholderFrame();
// SVG code sometimes sends FrameNeedsReflow notifications during
// frame destruction, leading to null placeholders, but we're safe
// ignoring those.
if (placeholderPath) {
for (;;) {
nsIFrame* parent = placeholderPath->GetParent();
if (parent->GetContent() == mContent &&
parent->FirstContinuation() == thisFC) {
parent->AddStateBits(NS_BLOCK_LOOK_FOR_DIRTY_FRAMES);
break;
}
placeholderPath = parent;
}
placeholderPath->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
}
}
}
nsContainerFrame::ChildIsDirty(aChild);
}
void nsBlockFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
// These are all the block specific frame bits, they are copied from
// the prev-in-flow to a newly created next-in-flow, except for the
// NS_BLOCK_FLAGS_NON_INHERITED_MASK bits below.
constexpr nsFrameState NS_BLOCK_FLAGS_MASK =
NS_BLOCK_BFC | NS_BLOCK_HAS_FIRST_LETTER_STYLE |
NS_BLOCK_HAS_FIRST_LETTER_CHILD | NS_BLOCK_HAS_MARKER;
// This is the subset of NS_BLOCK_FLAGS_MASK that is NOT inherited
// by default. They should only be set on the first-in-flow.
constexpr nsFrameState NS_BLOCK_FLAGS_NON_INHERITED_MASK =
NS_BLOCK_HAS_FIRST_LETTER_CHILD | NS_BLOCK_HAS_MARKER;
if (aPrevInFlow) {
// Copy over the inherited block frame bits from the prev-in-flow.
RemoveStateBits(NS_BLOCK_FLAGS_MASK);
AddStateBits(aPrevInFlow->GetStateBits() &
(NS_BLOCK_FLAGS_MASK & ~NS_BLOCK_FLAGS_NON_INHERITED_MASK));
}
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
if (!aPrevInFlow ||
aPrevInFlow->HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION)) {
AddStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION);
}
if (EstablishesBFC(this)) {
AddStateBits(NS_BLOCK_BFC);
}
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER) &&
HasAnyStateBits(NS_BLOCK_BFC)) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
}
void nsBlockFrame::SetInitialChildList(ChildListID aListID,
nsFrameList&& aChildList) {
if (FrameChildListID::Float == aListID) {
nsFrameList* floats = EnsureFloats();
*floats = std::move(aChildList);
} else if (FrameChildListID::Principal == aListID) {
#ifdef DEBUG
// The only times a block that is an anonymous box is allowed to have a
// first-letter frame are when it's the block inside a non-anonymous cell,
// the block inside a fieldset, button or column set, or a scrolled content
// block, except for <select>. Note that this means that blocks which are
// the anonymous block in {ib} splits do NOT get first-letter frames.
// Note that NS_BLOCK_HAS_FIRST_LETTER_STYLE gets set on all continuations
// of the block.
auto pseudo = Style()->GetPseudoType();
bool haveFirstLetterStyle =
(pseudo == PseudoStyleType::NotPseudo ||
(pseudo == PseudoStyleType::cellContent &&
!GetParent()->Style()->IsPseudoOrAnonBox()) ||
pseudo == PseudoStyleType::fieldsetContent ||
(pseudo == PseudoStyleType::buttonContent &&
!GetParent()->IsComboboxControlFrame()) ||
pseudo == PseudoStyleType::columnContent ||
(pseudo == PseudoStyleType::scrolledContent &&
!GetParent()->IsListControlFrame()) ||
pseudo == PseudoStyleType::mozSVGText) &&
!IsMathMLFrame() && !IsColumnSetWrapperFrame() &&
RefPtr<ComputedStyle>(GetFirstLetterStyle(PresContext())) != nullptr;
NS_ASSERTION(haveFirstLetterStyle ==
HasAnyStateBits(NS_BLOCK_HAS_FIRST_LETTER_STYLE),
"NS_BLOCK_HAS_FIRST_LETTER_STYLE state out of sync");
#endif
AddFrames(std::move(aChildList), nullptr, nullptr);
} else {
nsContainerFrame::SetInitialChildList(aListID, std::move(aChildList));
}
}
void nsBlockFrame::SetMarkerFrameForListItem(nsIFrame* aMarkerFrame) {
MOZ_ASSERT(aMarkerFrame);
MOZ_ASSERT(!HasMarker(), "How can we have a ::marker frame already?");
if (StyleList()->mListStylePosition == StyleListStylePosition::Inside) {
SetProperty(InsideMarkerProperty(), aMarkerFrame);
} else {
SetProperty(OutsideMarkerProperty(),
new (PresShell()) nsFrameList(aMarkerFrame, aMarkerFrame));
}
AddStateBits(NS_BLOCK_HAS_MARKER);
}
bool nsBlockFrame::MarkerIsEmpty(const nsIFrame* aMarker) const {
MOZ_ASSERT(mContent->GetPrimaryFrame()->StyleDisplay()->IsListItem() &&
aMarker == GetOutsideMarker(),
"should only care about an outside ::marker");
const nsStyleList* list = aMarker->StyleList();
return aMarker->StyleContent()->mContent.IsNone() ||
(list->mListStyleType.IsNone() && list->mListStyleImage.IsNone() &&
aMarker->StyleContent()->NonAltContentItems().IsEmpty());
}
bool nsBlockFrame::HasOutsideMarker() const {
return HasMarker() && HasProperty(OutsideMarkerProperty());
}
void nsBlockFrame::ReflowOutsideMarker(nsIFrame* aMarkerFrame,
BlockReflowState& aState,
ReflowOutput& aMetrics,
nscoord aLineTop) {
const ReflowInput& ri = aState.mReflowInput;
WritingMode markerWM = aMarkerFrame->GetWritingMode();
LogicalSize availSize(markerWM);
// Make up an inline-size since it doesn't really matter (XXX).
availSize.ISize(markerWM) = aState.ContentISize();
availSize.BSize(markerWM) = NS_UNCONSTRAINEDSIZE;
ReflowInput reflowInput(aState.mPresContext, ri, aMarkerFrame, availSize,
Nothing(), {}, {}, {ComputeSizeFlag::ShrinkWrap});
nsReflowStatus status;
aMarkerFrame->Reflow(aState.mPresContext, aMetrics, reflowInput, status);
// Get the float available space using our saved state from before we
// started reflowing the block, so that we ignore any floats inside
// the block.
// FIXME: aLineTop isn't actually set correctly by some callers, since
// they reposition the line.
LogicalRect floatAvailSpace =
aState
.GetFloatAvailableSpaceWithState(ri.GetWritingMode(), aLineTop,
ShapeType::ShapeOutside,
&aState.mFloatManagerStateBefore)
.mRect;
// line overlaps, not just the top pixel.
// Place the ::marker now. We want to place the ::marker relative to the
// border-box of the associated block (using the right/left margin of
// the ::marker frame as separation). However, if a line box would be
// displaced by floats that are *outside* the associated block, we
// want to displace it by the same amount. That is, we act as though
// the edge of the floats is the content-edge of the block, and place
// the ::marker at a position offset from there by the block's padding,
// the block's border, and the ::marker frame's margin.
// IStart from floatAvailSpace gives us the content/float start edge
// in the current writing mode. Then we subtract out the start
// border/padding and the ::marker's width and margin to offset the position.
WritingMode wm = ri.GetWritingMode();
// Get the ::marker's margin, converted to our writing mode so that we can
// combine it with other logical values here.
LogicalMargin markerMargin = reflowInput.ComputedLogicalMargin(wm);
nscoord iStart = floatAvailSpace.IStart(wm) -
ri.ComputedLogicalBorderPadding(wm).IStart(wm) -
markerMargin.IEnd(wm) - aMetrics.ISize(wm);
// Approximate the ::marker's position; vertical alignment will provide
// the final vertical location. We pass our writing-mode here, because
// it may be different from the ::marker frame's mode.
nscoord bStart = floatAvailSpace.BStart(wm);
aMarkerFrame->SetRect(
wm,
LogicalRect(wm, iStart, bStart, aMetrics.ISize(wm), aMetrics.BSize(wm)),
aState.ContainerSize());
aMarkerFrame->DidReflow(aState.mPresContext, &aState.mReflowInput);
}
// This is used to scan frames for any float placeholders, add their
// floats to the list represented by aList, and remove the
// floats from whatever list they might be in. We don't search descendants
// that are float containing blocks. Floats that or not children of 'this'
// are ignored (they are not added to aList).
void nsBlockFrame::DoCollectFloats(nsIFrame* aFrame, nsFrameList& aList,
bool aCollectSiblings) {
while (aFrame) {
// Don't descend into float containing blocks.
if (!aFrame->IsFloatContainingBlock()) {
nsIFrame* outOfFlowFrame =
aFrame->IsPlaceholderFrame()
? nsLayoutUtils::GetFloatFromPlaceholder(aFrame)
: nullptr;
while (outOfFlowFrame && outOfFlowFrame->GetParent() == this) {
RemoveFloat(outOfFlowFrame);
// Remove the IS_PUSHED_FLOAT bit, in case |outOfFlowFrame| came from
// the PushedFloats list.
outOfFlowFrame->RemoveStateBits(NS_FRAME_IS_PUSHED_FLOAT);
aList.AppendFrame(nullptr, outOfFlowFrame);
outOfFlowFrame = outOfFlowFrame->GetNextInFlow();
// FIXME: By not pulling floats whose parent is one of our
// later siblings, are we risking the pushed floats getting
// out-of-order?
// XXXmats nsInlineFrame's lazy reparenting depends on NOT doing that.
}
DoCollectFloats(aFrame->PrincipalChildList().FirstChild(), aList, true);
DoCollectFloats(
aFrame->GetChildList(FrameChildListID::Overflow).FirstChild(), aList,
true);
}
if (!aCollectSiblings) {
break;
}
aFrame = aFrame->GetNextSibling();
}
}
void nsBlockFrame::CheckFloats(BlockReflowState& aState) {
#ifdef DEBUG
// If any line is still dirty, that must mean we're going to reflow this
// block again soon (e.g. because we bailed out after noticing that
// clearance was imposed), so don't worry if the floats are out of sync.
bool anyLineDirty = false;
// Check that the float list is what we would have built
AutoTArray<nsIFrame*, 8> lineFloats;
for (auto& line : Lines()) {
if (line.HasFloats()) {
lineFloats.AppendElements(line.Floats());
}
if (line.IsDirty()) {
anyLineDirty = true;
}
}
AutoTArray<nsIFrame*, 8> storedFloats;
bool equal = true;
bool hasHiddenFloats = false;
uint32_t i = 0;
for (nsIFrame* f : GetChildList(FrameChildListID::Float)) {
if (f->HasAnyStateBits(NS_FRAME_IS_PUSHED_FLOAT)) {
continue;
}
// There are chances that the float children won't be added to lines,
// because in nsBlockFrame::ReflowLine, it skips reflow line if the first
// child of the line is IsHiddenByContentVisibilityOfInFlowParentForLayout.
// There are also chances that the floats in line are out of date, for
// instance, lines could reflow if
// PresShell::IsForcingLayoutForHiddenContent, and after forcingLayout is
// off, the reflow of lines could be skipped, but the floats are still in
// there. Here we can't know whether the floats hidden by c-v are included
// in the lines or not. So we use hasHiddenFloats to skip the float length
// checking.
if (!hasHiddenFloats &&
f->IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
hasHiddenFloats = true;
}
storedFloats.AppendElement(f);
if (i < lineFloats.Length() && lineFloats.ElementAt(i) != f) {
equal = false;
}
++i;
}
if ((!equal || lineFloats.Length() != storedFloats.Length()) &&
!anyLineDirty && !hasHiddenFloats) {
NS_ERROR(
"nsBlockFrame::CheckFloats: Explicit float list is out of sync with "
"float cache");
}
#endif
const nsFrameList* oofs = GetOverflowOutOfFlows();
if (oofs && oofs->NotEmpty()) {
// Floats that were pushed should be removed from our float
// manager. Otherwise the float manager's YMost or XMost might
// be larger than necessary, causing this block to get an
// incorrect desired height (or width). Some of these floats
// may not actually have been added to the float manager because
// they weren't reflowed before being pushed; that's OK,
// RemoveRegions will ignore them. It is safe to do this here
// because we know from here on the float manager will only be
// used for its XMost and YMost, not to place new floats and
// lines.
aState.FloatManager()->RemoveTrailingRegions(oofs->FirstChild());
}
}
void nsBlockFrame::IsMarginRoot(bool* aBStartMarginRoot,
bool* aBEndMarginRoot) {
nsIFrame* parent = GetParent();
if (!HasAnyStateBits(NS_BLOCK_BFC)) {
if (!parent || parent->IsFloatContainingBlock()) {
*aBStartMarginRoot = false;
*aBEndMarginRoot = false;
return;
}
}
if (parent && parent->IsColumnSetFrame()) {
// The first column is a start margin root and the last column is an end
// margin root. (If the column-set is split by a column-span:all box then
// the first and last column in each column-set fragment are margin roots.)
*aBStartMarginRoot = GetPrevInFlow() == nullptr;
*aBEndMarginRoot = GetNextInFlow() == nullptr;
return;
}
*aBStartMarginRoot = true;
*aBEndMarginRoot = true;
}
/* static */
bool nsBlockFrame::BlockNeedsFloatManager(nsIFrame* aBlock) {
MOZ_ASSERT(aBlock, "Must have a frame");
NS_ASSERTION(aBlock->IsBlockFrameOrSubclass(), "aBlock must be a block");
nsIFrame* parent = aBlock->GetParent();
return aBlock->HasAnyStateBits(NS_BLOCK_BFC) ||
(parent && !parent->IsFloatContainingBlock());
}
/* static */
bool nsBlockFrame::BlockCanIntersectFloats(nsIFrame* aFrame) {
// NS_BLOCK_BFC is block specific bit, check first as an optimization, it's
// okay because we also check that it is a block frame.
return !aFrame->HasAnyStateBits(NS_BLOCK_BFC) && !aFrame->IsReplaced() &&
aFrame->IsBlockFrameOrSubclass();
}
// Note that this width can vary based on the vertical position.
// However, the cases where it varies are the cases where the width fits
// in the available space given, which means that variation shouldn't
// matter.
/* static */
nsBlockFrame::FloatAvoidingISizeToClear nsBlockFrame::ISizeToClearPastFloats(
const BlockReflowState& aState, const LogicalRect& aFloatAvailableSpace,
nsIFrame* aFloatAvoidingBlock) {
nscoord inlineStartOffset, inlineEndOffset;
WritingMode wm = aState.mReflowInput.GetWritingMode();
FloatAvoidingISizeToClear result;
aState.ComputeFloatAvoidingOffsets(aFloatAvoidingBlock, aFloatAvailableSpace,
inlineStartOffset, inlineEndOffset);
nscoord availISize =
aState.mContentArea.ISize(wm) - inlineStartOffset - inlineEndOffset;
// want to displace if the width won't compute to a value small enough
// to fit.
// All we really need here is the result of ComputeSize, and we
// could *almost* get that from an SizeComputationInput, except for the
// last argument.
WritingMode frWM = aFloatAvoidingBlock->GetWritingMode();
LogicalSize availSpace =
LogicalSize(wm, availISize, NS_UNCONSTRAINEDSIZE).ConvertTo(frWM, wm);
ReflowInput reflowInput(aState.mPresContext, aState.mReflowInput,
aFloatAvoidingBlock, availSpace);
result.borderBoxISize =
reflowInput.ComputedSizeWithBorderPadding(wm).ISize(wm);
// Use the margins from sizingInput rather than reflowInput so that
// they aren't reduced by ignoring margins in overconstrained cases.
SizeComputationInput sizingInput(aFloatAvoidingBlock,
aState.mReflowInput.mRenderingContext, wm,
aState.mContentArea.ISize(wm));
const LogicalMargin computedMargin = sizingInput.ComputedLogicalMargin(wm);
nscoord marginISize = computedMargin.IStartEnd(wm);
const auto& iSize = reflowInput.mStylePosition->ISize(wm);
if (marginISize < 0 &&
(iSize.IsAuto() || iSize.BehavesLikeStretchOnInlineAxis())) {
// If we get here, floatAvoidingBlock has a negative amount of inline-axis
// margin and an 'auto' (or ~equivalently, -moz-available) inline
// size. Under these circumstances, we use the margin to establish a
// (positive) minimum size for the border-box, in order to satisfy the
// equation in CSS2 10.3.3. That equation essentially simplifies to the
// following:
//
// iSize of margins + iSize of borderBox = iSize of containingBlock
//
// ...where "iSize of borderBox" is the sum of floatAvoidingBlock's
// inline-axis components of border, padding, and {width,height}.
//
// Right now, in the above equation, "iSize of margins" is the only term
// that we know for sure. (And we also know that it's negative, since we
// got here.) The other terms are as-yet unresolved, since the frame has an
// 'auto' iSize, and since we aren't yet sure if we'll clear this frame
// beyond floats or place it alongside them.
//
// However: we *do* know that the equation's "iSize of containingBlock"
// term *must* be non-negative, since boxes' widths and heights generally
// can't be negative in CSS. To satisfy that requirement, we can then
// infer that the equation's "iSize of borderBox" term *must* be large
// enough to cancel out the (known-to-be-negative) "iSize of margins"
// term. Therefore, marginISize value (negated to make it positive)
// establishes a lower-bound for how much inline-axis space our border-box
// will really require in order to fit alongside any floats.
//
// XXXdholbert This explanation is admittedly a bit hand-wavy and may not
// precisely match what any particular spec requires. It's the best
// reasoning I could come up with to explain engines' behavior. Also, our
// behavior with -moz-available doesn't seem particularly correct here, per
// handling code...
result.borderBoxISize = std::max(result.borderBoxISize, -marginISize);
}
result.marginIStart = computedMargin.IStart(wm);
return result;
}
/* static */
nsBlockFrame* nsBlockFrame::GetNearestAncestorBlock(nsIFrame* aCandidate) {
nsBlockFrame* block = nullptr;
while (aCandidate) {
block = do_QueryFrame(aCandidate);
if (block) {
// yay, candidate is a block!
return block;
}
// Not a block. Check its parent next.
aCandidate = aCandidate->GetParent();
}
MOZ_ASSERT_UNREACHABLE("Fell off frame tree looking for ancestor block!");
return nullptr;
}
nscoord nsBlockFrame::ComputeFinalBSize(BlockReflowState& aState,
nscoord aBEndEdgeOfChildren) {
const WritingMode wm = aState.mReflowInput.GetWritingMode();
const nscoord effectiveContentBoxBSize =
GetEffectiveComputedBSize(aState.mReflowInput, aState.mConsumedBSize);
const nscoord blockStartBP = aState.BorderPadding().BStart(wm);
const nscoord blockEndBP = aState.BorderPadding().BEnd(wm);
NS_ASSERTION(
!IsTrueOverflowContainer() || (effectiveContentBoxBSize == 0 &&
blockStartBP == 0 && blockEndBP == 0),
"An overflow container's effective content-box block-size, block-start "
"BP, and block-end BP should all be zero!");
const nscoord effectiveContentBoxBSizeWithBStartBP =
NSCoordSaturatingAdd(blockStartBP, effectiveContentBoxBSize);
const nscoord effectiveBorderBoxBSize =
NSCoordSaturatingAdd(effectiveContentBoxBSizeWithBStartBP, blockEndBP);
if (HasColumnSpanSiblings()) {
MOZ_ASSERT(LastInFlow()->GetNextContinuation(),
"Frame constructor should've created column-span siblings!");
// If a block is split by any column-spans, we calculate the final
// block-size by shrinkwrapping our children's block-size for all the
// fragments except for those after the final column-span, but we should
// take no more than our effective border-box block-size. If there's any
// leftover block-size, our next continuations will take up rest.
//
// We don't need to adjust aBri.mReflowStatus because our children's status
// is the same as ours.
return std::min(effectiveBorderBoxBSize, aBEndEdgeOfChildren);
}
const nscoord availBSize = aState.mReflowInput.AvailableBSize();
if (availBSize == NS_UNCONSTRAINEDSIZE) {
return effectiveBorderBoxBSize;
}
// Save our children's reflow status.
const bool isChildStatusComplete = aState.mReflowStatus.IsComplete();
if (isChildStatusComplete && effectiveContentBoxBSize > 0 &&
effectiveBorderBoxBSize > availBSize &&
ShouldAvoidBreakInside(aState.mReflowInput)) {
aState.mReflowStatus.SetInlineLineBreakBeforeAndReset();
return effectiveBorderBoxBSize;
}
const bool isBDBClone =
aState.mReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone;
// The maximum value our content-box block-size can take within the given
// available block-size.
const nscoord maxContentBoxBSize = aState.ContentBSize();
// The block-end edge of our content-box (relative to this frame's origin) if
// we consumed the maximum block-size available to us (maxContentBoxBSize).
const nscoord maxContentBoxBEnd = aState.ContentBEnd();
// These variables are uninitialized intentionally so that the compiler can
// check they are assigned in every if-else branch below.
nscoord finalContentBoxBSizeWithBStartBP;
bool isOurStatusComplete;
if (effectiveBorderBoxBSize <= availBSize) {
// Our effective border-box block-size can fit in the available block-size,
// so we are complete.
finalContentBoxBSizeWithBStartBP = effectiveContentBoxBSizeWithBStartBP;
isOurStatusComplete = true;
} else if (effectiveContentBoxBSizeWithBStartBP <= maxContentBoxBEnd) {
// Note: The following assertion should generally hold because, for
// box-decoration-break:clone, this "else if" branch is mathematically
// equivalent to the initial "if".
NS_ASSERTION(!isBDBClone,
"This else-if branch is handling a situation that's specific "
"to box-decoration-break:slice, i.e. a case when we can skip "
"our block-end border and padding!");
// Our effective content-box block-size plus the block-start border and
// padding can fit in the available block-size, but it cannot fit after
// adding the block-end border and padding. Thus, we need a continuation
// (unless we already weren't asking for any block-size, in which case we
// stay complete to avoid looping forever).
finalContentBoxBSizeWithBStartBP = effectiveContentBoxBSizeWithBStartBP;
isOurStatusComplete = effectiveContentBoxBSize == 0;
} else {
// We aren't going to be able to fit our content-box in the space available
// to it, which means we'll probably call ourselves incomplete to request a
// continuation. But before making that decision, we check for certain
// conditions which would force us to overflow beyond the available space --
// these might result in us actually being complete if we're forced to
// overflow far enough.
if (MOZ_UNLIKELY(aState.mReflowInput.mFlags.mIsTopOfPage && isBDBClone &&
maxContentBoxBSize <= 0 &&
aBEndEdgeOfChildren == blockStartBP)) {
// In this rare case, we are at the top of page/column, we have
// box-decoration-break:clone and zero available block-size for our
// content-box (e.g. our own block-start border and padding already exceed
// the available block-size), and we didn't lay out any child to consume
// our content-box block-size. To ensure we make progress (avoid looping
// forever), use 1px as our content-box block-size regardless of our
// effective content-box block-size, in the spirit of
finalContentBoxBSizeWithBStartBP = blockStartBP + AppUnitsPerCSSPixel();
isOurStatusComplete = effectiveContentBoxBSize <= AppUnitsPerCSSPixel();
} else if (aBEndEdgeOfChildren > maxContentBoxBEnd) {
// We have a unbreakable child whose block-end edge exceeds the available
// block-size for children.
if (aBEndEdgeOfChildren >= effectiveContentBoxBSizeWithBStartBP) {
// The unbreakable child's block-end edge forces us to consume all of
// our effective content-box block-size.
finalContentBoxBSizeWithBStartBP = effectiveContentBoxBSizeWithBStartBP;
// Even though we've consumed all of our effective content-box
// block-size, we may still need to report an incomplete status in order
// to get another continuation, which will be responsible for laying out
// & drawing our block-end border & padding. But if we have no such
// border & padding, or if we're forced to apply that border & padding
// on this frame due to box-decoration-break:clone, then we don't need
// to bother with that additional continuation.
isOurStatusComplete = (isBDBClone || blockEndBP == 0);
} else {
// The unbreakable child's block-end edge doesn't force us to consume
// all of our effective content-box block-size.
finalContentBoxBSizeWithBStartBP = aBEndEdgeOfChildren;
isOurStatusComplete = false;
}
} else {
// The children's block-end edge can fit in the content-box space that we
// have available for it. Consume all the space that is available so that
// our inline-start/inline-end borders extend all the way to the block-end
// edge of column/page.
finalContentBoxBSizeWithBStartBP = maxContentBoxBEnd;
isOurStatusComplete = false;
}
}
nscoord finalBorderBoxBSize = finalContentBoxBSizeWithBStartBP;
if (isOurStatusComplete) {
finalBorderBoxBSize = NSCoordSaturatingAdd(finalBorderBoxBSize, blockEndBP);
if (isChildStatusComplete) {
// We want to use children's reflow status as ours, which can be overflow
// incomplete. Suppress the urge to call aBri.mReflowStatus.Reset() here.
} else {
aState.mReflowStatus.SetOverflowIncomplete();
}
} else {
NS_ASSERTION(!IsTrueOverflowContainer(),
"An overflow container should always be complete because of "
"its zero border-box block-size!");
if (isBDBClone) {
finalBorderBoxBSize =
NSCoordSaturatingAdd(finalBorderBoxBSize, blockEndBP);
}
aState.mReflowStatus.SetIncomplete();
if (!GetNextInFlow()) {
aState.mReflowStatus.SetNextInFlowNeedsReflow();
}
}
return finalBorderBoxBSize;
}
nsresult nsBlockFrame::ResolveBidi() {
NS_ASSERTION(!GetPrevInFlow(),
"ResolveBidi called on non-first continuation");
MOZ_ASSERT(PresContext()->BidiEnabled());
return nsBidiPresUtils::Resolve(this);
}
void nsBlockFrame::UpdatePseudoElementStyles(ServoRestyleState& aRestyleState) {
// first-letter needs to be updated before first-line, because first-line can
// change the style of the first-letter.
if (HasFirstLetterChild()) {
UpdateFirstLetterStyle(aRestyleState);
}
if (nsIFrame* firstLineFrame = GetFirstLineFrame()) {
nsIFrame* styleParent = CorrectStyleParentFrame(firstLineFrame->GetParent(),
PseudoStyleType::firstLine);
ComputedStyle* parentStyle = styleParent->Style();
RefPtr<ComputedStyle> firstLineStyle =
aRestyleState.StyleSet().ResolvePseudoElementStyle(
*mContent->AsElement(), PseudoStyleType::firstLine, nullptr,
parentStyle);
// FIXME(bz): Can we make first-line continuations be non-inheriting anon
// boxes?
RefPtr<ComputedStyle> continuationStyle =
aRestyleState.StyleSet().ResolveInheritingAnonymousBoxStyle(
PseudoStyleType::mozLineFrame, parentStyle);
UpdateStyleOfOwnedChildFrame(firstLineFrame, firstLineStyle, aRestyleState,
Some(continuationStyle.get()));
// We also want to update the styles of the first-line's descendants. We
// don't need to compute a changehint for this, though, since any changes to
// them are handled by the first-line anyway.
RestyleManager* manager = PresContext()->RestyleManager();
for (nsIFrame* kid : firstLineFrame->PrincipalChildList()) {
manager->ReparentComputedStyleForFirstLine(kid);
}
}
}
nsIFrame* nsBlockFrame::GetFirstLetter() const {
if (!HasAnyStateBits(NS_BLOCK_HAS_FIRST_LETTER_STYLE)) {
// Certainly no first-letter frame.
return nullptr;
}
return GetProperty(FirstLetterProperty());
}
nsIFrame* nsBlockFrame::GetFirstLineFrame() const {
nsIFrame* maybeFirstLine = PrincipalChildList().FirstChild();
if (maybeFirstLine && maybeFirstLine->IsLineFrame()) {
return maybeFirstLine;
}
return nullptr;
}
#ifdef DEBUG
void nsBlockFrame::VerifyLines(bool aFinalCheckOK) {
if (!gVerifyLines) {
return;
}
if (mLines.empty()) {
return;
}
nsLineBox* cursor = GetLineCursorForQuery();
// Add up the counts on each line. Also validate that IsFirstLine is
// set properly.
int32_t count = 0;
for (const auto& line : Lines()) {
if (&line == cursor) {
cursor = nullptr;
}
if (aFinalCheckOK) {
MOZ_ASSERT(line.GetChildCount(), "empty line");
if (line.IsBlock()) {
NS_ASSERTION(1 == line.GetChildCount(), "bad first line");
}
}
count += line.GetChildCount();
}
// Then count the frames
int32_t frameCount = 0;
nsIFrame* frame = mLines.front()->mFirstChild;
while (frame) {
frameCount++;
frame = frame->GetNextSibling();
}
NS_ASSERTION(count == frameCount, "bad line list");
// Next: test that each line has right number of frames on it
for (LineIterator line = LinesBegin(), line_end = LinesEnd();
line != line_end;) {
count = line->GetChildCount();
frame = line->mFirstChild;
while (--count >= 0) {
frame = frame->GetNextSibling();
}
++line;
if ((line != line_end) && (0 != line->GetChildCount())) {
NS_ASSERTION(frame == line->mFirstChild, "bad line list");
}
}
if (cursor) {
FrameLines* overflowLines = GetOverflowLines();
if (overflowLines) {
LineIterator line = overflowLines->mLines.begin();
LineIterator line_end = overflowLines->mLines.end();
for (; line != line_end; ++line) {
if (line == cursor) {
cursor = nullptr;
break;
}
}
}
}
NS_ASSERTION(!cursor, "stale LineCursorProperty");
}
void nsBlockFrame::VerifyOverflowSituation() {
// Overflow out-of-flows must not have a next-in-flow in floats list or
// mFrames.
nsFrameList* oofs = GetOverflowOutOfFlows();
if (oofs) {
for (nsIFrame* f : *oofs) {
nsIFrame* nif = f->GetNextInFlow();
MOZ_ASSERT(!nif ||
(!GetChildList(FrameChildListID::Float).ContainsFrame(nif) &&
!mFrames.ContainsFrame(nif)));
}
}
// Pushed floats must not have a next-in-flow in floats list or mFrames.
oofs = GetPushedFloats();
if (oofs) {
for (nsIFrame* f : *oofs) {
nsIFrame* nif = f->GetNextInFlow();
MOZ_ASSERT(!nif ||
(!GetChildList(FrameChildListID::Float).ContainsFrame(nif) &&
!mFrames.ContainsFrame(nif)));
}
}
// A child float next-in-flow's parent must be |this| or a next-in-flow of
// |this|. Later next-in-flows must have the same or later parents.
ChildListID childLists[] = {FrameChildListID::Float,
FrameChildListID::PushedFloats};
for (size_t i = 0; i < std::size(childLists); ++i) {
const nsFrameList& children = GetChildList(childLists[i]);
for (nsIFrame* f : children) {
nsIFrame* parent = this;
nsIFrame* nif = f->GetNextInFlow();
for (; nif; nif = nif->GetNextInFlow()) {
bool found = false;
for (nsIFrame* p = parent; p; p = p->GetNextInFlow()) {
if (nif->GetParent() == p) {
parent = p;
found = true;
break;
}
}
MOZ_ASSERT(
found,
"next-in-flow is a child of parent earlier in the frame tree?");
}
}
}
nsBlockFrame* flow = static_cast<nsBlockFrame*>(FirstInFlow());
while (flow) {
FrameLines* overflowLines = flow->GetOverflowLines();
if (overflowLines) {
NS_ASSERTION(!overflowLines->mLines.empty(),
"should not be empty if present");
NS_ASSERTION(overflowLines->mLines.front()->mFirstChild,
"bad overflow lines");
NS_ASSERTION(overflowLines->mLines.front()->mFirstChild ==
overflowLines->mFrames.FirstChild(),
"bad overflow frames / lines");
}
auto checkCursor = [&](nsLineBox* cursor) -> bool {
if (!cursor) {
return true;
}
LineIterator line = flow->LinesBegin();
LineIterator line_end = flow->LinesEnd();
for (; line != line_end && line != cursor; ++line);
if (line == line_end && overflowLines) {
line = overflowLines->mLines.begin();
line_end = overflowLines->mLines.end();
for (; line != line_end && line != cursor; ++line);
}
return line != line_end;
};
MOZ_ASSERT(checkCursor(flow->GetLineCursorForDisplay()),
"stale LineCursorPropertyDisplay");
MOZ_ASSERT(checkCursor(flow->GetLineCursorForQuery()),
"stale LineCursorPropertyQuery");
flow = static_cast<nsBlockFrame*>(flow->GetNextInFlow());
}
}
int32_t nsBlockFrame::GetDepth() const {
int32_t depth = 0;
nsIFrame* parent = GetParent();
while (parent) {
parent = parent->GetParent();
depth++;
}
return depth;
}
already_AddRefed<ComputedStyle> nsBlockFrame::GetFirstLetterStyle(
nsPresContext* aPresContext) {
return aPresContext->StyleSet()->ProbePseudoElementStyle(
*mContent->AsElement(), PseudoStyleType::firstLetter, nullptr, Style());
}
#endif