Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2016 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is an INTERNAL header for Wasm baseline compiler: inline methods in the
// compiler for Stk values and value stack management.
#ifndef wasm_wasm_baseline_stk_mgmt_inl_h
#define wasm_wasm_baseline_stk_mgmt_inl_h
namespace js {
namespace wasm {
#ifdef DEBUG
size_t BaseCompiler::countMemRefsOnStk() {
size_t nRefs = 0;
for (Stk& v : stk_) {
if (v.kind() == Stk::MemRef) {
nRefs++;
}
}
return nRefs;
}
#endif
template <typename T>
void BaseCompiler::push(T item) {
// None of the single-arg Stk constructors create a Stk::MemRef, so
// there's no need to increment stackMapGenerator_.memRefsOnStk here.
stk_.infallibleEmplaceBack(Stk(item));
}
void BaseCompiler::pushConstRef(intptr_t v) {
stk_.infallibleEmplaceBack(Stk::StkRef(v));
}
void BaseCompiler::loadConstI32(const Stk& src, RegI32 dest) {
moveImm32(src.i32val(), dest);
}
void BaseCompiler::loadMemI32(const Stk& src, RegI32 dest) {
fr.loadStackI32(src.offs(), dest);
}
void BaseCompiler::loadLocalI32(const Stk& src, RegI32 dest) {
fr.loadLocalI32(localFromSlot(src.slot(), MIRType::Int32), dest);
}
void BaseCompiler::loadRegisterI32(const Stk& src, RegI32 dest) {
moveI32(src.i32reg(), dest);
}
void BaseCompiler::loadConstI64(const Stk& src, RegI64 dest) {
moveImm64(src.i64val(), dest);
}
void BaseCompiler::loadMemI64(const Stk& src, RegI64 dest) {
fr.loadStackI64(src.offs(), dest);
}
void BaseCompiler::loadLocalI64(const Stk& src, RegI64 dest) {
fr.loadLocalI64(localFromSlot(src.slot(), MIRType::Int64), dest);
}
void BaseCompiler::loadRegisterI64(const Stk& src, RegI64 dest) {
moveI64(src.i64reg(), dest);
}
void BaseCompiler::loadConstRef(const Stk& src, RegRef dest) {
moveImmRef(src.refval(), dest);
}
void BaseCompiler::loadMemRef(const Stk& src, RegRef dest) {
fr.loadStackRef(src.offs(), dest);
}
void BaseCompiler::loadLocalRef(const Stk& src, RegRef dest) {
fr.loadLocalRef(localFromSlot(src.slot(), MIRType::WasmAnyRef), dest);
}
void BaseCompiler::loadRegisterRef(const Stk& src, RegRef dest) {
moveRef(src.refReg(), dest);
}
void BaseCompiler::loadConstF64(const Stk& src, RegF64 dest) {
double d;
src.f64val(&d);
masm.loadConstantDouble(d, dest);
}
void BaseCompiler::loadMemF64(const Stk& src, RegF64 dest) {
fr.loadStackF64(src.offs(), dest);
}
void BaseCompiler::loadLocalF64(const Stk& src, RegF64 dest) {
fr.loadLocalF64(localFromSlot(src.slot(), MIRType::Double), dest);
}
void BaseCompiler::loadRegisterF64(const Stk& src, RegF64 dest) {
moveF64(src.f64reg(), dest);
}
void BaseCompiler::loadConstF32(const Stk& src, RegF32 dest) {
float f;
src.f32val(&f);
masm.loadConstantFloat32(f, dest);
}
void BaseCompiler::loadMemF32(const Stk& src, RegF32 dest) {
fr.loadStackF32(src.offs(), dest);
}
void BaseCompiler::loadLocalF32(const Stk& src, RegF32 dest) {
fr.loadLocalF32(localFromSlot(src.slot(), MIRType::Float32), dest);
}
void BaseCompiler::loadRegisterF32(const Stk& src, RegF32 dest) {
moveF32(src.f32reg(), dest);
}
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::loadConstV128(const Stk& src, RegV128 dest) {
V128 f;
src.v128val(&f);
masm.loadConstantSimd128(SimdConstant::CreateX16((int8_t*)f.bytes), dest);
}
void BaseCompiler::loadMemV128(const Stk& src, RegV128 dest) {
fr.loadStackV128(src.offs(), dest);
}
void BaseCompiler::loadLocalV128(const Stk& src, RegV128 dest) {
fr.loadLocalV128(localFromSlot(src.slot(), MIRType::Simd128), dest);
}
void BaseCompiler::loadRegisterV128(const Stk& src, RegV128 dest) {
moveV128(src.v128reg(), dest);
}
#endif
void BaseCompiler::loadI32(const Stk& src, RegI32 dest) {
switch (src.kind()) {
case Stk::ConstI32:
loadConstI32(src, dest);
break;
case Stk::MemI32:
loadMemI32(src, dest);
break;
case Stk::LocalI32:
loadLocalI32(src, dest);
break;
case Stk::RegisterI32:
loadRegisterI32(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: Expected I32 on stack");
}
}
void BaseCompiler::loadI64(const Stk& src, RegI64 dest) {
switch (src.kind()) {
case Stk::ConstI64:
loadConstI64(src, dest);
break;
case Stk::MemI64:
loadMemI64(src, dest);
break;
case Stk::LocalI64:
loadLocalI64(src, dest);
break;
case Stk::RegisterI64:
loadRegisterI64(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: Expected I64 on stack");
}
}
#if !defined(JS_PUNBOX64)
void BaseCompiler::loadI64Low(const Stk& src, RegI32 dest) {
switch (src.kind()) {
case Stk::ConstI64:
moveImm32(int32_t(src.i64val()), dest);
break;
case Stk::MemI64:
fr.loadStackI64Low(src.offs(), dest);
break;
case Stk::LocalI64:
fr.loadLocalI64Low(localFromSlot(src.slot(), MIRType::Int64), dest);
break;
case Stk::RegisterI64:
moveI32(RegI32(src.i64reg().low), dest);
break;
default:
MOZ_CRASH("Compiler bug: Expected I64 on stack");
}
}
void BaseCompiler::loadI64High(const Stk& src, RegI32 dest) {
switch (src.kind()) {
case Stk::ConstI64:
moveImm32(int32_t(src.i64val() >> 32), dest);
break;
case Stk::MemI64:
fr.loadStackI64High(src.offs(), dest);
break;
case Stk::LocalI64:
fr.loadLocalI64High(localFromSlot(src.slot(), MIRType::Int64), dest);
break;
case Stk::RegisterI64:
moveI32(RegI32(src.i64reg().high), dest);
break;
default:
MOZ_CRASH("Compiler bug: Expected I64 on stack");
}
}
#endif
void BaseCompiler::loadF64(const Stk& src, RegF64 dest) {
switch (src.kind()) {
case Stk::ConstF64:
loadConstF64(src, dest);
break;
case Stk::MemF64:
loadMemF64(src, dest);
break;
case Stk::LocalF64:
loadLocalF64(src, dest);
break;
case Stk::RegisterF64:
loadRegisterF64(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected F64 on stack");
}
}
void BaseCompiler::loadF32(const Stk& src, RegF32 dest) {
switch (src.kind()) {
case Stk::ConstF32:
loadConstF32(src, dest);
break;
case Stk::MemF32:
loadMemF32(src, dest);
break;
case Stk::LocalF32:
loadLocalF32(src, dest);
break;
case Stk::RegisterF32:
loadRegisterF32(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected F32 on stack");
}
}
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::loadV128(const Stk& src, RegV128 dest) {
switch (src.kind()) {
case Stk::ConstV128:
loadConstV128(src, dest);
break;
case Stk::MemV128:
loadMemV128(src, dest);
break;
case Stk::LocalV128:
loadLocalV128(src, dest);
break;
case Stk::RegisterV128:
loadRegisterV128(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected V128 on stack");
}
}
#endif
void BaseCompiler::loadRef(const Stk& src, RegRef dest) {
switch (src.kind()) {
case Stk::ConstRef:
loadConstRef(src, dest);
break;
case Stk::MemRef:
loadMemRef(src, dest);
break;
case Stk::LocalRef:
loadLocalRef(src, dest);
break;
case Stk::RegisterRef:
loadRegisterRef(src, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected ref on stack");
}
}
void BaseCompiler::peekRefAt(uint32_t depth, RegRef dest) {
MOZ_ASSERT(depth < stk_.length());
Stk& src = peek(stk_.length() - depth - 1);
loadRef(src, dest);
}
// Flush all local and register value stack elements to memory.
//
// TODO / OPTIMIZE: As this is fairly expensive and causes worse
// code to be emitted subsequently, it is useful to avoid calling
//
// Some optimization has been done already. Remaining
// opportunities:
//
// - It would be interesting to see if we can specialize it
// before calls with particularly simple signatures, or where
// we can do parallel assignment of register arguments, or
// similar. See notes in emitCall().
//
// - Operations that need specific registers: multiply, quotient,
// remainder, will tend to sync because the registers we need
// will tend to be allocated. We may be able to avoid that by
// prioritizing registers differently (takeLast instead of
// takeFirst) but we may also be able to allocate an unused
// register on demand to free up one we need, thus avoiding the
// sync. That type of fix would go into needI32().
void BaseCompiler::sync() {
size_t start = 0;
size_t lim = stk_.length();
for (size_t i = lim; i > 0; i--) {
// Memory opcodes are first in the enum, single check against MemLast is
// fine.
if (stk_[i - 1].kind() <= Stk::MemLast) {
start = i;
break;
}
}
for (size_t i = start; i < lim; i++) {
Stk& v = stk_[i];
switch (v.kind()) {
case Stk::LocalI32: {
ScratchI32 scratch(*this);
loadLocalI32(v, scratch);
uint32_t offs = fr.pushGPR(scratch);
v.setOffs(Stk::MemI32, offs);
break;
}
case Stk::RegisterI32: {
uint32_t offs = fr.pushGPR(v.i32reg());
freeI32(v.i32reg());
v.setOffs(Stk::MemI32, offs);
break;
}
case Stk::LocalI64: {
ScratchI32 scratch(*this);
#ifdef JS_PUNBOX64
loadI64(v, fromI32(scratch));
uint32_t offs = fr.pushGPR(scratch);
#else
fr.loadLocalI64High(localFromSlot(v.slot(), MIRType::Int64), scratch);
fr.pushGPR(scratch);
fr.loadLocalI64Low(localFromSlot(v.slot(), MIRType::Int64), scratch);
uint32_t offs = fr.pushGPR(scratch);
#endif
v.setOffs(Stk::MemI64, offs);
break;
}
case Stk::RegisterI64: {
#ifdef JS_PUNBOX64
uint32_t offs = fr.pushGPR(v.i64reg().reg);
freeI64(v.i64reg());
#else
fr.pushGPR(v.i64reg().high);
uint32_t offs = fr.pushGPR(v.i64reg().low);
freeI64(v.i64reg());
#endif
v.setOffs(Stk::MemI64, offs);
break;
}
case Stk::LocalF64: {
ScratchF64 scratch(*this);
loadF64(v, scratch);
uint32_t offs = fr.pushDouble(scratch);
v.setOffs(Stk::MemF64, offs);
break;
}
case Stk::RegisterF64: {
uint32_t offs = fr.pushDouble(v.f64reg());
freeF64(v.f64reg());
v.setOffs(Stk::MemF64, offs);
break;
}
case Stk::LocalF32: {
ScratchF32 scratch(*this);
loadF32(v, scratch);
uint32_t offs = fr.pushFloat32(scratch);
v.setOffs(Stk::MemF32, offs);
break;
}
case Stk::RegisterF32: {
uint32_t offs = fr.pushFloat32(v.f32reg());
freeF32(v.f32reg());
v.setOffs(Stk::MemF32, offs);
break;
}
#ifdef ENABLE_WASM_SIMD
case Stk::LocalV128: {
ScratchV128 scratch(*this);
loadV128(v, scratch);
uint32_t offs = fr.pushV128(scratch);
v.setOffs(Stk::MemV128, offs);
break;
}
case Stk::RegisterV128: {
uint32_t offs = fr.pushV128(v.v128reg());
freeV128(v.v128reg());
v.setOffs(Stk::MemV128, offs);
break;
}
#endif
case Stk::LocalRef: {
ScratchRef scratch(*this);
loadLocalRef(v, scratch);
uint32_t offs = fr.pushGPR(scratch);
v.setOffs(Stk::MemRef, offs);
stackMapGenerator_.memRefsOnStk++;
break;
}
case Stk::RegisterRef: {
uint32_t offs = fr.pushGPR(v.refReg());
freeRef(v.refReg());
v.setOffs(Stk::MemRef, offs);
stackMapGenerator_.memRefsOnStk++;
break;
}
default: {
break;
}
}
}
}
// This is an optimization used to avoid calling sync() for
// setLocal(): if the local does not exist unresolved on the stack
// then we can skip the sync.
bool BaseCompiler::hasLocal(uint32_t slot) {
for (size_t i = stk_.length(); i > 0; i--) {
// Memory opcodes are first in the enum, single check against MemLast is
// fine.
Stk::Kind kind = stk_[i - 1].kind();
if (kind <= Stk::MemLast) {
return false;
}
// Local opcodes follow memory opcodes in the enum, single check against
// LocalLast is sufficient.
if (kind <= Stk::LocalLast && stk_[i - 1].slot() == slot) {
return true;
}
}
return false;
}
void BaseCompiler::syncLocal(uint32_t slot) {
if (hasLocal(slot)) {
}
}
// Push the register r onto the stack.
void BaseCompiler::pushAny(AnyReg r) {
switch (r.tag) {
case AnyReg::I32: {
pushI32(r.i32());
break;
}
case AnyReg::I64: {
pushI64(r.i64());
break;
}
case AnyReg::F32: {
pushF32(r.f32());
break;
}
case AnyReg::F64: {
pushF64(r.f64());
break;
}
#ifdef ENABLE_WASM_SIMD
case AnyReg::V128: {
pushV128(r.v128());
break;
}
#endif
case AnyReg::REF: {
pushRef(r.ref());
break;
}
}
}
void BaseCompiler::pushI32(RegI32 r) {
MOZ_ASSERT(!isAvailableI32(r));
push(Stk(r));
}
void BaseCompiler::pushI64(RegI64 r) {
MOZ_ASSERT(!isAvailableI64(r));
push(Stk(r));
}
void BaseCompiler::pushRef(RegRef r) {
MOZ_ASSERT(!isAvailableRef(r));
push(Stk(r));
}
void BaseCompiler::pushPtr(RegPtr r) {
MOZ_ASSERT(!isAvailablePtr(r));
#ifdef JS_64BIT
pushI64(RegI64(Register64(r)));
#else
pushI32(RegI32(r));
#endif
}
void BaseCompiler::pushF64(RegF64 r) {
MOZ_ASSERT(!isAvailableF64(r));
push(Stk(r));
}
void BaseCompiler::pushF32(RegF32 r) {
MOZ_ASSERT(!isAvailableF32(r));
push(Stk(r));
}
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::pushV128(RegV128 r) {
MOZ_ASSERT(!isAvailableV128(r));
push(Stk(r));
}
#endif
// Push the value onto the stack. PushI32 can also take uint32_t, and PushI64
// can take uint64_t; the semantics are the same. Appropriate sign extension
// for a 32-bit value on a 64-bit architecture happens when the value is
// popped, see the definition of moveImm32 below.
void BaseCompiler::pushI32(int32_t v) { push(Stk(v)); }
void BaseCompiler::pushI64(int64_t v) { push(Stk(v)); }
void BaseCompiler::pushRef(intptr_t v) { pushConstRef(v); }
void BaseCompiler::pushPtr(intptr_t v) {
#ifdef JS_64BIT
pushI64(v);
#else
pushI32(v);
#endif
}
void BaseCompiler::pushF64(double v) { push(Stk(v)); }
void BaseCompiler::pushF32(float v) { push(Stk(v)); }
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::pushV128(V128 v) { push(Stk(v)); }
#endif
// Push the local slot onto the stack. The slot will not be read
// here; it will be read when it is consumed, or when a side
// effect to the slot forces its value to be saved.
void BaseCompiler::pushLocalI32(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalI32, slot));
}
void BaseCompiler::pushLocalI64(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalI64, slot));
}
void BaseCompiler::pushLocalRef(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalRef, slot));
}
void BaseCompiler::pushLocalF64(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalF64, slot));
}
void BaseCompiler::pushLocalF32(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalF32, slot));
}
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::pushLocalV128(uint32_t slot) {
stk_.infallibleEmplaceBack(Stk(Stk::LocalV128, slot));
}
#endif
void BaseCompiler::pushU32AsI64(RegI32 rs) {
RegI64 rd = widenI32(rs);
masm.move32To64ZeroExtend(rs, rd);
pushI64(rd);
}
AnyReg BaseCompiler::popAny(AnyReg specific) {
switch (stk_.back().kind()) {
case Stk::MemI32:
case Stk::LocalI32:
case Stk::RegisterI32:
case Stk::ConstI32:
return AnyReg(popI32(specific.i32()));
case Stk::MemI64:
case Stk::LocalI64:
case Stk::RegisterI64:
case Stk::ConstI64:
return AnyReg(popI64(specific.i64()));
case Stk::MemF32:
case Stk::LocalF32:
case Stk::RegisterF32:
case Stk::ConstF32:
return AnyReg(popF32(specific.f32()));
case Stk::MemF64:
case Stk::LocalF64:
case Stk::RegisterF64:
case Stk::ConstF64:
return AnyReg(popF64(specific.f64()));
#ifdef ENABLE_WASM_SIMD
case Stk::MemV128:
case Stk::LocalV128:
case Stk::RegisterV128:
case Stk::ConstV128:
return AnyReg(popV128(specific.v128()));
#endif
case Stk::MemRef:
case Stk::LocalRef:
case Stk::RegisterRef:
case Stk::ConstRef:
return AnyReg(popRef(specific.ref()));
case Stk::Unknown:
MOZ_CRASH();
default:
MOZ_CRASH();
}
}
AnyReg BaseCompiler::popAny() {
switch (stk_.back().kind()) {
case Stk::MemI32:
case Stk::LocalI32:
case Stk::RegisterI32:
case Stk::ConstI32:
return AnyReg(popI32());
case Stk::MemI64:
case Stk::LocalI64:
case Stk::RegisterI64:
case Stk::ConstI64:
return AnyReg(popI64());
case Stk::MemF32:
case Stk::LocalF32:
case Stk::RegisterF32:
case Stk::ConstF32:
return AnyReg(popF32());
case Stk::MemF64:
case Stk::LocalF64:
case Stk::RegisterF64:
case Stk::ConstF64:
return AnyReg(popF64());
#ifdef ENABLE_WASM_SIMD
case Stk::MemV128:
case Stk::LocalV128:
case Stk::RegisterV128:
case Stk::ConstV128:
return AnyReg(popV128());
#endif
case Stk::MemRef:
case Stk::LocalRef:
case Stk::RegisterRef:
case Stk::ConstRef:
return AnyReg(popRef());
case Stk::Unknown:
MOZ_CRASH();
default:
MOZ_CRASH();
}
}
// Call only from other popI32() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popI32(const Stk& v, RegI32 dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstI32:
loadConstI32(v, dest);
break;
case Stk::LocalI32:
loadLocalI32(v, dest);
break;
case Stk::MemI32:
fr.popGPR(dest);
break;
case Stk::RegisterI32:
loadRegisterI32(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected int on stack");
}
}
RegI32 BaseCompiler::popI32() {
Stk& v = stk_.back();
RegI32 r;
if (v.kind() == Stk::RegisterI32) {
r = v.i32reg();
} else {
popI32(v, (r = needI32()));
}
stk_.popBack();
return r;
}
RegI32 BaseCompiler::popI32(RegI32 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterI32 && v.i32reg() == specific)) {
needI32(specific);
popI32(v, specific);
if (v.kind() == Stk::RegisterI32) {
freeI32(v.i32reg());
}
}
stk_.popBack();
return specific;
}
#ifdef ENABLE_WASM_SIMD
// Call only from other popV128() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popV128(const Stk& v, RegV128 dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstV128:
loadConstV128(v, dest);
break;
case Stk::LocalV128:
loadLocalV128(v, dest);
break;
case Stk::MemV128:
fr.popV128(dest);
break;
case Stk::RegisterV128:
loadRegisterV128(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected int on stack");
}
}
RegV128 BaseCompiler::popV128() {
Stk& v = stk_.back();
RegV128 r;
if (v.kind() == Stk::RegisterV128) {
r = v.v128reg();
} else {
popV128(v, (r = needV128()));
}
stk_.popBack();
return r;
}
RegV128 BaseCompiler::popV128(RegV128 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterV128 && v.v128reg() == specific)) {
needV128(specific);
popV128(v, specific);
if (v.kind() == Stk::RegisterV128) {
freeV128(v.v128reg());
}
}
stk_.popBack();
return specific;
}
#endif
// Call only from other popI64() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popI64(const Stk& v, RegI64 dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstI64:
loadConstI64(v, dest);
break;
case Stk::LocalI64:
loadLocalI64(v, dest);
break;
case Stk::MemI64:
#ifdef JS_PUNBOX64
fr.popGPR(dest.reg);
#else
fr.popGPR(dest.low);
fr.popGPR(dest.high);
#endif
break;
case Stk::RegisterI64:
loadRegisterI64(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected long on stack");
}
}
RegI64 BaseCompiler::popI64() {
Stk& v = stk_.back();
RegI64 r;
if (v.kind() == Stk::RegisterI64) {
r = v.i64reg();
} else {
popI64(v, (r = needI64()));
}
stk_.popBack();
return r;
}
// Note, the stack top can be in one half of "specific" on 32-bit
// systems. We can optimize, but for simplicity, if the register
// does not match exactly, then just force the stack top to memory
// and then read it back in.
RegI64 BaseCompiler::popI64(RegI64 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterI64 && v.i64reg() == specific)) {
needI64(specific);
popI64(v, specific);
if (v.kind() == Stk::RegisterI64) {
freeI64(v.i64reg());
}
}
stk_.popBack();
return specific;
}
// Call only from other popRef() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popRef(const Stk& v, RegRef dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstRef:
loadConstRef(v, dest);
break;
case Stk::LocalRef:
loadLocalRef(v, dest);
break;
case Stk::MemRef:
fr.popGPR(dest);
break;
case Stk::RegisterRef:
loadRegisterRef(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected ref on stack");
}
}
RegRef BaseCompiler::popRef(RegRef specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterRef && v.refReg() == specific)) {
needRef(specific);
popRef(v, specific);
if (v.kind() == Stk::RegisterRef) {
freeRef(v.refReg());
}
}
stk_.popBack();
if (v.kind() == Stk::MemRef) {
stackMapGenerator_.memRefsOnStk--;
}
return specific;
}
RegRef BaseCompiler::popRef() {
Stk& v = stk_.back();
RegRef r;
if (v.kind() == Stk::RegisterRef) {
r = v.refReg();
} else {
popRef(v, (r = needRef()));
}
stk_.popBack();
if (v.kind() == Stk::MemRef) {
stackMapGenerator_.memRefsOnStk--;
}
return r;
}
// Call only from other popPtr() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popPtr(const Stk& v, RegPtr dest) {
#ifdef JS_64BIT
popI64(v, RegI64(Register64(dest)));
#else
popI32(v, RegI32(dest));
#endif
}
RegPtr BaseCompiler::popPtr(RegPtr specific) {
#ifdef JS_64BIT
return RegPtr(popI64(RegI64(Register64(specific))).reg);
#else
return RegPtr(popI32(RegI32(specific)));
#endif
}
RegPtr BaseCompiler::popPtr() {
#ifdef JS_64BIT
return RegPtr(popI64().reg);
#else
return RegPtr(popI32());
#endif
}
// Call only from other popF64() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popF64(const Stk& v, RegF64 dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstF64:
loadConstF64(v, dest);
break;
case Stk::LocalF64:
loadLocalF64(v, dest);
break;
case Stk::MemF64:
fr.popDouble(dest);
break;
case Stk::RegisterF64:
loadRegisterF64(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected double on stack");
}
}
RegF64 BaseCompiler::popF64() {
Stk& v = stk_.back();
RegF64 r;
if (v.kind() == Stk::RegisterF64) {
r = v.f64reg();
} else {
popF64(v, (r = needF64()));
}
stk_.popBack();
return r;
}
RegF64 BaseCompiler::popF64(RegF64 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterF64 && v.f64reg() == specific)) {
needF64(specific);
popF64(v, specific);
if (v.kind() == Stk::RegisterF64) {
freeF64(v.f64reg());
}
}
stk_.popBack();
return specific;
}
// Call only from other popF32() variants.
// v must be the stack top. May pop the CPU stack.
void BaseCompiler::popF32(const Stk& v, RegF32 dest) {
MOZ_ASSERT(&v == &stk_.back());
switch (v.kind()) {
case Stk::ConstF32:
loadConstF32(v, dest);
break;
case Stk::LocalF32:
loadLocalF32(v, dest);
break;
case Stk::MemF32:
fr.popFloat32(dest);
break;
case Stk::RegisterF32:
loadRegisterF32(v, dest);
break;
default:
MOZ_CRASH("Compiler bug: expected float on stack");
}
}
RegF32 BaseCompiler::popF32() {
Stk& v = stk_.back();
RegF32 r;
if (v.kind() == Stk::RegisterF32) {
r = v.f32reg();
} else {
popF32(v, (r = needF32()));
}
stk_.popBack();
return r;
}
RegF32 BaseCompiler::popF32(RegF32 specific) {
Stk& v = stk_.back();
if (!(v.kind() == Stk::RegisterF32 && v.f32reg() == specific)) {
needF32(specific);
popF32(v, specific);
if (v.kind() == Stk::RegisterF32) {
freeF32(v.f32reg());
}
}
stk_.popBack();
return specific;
}
bool BaseCompiler::hasConst() const {
const Stk& v = stk_.back();
switch (v.kind()) {
case Stk::ConstI32:
case Stk::ConstI64:
case Stk::ConstF32:
case Stk::ConstF64:
#ifdef ENABLE_WASM_SIMD
case Stk::ConstV128:
#endif
case Stk::ConstRef:
return true;
default:
return false;
}
}
bool BaseCompiler::popConst(int32_t* c) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI32) {
return false;
}
*c = v.i32val();
stk_.popBack();
return true;
}
bool BaseCompiler::popConst(int64_t* c) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI64) {
return false;
}
*c = v.i64val();
stk_.popBack();
return true;
}
bool BaseCompiler::peekConst(int32_t* c) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI32) {
return false;
}
*c = v.i32val();
return true;
}
bool BaseCompiler::peekConst(int64_t* c) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI64) {
return false;
}
*c = v.i64val();
return true;
}
bool BaseCompiler::peek2xConst(int32_t* c0, int32_t* c1) {
MOZ_ASSERT(stk_.length() >= 2);
const Stk& v0 = *(stk_.end() - 1);
const Stk& v1 = *(stk_.end() - 2);
if (v0.kind() != Stk::ConstI32 || v1.kind() != Stk::ConstI32) {
return false;
}
*c0 = v0.i32val();
*c1 = v1.i32val();
return true;
}
bool BaseCompiler::popConstPositivePowerOfTwo(int32_t* c, uint_fast8_t* power,
int32_t cutoff) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI32) {
return false;
}
*c = v.i32val();
if (*c <= cutoff || !mozilla::IsPowerOfTwo(static_cast<uint32_t>(*c))) {
return false;
}
*power = mozilla::FloorLog2(*c);
stk_.popBack();
return true;
}
bool BaseCompiler::popConstPositivePowerOfTwo(int64_t* c, uint_fast8_t* power,
int64_t cutoff) {
Stk& v = stk_.back();
if (v.kind() != Stk::ConstI64) {
return false;
}
*c = v.i64val();
if (*c <= cutoff || !mozilla::IsPowerOfTwo(static_cast<uint64_t>(*c))) {
return false;
}
*power = mozilla::FloorLog2(*c);
stk_.popBack();
return true;
}
void BaseCompiler::pop2xI32(RegI32* r0, RegI32* r1) {
*r1 = popI32();
*r0 = popI32();
}
void BaseCompiler::pop2xI64(RegI64* r0, RegI64* r1) {
*r1 = popI64();
*r0 = popI64();
}
void BaseCompiler::pop2xF32(RegF32* r0, RegF32* r1) {
*r1 = popF32();
*r0 = popF32();
}
void BaseCompiler::pop2xF64(RegF64* r0, RegF64* r1) {
*r1 = popF64();
*r0 = popF64();
}
#ifdef ENABLE_WASM_SIMD
void BaseCompiler::pop2xV128(RegV128* r0, RegV128* r1) {
*r1 = popV128();
*r0 = popV128();
}
#endif
void BaseCompiler::pop2xRef(RegRef* r0, RegRef* r1) {
*r1 = popRef();
*r0 = popRef();
}
// Pop to a specific register
RegI32 BaseCompiler::popI32ToSpecific(RegI32 specific) {
freeI32(specific);
return popI32(specific);
}
RegI64 BaseCompiler::popI64ToSpecific(RegI64 specific) {
freeI64(specific);
return popI64(specific);
}
RegI64 BaseCompiler::popAddressToInt64(AddressType addressType) {
if (addressType == AddressType::I64) {
return popI64();
}
MOZ_ASSERT(addressType == AddressType::I32);
#ifdef JS_64BIT
return RegI64(Register64(popI32()));
#else
RegI32 lowPart = popI32();
RegI32 highPart = needI32();
masm.xor32(highPart, highPart);
return RegI64(Register64(highPart, lowPart));
#endif
}
RegI32 BaseCompiler::popTableAddressToClampedInt32(AddressType addressType) {
if (addressType == AddressType::I32) {
return popI32();
}
#ifdef ENABLE_WASM_MEMORY64
MOZ_ASSERT(addressType == AddressType::I64);
RegI64 val = popI64();
RegI32 clamped = narrowI64(val);
masm.wasmClampTable64Address(val, clamped);
return clamped;
#else
MOZ_CRASH("got i64 table address without memory64 enabled");
#endif
}
void BaseCompiler::replaceTableAddressWithClampedInt32(
AddressType addressType) {
if (addressType == AddressType::I32) {
return;
}
pushI32(popTableAddressToClampedInt32(addressType));
}
#ifdef JS_CODEGEN_ARM
// Pop an I64 as a valid register pair.
RegI64 BaseCompiler::popI64Pair() {
RegI64 r = needI64Pair();
popI64ToSpecific(r);
return r;
}
#endif
// Pop an I64 but narrow it and return the narrowed part.
RegI32 BaseCompiler::popI64ToI32() {
RegI64 r = popI64();
return narrowI64(r);
}
RegI32 BaseCompiler::popI64ToSpecificI32(RegI32 specific) {
RegI64 rd = widenI32(specific);
popI64ToSpecific(rd);
return narrowI64(rd);
}
bool BaseCompiler::peekLocal(uint32_t* local) {
Stk& v = stk_.back();
// See hasLocal() for documentation of this logic.
if (v.kind() <= Stk::MemLast || v.kind() > Stk::LocalLast) {
return false;
}
*local = v.slot();
return true;
}
size_t BaseCompiler::stackConsumed(size_t numval) {
size_t size = 0;
MOZ_ASSERT(numval <= stk_.length());
for (uint32_t i = stk_.length() - 1; numval > 0; numval--, i--) {
Stk& v = stk_[i];
switch (v.kind()) {
case Stk::MemRef:
size += BaseStackFrame::StackSizeOfPtr;
break;
case Stk::MemI32:
size += BaseStackFrame::StackSizeOfPtr;
break;
case Stk::MemI64:
size += BaseStackFrame::StackSizeOfInt64;
break;
case Stk::MemF64:
size += BaseStackFrame::StackSizeOfDouble;
break;
case Stk::MemF32:
size += BaseStackFrame::StackSizeOfFloat;
break;
#ifdef ENABLE_WASM_SIMD
case Stk::MemV128:
size += BaseStackFrame::StackSizeOfV128;
break;
#endif
default:
break;
}
}
return size;
}
void BaseCompiler::popValueStackTo(uint32_t stackSize) {
for (uint32_t i = stk_.length(); i > stackSize; i--) {
Stk& v = stk_[i - 1];
switch (v.kind()) {
case Stk::RegisterI32:
freeI32(v.i32reg());
break;
case Stk::RegisterI64:
freeI64(v.i64reg());
break;
case Stk::RegisterF64:
freeF64(v.f64reg());
break;
case Stk::RegisterF32:
freeF32(v.f32reg());
break;
#ifdef ENABLE_WASM_SIMD
case Stk::RegisterV128:
freeV128(v.v128reg());
break;
#endif
case Stk::RegisterRef:
freeRef(v.refReg());
break;
case Stk::MemRef:
stackMapGenerator_.memRefsOnStk--;
break;
default:
break;
}
}
stk_.shrinkTo(stackSize);
}
void BaseCompiler::popValueStackBy(uint32_t items) {
popValueStackTo(stk_.length() - items);
}
void BaseCompiler::dropValue() {
if (peek(0).isMem()) {
fr.popBytes(stackConsumed(1));
}
popValueStackBy(1);
}
// Peek at the stack, for calls.
Stk& BaseCompiler::peek(uint32_t relativeDepth) {
return stk_[stk_.length() - 1 - relativeDepth];
}
} // namespace wasm
} // namespace js
#endif // wasm_wasm_baseline_stk_mgmt_inl_h