Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
/*
* This file implements the structured data algorithms of
*
* The spec is in two parts:
*
* - StructuredSerialize examines a JS value and produces a graph of Records.
* - StructuredDeserialize walks the Records and produces a new JS value.
*
* The differences between our implementation and the spec are minor:
*
* - We call the two phases "write" and "read".
* - Our algorithms use an explicit work stack, rather than recursion.
* - Serialized data is a flat array of bytes, not a (possibly cyclic) graph
* of "Records".
* - As a consequence, we handle non-treelike object graphs differently.
* We serialize objects that appear in multiple places in the input as
* backreferences, using sequential integer indexes.
* See `JSStructuredCloneReader::allObjs`, our take on the "memory" map
* in the spec's StructuredDeserialize.
*/
#include "js/StructuredClone.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Maybe.h"
#include "mozilla/ScopeExit.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "jsdate.h"
#include "builtin/DataViewObject.h"
#include "builtin/MapObject.h"
#include "gc/GC.h" // AutoSelectGCHeap
#include "js/Array.h" // JS::GetArrayLength, JS::IsArrayObject
#include "js/ArrayBuffer.h" // JS::{ArrayBufferHasData,DetachArrayBuffer,IsArrayBufferObject,New{,Mapped}ArrayBufferWithContents,ReleaseMappedArrayBufferContents}
#include "js/ColumnNumber.h" // JS::ColumnNumberOneOrigin, JS::TaggedColumnNumberOneOrigin
#include "js/Date.h"
#include "js/experimental/TypedData.h" // JS_NewDataView, JS_New{{Ui,I}nt{8,16,32},Float{32,64},Uint8Clamped,Big{Ui,I}nt64}ArrayWithBuffer
#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
#include "js/GCAPI.h"
#include "js/GCHashTable.h"
#include "js/Object.h" // JS::GetBuiltinClass
#include "js/PropertyAndElement.h" // JS_GetElement
#include "js/RegExpFlags.h" // JS::RegExpFlag, JS::RegExpFlags
#include "js/ScalarType.h" // js::Scalar::Type
#include "js/SharedArrayBuffer.h" // JS::IsSharedArrayBufferObject
#include "js/Wrapper.h"
#include "util/DifferentialTesting.h"
#include "vm/BigIntType.h"
#include "vm/ErrorObject.h"
#include "vm/JSContext.h"
#include "vm/PlainObject.h" // js::PlainObject
#include "vm/RegExpObject.h"
#include "vm/SavedFrame.h"
#include "vm/SharedArrayObject.h"
#include "vm/TypedArrayObject.h"
#include "wasm/WasmJS.h"
#include "vm/ArrayObject-inl.h"
#include "vm/Compartment-inl.h"
#include "vm/ErrorObject-inl.h"
#include "vm/InlineCharBuffer-inl.h"
#include "vm/JSContext-inl.h"
#include "vm/JSObject-inl.h"
#include "vm/NativeObject-inl.h"
#include "vm/ObjectOperations-inl.h"
#include "vm/Realm-inl.h"
using namespace js;
using JS::CanonicalizeNaN;
using JS::GetBuiltinClass;
using JS::RegExpFlag;
using JS::RegExpFlags;
using JS::RootedValueVector;
using mozilla::AssertedCast;
using mozilla::BitwiseCast;
using mozilla::Maybe;
using mozilla::NativeEndian;
using mozilla::NumbersAreIdentical;
// When you make updates here, make sure you consider whether you need to bump
// the value of JS_STRUCTURED_CLONE_VERSION in js/public/StructuredClone.h. You
// will likely need to increment the version if anything at all changes in the
// serialization format.
//
// Note that SCTAG_END_OF_KEYS is written into the serialized form and should
// have a stable ID, it need not be at the end of the list and should not be
// used for sizing data structures.
enum StructuredDataType : uint32_t {
// Structured data types provided by the engine
SCTAG_FLOAT_MAX = 0xFFF00000,
SCTAG_HEADER = 0xFFF10000,
SCTAG_NULL = 0xFFFF0000,
SCTAG_UNDEFINED,
SCTAG_BOOLEAN,
SCTAG_INT32,
SCTAG_STRING,
SCTAG_DATE_OBJECT,
SCTAG_REGEXP_OBJECT,
SCTAG_ARRAY_OBJECT,
SCTAG_OBJECT_OBJECT,
SCTAG_ARRAY_BUFFER_OBJECT_V2, // Old version, for backwards compatibility.
SCTAG_BOOLEAN_OBJECT,
SCTAG_STRING_OBJECT,
SCTAG_NUMBER_OBJECT,
SCTAG_BACK_REFERENCE_OBJECT,
SCTAG_DO_NOT_USE_1, // Required for backwards compatibility
SCTAG_DO_NOT_USE_2, // Required for backwards compatibility
SCTAG_TYPED_ARRAY_OBJECT_V2, // Old version, for backwards compatibility.
SCTAG_MAP_OBJECT,
SCTAG_SET_OBJECT,
SCTAG_END_OF_KEYS,
SCTAG_DO_NOT_USE_3, // Required for backwards compatibility
SCTAG_DATA_VIEW_OBJECT_V2, // Old version, for backwards compatibility.
SCTAG_SAVED_FRAME_OBJECT,
// No new tags before principals.
SCTAG_JSPRINCIPALS,
SCTAG_NULL_JSPRINCIPALS,
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_SYSTEM,
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_NOT_SYSTEM,
SCTAG_SHARED_ARRAY_BUFFER_OBJECT,
SCTAG_SHARED_WASM_MEMORY_OBJECT,
SCTAG_BIGINT,
SCTAG_BIGINT_OBJECT,
SCTAG_ARRAY_BUFFER_OBJECT,
SCTAG_TYPED_ARRAY_OBJECT,
SCTAG_DATA_VIEW_OBJECT,
SCTAG_ERROR_OBJECT,
SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT,
SCTAG_GROWABLE_SHARED_ARRAY_BUFFER_OBJECT,
SCTAG_TYPED_ARRAY_V1_MIN = 0xFFFF0100,
SCTAG_TYPED_ARRAY_V1_INT8 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Int8,
SCTAG_TYPED_ARRAY_V1_UINT8 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Uint8,
SCTAG_TYPED_ARRAY_V1_INT16 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Int16,
SCTAG_TYPED_ARRAY_V1_UINT16 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Uint16,
SCTAG_TYPED_ARRAY_V1_INT32 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Int32,
SCTAG_TYPED_ARRAY_V1_UINT32 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Uint32,
SCTAG_TYPED_ARRAY_V1_FLOAT32 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Float32,
SCTAG_TYPED_ARRAY_V1_FLOAT64 = SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Float64,
SCTAG_TYPED_ARRAY_V1_UINT8_CLAMPED =
SCTAG_TYPED_ARRAY_V1_MIN + Scalar::Uint8Clamped,
// BigInt64 and BigUint64 are not supported in the v1 format.
SCTAG_TYPED_ARRAY_V1_MAX = SCTAG_TYPED_ARRAY_V1_UINT8_CLAMPED,
// Define a separate range of numbers for Transferable-only tags, since
// they are not used for persistent clone buffers and therefore do not
// require bumping JS_STRUCTURED_CLONE_VERSION.
SCTAG_TRANSFER_MAP_HEADER = 0xFFFF0200,
SCTAG_TRANSFER_MAP_PENDING_ENTRY,
SCTAG_TRANSFER_MAP_ARRAY_BUFFER,
SCTAG_TRANSFER_MAP_STORED_ARRAY_BUFFER,
SCTAG_TRANSFER_MAP_END_OF_BUILTIN_TYPES,
SCTAG_END_OF_BUILTIN_TYPES
};
/*
* Format of transfer map:
* - <SCTAG_TRANSFER_MAP_HEADER, UNREAD|TRANSFERRING|TRANSFERRED>
* - numTransferables (64 bits)
* - array of:
* - <SCTAG_TRANSFER_MAP_*, TransferableOwnership> pointer (64
* bits)
* - extraData (64 bits), eg byte length for ArrayBuffers
* - any data written for custom transferables
*/
// Data associated with an SCTAG_TRANSFER_MAP_HEADER that tells whether the
// contents have been read out yet or not. TRANSFERRING is for the case where we
// have started but not completed reading, which due to errors could mean that
// there are things still owned by the clone buffer that need to be released, so
// discarding should not just be skipped.
enum TransferableMapHeader {
SCTAG_TM_UNREAD = 0,
SCTAG_TM_TRANSFERRING,
SCTAG_TM_TRANSFERRED,
SCTAG_TM_END
};
static inline uint64_t PairToUInt64(uint32_t tag, uint32_t data) {
return uint64_t(data) | (uint64_t(tag) << 32);
}
namespace js {
template <typename T, typename AllocPolicy>
struct BufferIterator {
using BufferList = mozilla::BufferList<AllocPolicy>;
explicit BufferIterator(const BufferList& buffer)
: mBuffer(buffer), mIter(buffer.Iter()) {
static_assert(8 % sizeof(T) == 0);
}
explicit BufferIterator(const JSStructuredCloneData& data)
: mBuffer(data.bufList_), mIter(data.Start()) {}
BufferIterator& operator=(const BufferIterator& other) {
MOZ_ASSERT(&mBuffer == &other.mBuffer);
mIter = other.mIter;
return *this;
}
[[nodiscard]] bool advance(size_t size = sizeof(T)) {
return mIter.AdvanceAcrossSegments(mBuffer, size);
}
BufferIterator operator++(int) {
BufferIterator ret = *this;
if (!advance(sizeof(T))) {
MOZ_ASSERT(false, "Failed to read StructuredCloneData. Data incomplete");
}
return ret;
}
BufferIterator& operator+=(size_t size) {
if (!advance(size)) {
MOZ_ASSERT(false, "Failed to read StructuredCloneData. Data incomplete");
}
return *this;
}
size_t operator-(const BufferIterator& other) const {
MOZ_ASSERT(&mBuffer == &other.mBuffer);
return mBuffer.RangeLength(other.mIter, mIter);
}
bool operator==(const BufferIterator& other) const {
return mBuffer.Start() == other.mBuffer.Start() && mIter == other.mIter;
}
bool operator!=(const BufferIterator& other) const {
return !(*this == other);
}
bool done() const { return mIter.Done(); }
[[nodiscard]] bool readBytes(char* outData, size_t size) {
return mBuffer.ReadBytes(mIter, outData, size);
}
void write(const T& data) {
MOZ_ASSERT(mIter.HasRoomFor(sizeof(T)));
*reinterpret_cast<T*>(mIter.Data()) = data;
}
T peek() const {
MOZ_ASSERT(mIter.HasRoomFor(sizeof(T)));
return *reinterpret_cast<T*>(mIter.Data());
}
bool canPeek() const { return mIter.HasRoomFor(sizeof(T)); }
const BufferList& mBuffer;
typename BufferList::IterImpl mIter;
};
SharedArrayRawBufferRefs& SharedArrayRawBufferRefs::operator=(
SharedArrayRawBufferRefs&& other) {
takeOwnership(std::move(other));
return *this;
}
SharedArrayRawBufferRefs::~SharedArrayRawBufferRefs() { releaseAll(); }
bool SharedArrayRawBufferRefs::acquire(JSContext* cx,
SharedArrayRawBuffer* rawbuf) {
if (!refs_.append(rawbuf)) {
ReportOutOfMemory(cx);
return false;
}
if (!rawbuf->addReference()) {
refs_.popBack();
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_SAB_REFCNT_OFLO);
return false;
}
return true;
}
bool SharedArrayRawBufferRefs::acquireAll(
JSContext* cx, const SharedArrayRawBufferRefs& that) {
if (!refs_.reserve(refs_.length() + that.refs_.length())) {
ReportOutOfMemory(cx);
return false;
}
for (auto ref : that.refs_) {
if (!ref->addReference()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_SAB_REFCNT_OFLO);
return false;
}
MOZ_ALWAYS_TRUE(refs_.append(ref));
}
return true;
}
void SharedArrayRawBufferRefs::takeOwnership(SharedArrayRawBufferRefs&& other) {
MOZ_ASSERT(refs_.empty());
refs_ = std::move(other.refs_);
}
void SharedArrayRawBufferRefs::releaseAll() {
for (auto ref : refs_) {
ref->dropReference();
}
refs_.clear();
}
// SCOutput provides an interface to write raw data -- eg uint64_ts, doubles,
// arrays of bytes -- into a structured clone data output stream. It also knows
// how to free any transferable data within that stream.
//
// Note that it contains a full JSStructuredCloneData object, which holds the
// callbacks necessary to read/write/transfer/free the data. For the purpose of
// this class, only the freeTransfer callback is relevant; the rest of the
// callbacks are used by the higher-level JSStructuredCloneWriter interface.
struct SCOutput {
public:
using Iter = BufferIterator<uint64_t, SystemAllocPolicy>;
SCOutput(JSContext* cx, JS::StructuredCloneScope scope);
JSContext* context() const { return cx; }
JS::StructuredCloneScope scope() const { return buf.scope(); }
void sameProcessScopeRequired() { buf.sameProcessScopeRequired(); }
[[nodiscard]] bool write(uint64_t u);
[[nodiscard]] bool writePair(uint32_t tag, uint32_t data);
[[nodiscard]] bool writeDouble(double d);
[[nodiscard]] bool writeBytes(const void* p, size_t nbytes);
[[nodiscard]] bool writeChars(const Latin1Char* p, size_t nchars);
[[nodiscard]] bool writeChars(const char16_t* p, size_t nchars);
template <class T>
[[nodiscard]] bool writeArray(const T* p, size_t nelems);
void setCallbacks(const JSStructuredCloneCallbacks* callbacks, void* closure,
OwnTransferablePolicy policy) {
buf.setCallbacks(callbacks, closure, policy);
}
void extractBuffer(JSStructuredCloneData* data) { *data = std::move(buf); }
uint64_t tell() const { return buf.Size(); }
uint64_t count() const { return buf.Size() / sizeof(uint64_t); }
Iter iter() { return Iter(buf); }
size_t offset(Iter dest) { return dest - iter(); }
JSContext* cx;
JSStructuredCloneData buf;
};
class SCInput {
public:
using BufferIterator = js::BufferIterator<uint64_t, SystemAllocPolicy>;
SCInput(JSContext* cx, const JSStructuredCloneData& data);
JSContext* context() const { return cx; }
static void getPtr(uint64_t data, void** ptr);
static void getPair(uint64_t data, uint32_t* tagp, uint32_t* datap);
[[nodiscard]] bool read(uint64_t* p);
[[nodiscard]] bool readPair(uint32_t* tagp, uint32_t* datap);
[[nodiscard]] bool readDouble(double* p);
[[nodiscard]] bool readBytes(void* p, size_t nbytes);
[[nodiscard]] bool readChars(Latin1Char* p, size_t nchars);
[[nodiscard]] bool readChars(char16_t* p, size_t nchars);
[[nodiscard]] bool readPtr(void**);
[[nodiscard]] bool get(uint64_t* p);
[[nodiscard]] bool getPair(uint32_t* tagp, uint32_t* datap);
const BufferIterator& tell() const { return point; }
void seekTo(const BufferIterator& pos) { point = pos; }
[[nodiscard]] bool seekBy(size_t pos) {
if (!point.advance(pos)) {
reportTruncated();
return false;
}
return true;
}
template <class T>
[[nodiscard]] bool readArray(T* p, size_t nelems);
bool reportTruncated() {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "truncated");
return false;
}
private:
void staticAssertions() {
static_assert(sizeof(char16_t) == 2);
static_assert(sizeof(uint32_t) == 4);
}
JSContext* cx;
BufferIterator point;
};
} // namespace js
struct JSStructuredCloneReader {
public:
explicit JSStructuredCloneReader(SCInput& in, JS::StructuredCloneScope scope,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* cb,
void* cbClosure);
SCInput& input() { return in; }
bool read(MutableHandleValue vp, size_t nbytes);
private:
JSContext* context() { return in.context(); }
bool readHeader();
bool readTransferMap();
[[nodiscard]] bool readUint32(uint32_t* num);
enum ShouldAtomizeStrings : bool {
DontAtomizeStrings = false,
AtomizeStrings = true
};
template <typename CharT>
JSString* readStringImpl(uint32_t nchars, ShouldAtomizeStrings atomize);
JSString* readString(uint32_t data, ShouldAtomizeStrings atomize);
BigInt* readBigInt(uint32_t data);
[[nodiscard]] bool readTypedArray(uint32_t arrayType, uint64_t nelems,
MutableHandleValue vp, bool v1Read = false);
[[nodiscard]] bool readDataView(uint64_t byteLength, MutableHandleValue vp);
[[nodiscard]] bool readArrayBuffer(StructuredDataType type, uint32_t data,
MutableHandleValue vp);
[[nodiscard]] bool readV1ArrayBuffer(uint32_t arrayType, uint32_t nelems,
MutableHandleValue vp);
[[nodiscard]] bool readSharedArrayBuffer(StructuredDataType type,
MutableHandleValue vp);
[[nodiscard]] bool readSharedWasmMemory(uint32_t nbytes,
MutableHandleValue vp);
// A serialized SavedFrame contains primitive values in a header followed by
// an optional parent frame that is read recursively.
[[nodiscard]] JSObject* readSavedFrameHeader(uint32_t principalsTag);
[[nodiscard]] bool readSavedFrameFields(Handle<SavedFrame*> frameObj,
HandleValue parent, bool* state);
// A serialized Error contains primitive values in a header followed by
// 'cause', 'errors', and 'stack' fields that are read recursively.
[[nodiscard]] JSObject* readErrorHeader(uint32_t type);
[[nodiscard]] bool readErrorFields(Handle<ErrorObject*> errorObj,
HandleValue cause, bool* state);
[[nodiscard]] bool readMapField(Handle<MapObject*> mapObj, HandleValue key);
[[nodiscard]] bool readObjectField(HandleObject obj, HandleValue key);
[[nodiscard]] bool startRead(
MutableHandleValue vp,
ShouldAtomizeStrings atomizeStrings = DontAtomizeStrings);
SCInput& in;
// The widest scope that the caller will accept, where
// SameProcess is the widest (it can store anything it wants)
// and DifferentProcess is the narrowest (it cannot contain pointers and must
// be valid cross-process.)
//
// Although this can be initially set to other "unresolved" values (eg
// Unassigned), by the end of a successful readHeader() this will be resolved
// to SameProcess or DifferentProcess.
JS::StructuredCloneScope allowedScope;
const JS::CloneDataPolicy cloneDataPolicy;
// Stack of objects with properties remaining to be read.
RootedValueVector objs;
// Maintain a stack of state values for the `objs` stack. Since this is only
// needed for a very small subset of objects (those with a known set of
// object children), the state information is stored as a stack of
// <object, state> pairs where the object determines which element of the
// `objs` stack that it corresponds to. So when reading from the `objs` stack,
// the state will be retrieved only if the top object on `objState` matches
// the top object of `objs`.
//
// Currently, the only state needed is a boolean indicating whether the fields
// have been read yet.
Rooted<GCVector<std::pair<HeapPtr<JSObject*>, bool>, 8>> objState;
// Array of all objects read during this deserialization, for resolving
// backreferences.
//
// For backreferences to work correctly, objects must be added to this
// array in exactly the order expected by the version of the Writer that
// created the serialized data, even across years and format versions. This
// is usually no problem, since both algorithms do a single linear pass
// over the serialized data. There is one hitch; see readTypedArray.
//
// The values in this vector are objects, except it can temporarily have
// one `undefined` placeholder value (the readTypedArray hack).
RootedValueVector allObjs;
size_t numItemsRead;
// The user defined callbacks that will be used for cloning.
const JSStructuredCloneCallbacks* callbacks;
// Any value passed to JS_ReadStructuredClone.
void* closure;
// The heap to use for allocating common GC things. This starts out as the
// nursery (the default) but may switch to the tenured heap if nursery
// collection occurs, as nursery allocation is pointless after the
// deserialized root object is tenured.
//
// This is only used for the most common kind, e.g. plain objects, strings
// and a couple of others.
AutoSelectGCHeap gcHeap;
friend bool JS_ReadString(JSStructuredCloneReader* r,
JS::MutableHandleString str);
friend bool JS_ReadTypedArray(JSStructuredCloneReader* r,
MutableHandleValue vp);
// Provide a way to detect whether any of the clone data is never used. When
// "tail" data (currently, this is only stored data for Transferred
// ArrayBuffers in the DifferentProcess scope) is read, record the first and
// last positions. At the end of deserialization, make sure there's nothing
// between the end of the main data and the beginning of the tail, nor after
// the end of the tail.
mozilla::Maybe<SCInput::BufferIterator> tailStartPos;
mozilla::Maybe<SCInput::BufferIterator> tailEndPos;
};
struct JSStructuredCloneWriter {
public:
explicit JSStructuredCloneWriter(JSContext* cx,
JS::StructuredCloneScope scope,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* cb,
void* cbClosure, const Value& tVal)
: out(cx, scope),
callbacks(cb),
closure(cbClosure),
objs(cx),
counts(cx),
objectEntries(cx),
otherEntries(cx),
memory(cx),
transferable(cx, tVal),
transferableObjects(cx, TransferableObjectsList(cx)),
cloneDataPolicy(cloneDataPolicy) {
out.setCallbacks(cb, cbClosure,
OwnTransferablePolicy::OwnsTransferablesIfAny);
}
bool init() {
return parseTransferable() && writeHeader() && writeTransferMap();
}
bool write(HandleValue v);
SCOutput& output() { return out; }
void extractBuffer(JSStructuredCloneData* newData) {
out.extractBuffer(newData);
}
private:
JSStructuredCloneWriter() = delete;
JSStructuredCloneWriter(const JSStructuredCloneWriter&) = delete;
JSContext* context() { return out.context(); }
bool writeHeader();
bool writeTransferMap();
bool writeString(uint32_t tag, JSString* str);
bool writeBigInt(uint32_t tag, BigInt* bi);
bool writeArrayBuffer(HandleObject obj);
bool writeTypedArray(HandleObject obj);
bool writeDataView(HandleObject obj);
bool writeSharedArrayBuffer(HandleObject obj);
bool writeSharedWasmMemory(HandleObject obj);
bool startObject(HandleObject obj, bool* backref);
bool writePrimitive(HandleValue v);
bool startWrite(HandleValue v);
bool traverseObject(HandleObject obj, ESClass cls);
bool traverseMap(HandleObject obj);
bool traverseSet(HandleObject obj);
bool traverseSavedFrame(HandleObject obj);
bool traverseError(HandleObject obj);
template <typename... Args>
bool reportDataCloneError(uint32_t errorId, Args&&... aArgs);
bool parseTransferable();
bool transferOwnership();
inline void checkStack();
SCOutput out;
// The user defined callbacks that will be used to signal cloning, in some
// cases.
const JSStructuredCloneCallbacks* callbacks;
// Any value passed to the callbacks.
void* closure;
// Vector of objects with properties remaining to be written.
//
// NB: These can span multiple compartments, so the compartment must be
// entered before any manipulation is performed.
RootedValueVector objs;
// counts[i] is the number of entries of objs[i] remaining to be written.
// counts.length() == objs.length() and sum(counts) == entries.length().
Vector<size_t> counts;
// For JSObject: Property IDs as value
RootedIdVector objectEntries;
// For Map: Key followed by value
// For Set: Key
// For SavedFrame: parent SavedFrame
// For Error: cause, errors, stack
RootedValueVector otherEntries;
// The "memory" list described in the HTML5 internal structured cloning
// algorithm. memory is a superset of objs; items are never removed from
// Memory until a serialization operation is finished
using CloneMemory = GCHashMap<JSObject*, uint32_t,
StableCellHasher<JSObject*>, SystemAllocPolicy>;
Rooted<CloneMemory> memory;
// Set of transferable objects
RootedValue transferable;
using TransferableObjectsList = GCVector<JSObject*>;
Rooted<TransferableObjectsList> transferableObjects;
const JS::CloneDataPolicy cloneDataPolicy;
friend bool JS_WriteString(JSStructuredCloneWriter* w, HandleString str);
friend bool JS_WriteTypedArray(JSStructuredCloneWriter* w, HandleValue v);
friend bool JS_ObjectNotWritten(JSStructuredCloneWriter* w, HandleObject obj);
};
JS_PUBLIC_API uint64_t js::GetSCOffset(JSStructuredCloneWriter* writer) {
MOZ_ASSERT(writer);
return writer->output().count() * sizeof(uint64_t);
}
static_assert(SCTAG_END_OF_BUILTIN_TYPES <= JS_SCTAG_USER_MIN);
static_assert(JS_SCTAG_USER_MIN <= JS_SCTAG_USER_MAX);
static_assert(Scalar::Int8 == 0);
template <typename... Args>
static void ReportDataCloneError(JSContext* cx,
const JSStructuredCloneCallbacks* callbacks,
uint32_t errorId, void* closure,
Args&&... aArgs) {
unsigned errorNumber;
switch (errorId) {
case JS_SCERR_DUP_TRANSFERABLE:
errorNumber = JSMSG_SC_DUP_TRANSFERABLE;
break;
case JS_SCERR_TRANSFERABLE:
errorNumber = JSMSG_SC_NOT_TRANSFERABLE;
break;
case JS_SCERR_UNSUPPORTED_TYPE:
errorNumber = JSMSG_SC_UNSUPPORTED_TYPE;
break;
case JS_SCERR_SHMEM_TRANSFERABLE:
errorNumber = JSMSG_SC_SHMEM_TRANSFERABLE;
break;
case JS_SCERR_TRANSFERABLE_TWICE:
errorNumber = JSMSG_SC_TRANSFERABLE_TWICE;
break;
case JS_SCERR_TYPED_ARRAY_DETACHED:
errorNumber = JSMSG_TYPED_ARRAY_DETACHED;
break;
case JS_SCERR_WASM_NO_TRANSFER:
errorNumber = JSMSG_WASM_NO_TRANSFER;
break;
case JS_SCERR_NOT_CLONABLE:
errorNumber = JSMSG_SC_NOT_CLONABLE;
break;
case JS_SCERR_NOT_CLONABLE_WITH_COOP_COEP:
errorNumber = JSMSG_SC_NOT_CLONABLE_WITH_COOP_COEP;
break;
default:
MOZ_CRASH("Unkown errorId");
break;
}
if (callbacks && callbacks->reportError) {
MOZ_RELEASE_ASSERT(!cx->isExceptionPending());
JSErrorReport report;
report.errorNumber = errorNumber;
// Get js error message if it's possible and propagate it through callback.
if (JS_ExpandErrorArgumentsASCII(cx, GetErrorMessage, errorNumber, &report,
std::forward<Args>(aArgs)...) &&
report.message()) {
callbacks->reportError(cx, errorId, closure, report.message().c_str());
} else {
ReportOutOfMemory(cx);
callbacks->reportError(cx, errorId, closure, "");
}
return;
}
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, errorNumber,
std::forward<Args>(aArgs)...);
}
bool WriteStructuredClone(JSContext* cx, HandleValue v,
JSStructuredCloneData* bufp,
JS::StructuredCloneScope scope,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* cb, void* cbClosure,
const Value& transferable) {
JSStructuredCloneWriter w(cx, scope, cloneDataPolicy, cb, cbClosure,
transferable);
if (!w.init()) {
return false;
}
if (!w.write(v)) {
return false;
}
w.extractBuffer(bufp);
return true;
}
bool ReadStructuredClone(JSContext* cx, const JSStructuredCloneData& data,
JS::StructuredCloneScope scope, MutableHandleValue vp,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* cb,
void* cbClosure) {
if (data.Size() % 8) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "misaligned");
return false;
}
SCInput in(cx, data);
JSStructuredCloneReader r(in, scope, cloneDataPolicy, cb, cbClosure);
return r.read(vp, data.Size());
}
static bool StructuredCloneHasTransferObjects(
const JSStructuredCloneData& data) {
if (data.Size() < sizeof(uint64_t)) {
return false;
}
uint64_t u;
BufferIterator<uint64_t, SystemAllocPolicy> iter(data);
MOZ_ALWAYS_TRUE(iter.readBytes(reinterpret_cast<char*>(&u), sizeof(u)));
uint32_t tag = uint32_t(u >> 32);
return (tag == SCTAG_TRANSFER_MAP_HEADER);
}
namespace js {
SCInput::SCInput(JSContext* cx, const JSStructuredCloneData& data)
: cx(cx), point(data) {
static_assert(JSStructuredCloneData::BufferList::kSegmentAlignment % 8 == 0,
"structured clone buffer reads should be aligned");
MOZ_ASSERT(data.Size() % 8 == 0);
}
bool SCInput::read(uint64_t* p) {
if (!point.canPeek()) {
*p = 0; // initialize to shut GCC up
return reportTruncated();
}
*p = NativeEndian::swapFromLittleEndian(point.peek());
MOZ_ALWAYS_TRUE(point.advance());
return true;
}
bool SCInput::readPair(uint32_t* tagp, uint32_t* datap) {
uint64_t u;
bool ok = read(&u);
if (ok) {
*tagp = uint32_t(u >> 32);
*datap = uint32_t(u);
}
return ok;
}
bool SCInput::get(uint64_t* p) {
if (!point.canPeek()) {
return reportTruncated();
}
*p = NativeEndian::swapFromLittleEndian(point.peek());
return true;
}
bool SCInput::getPair(uint32_t* tagp, uint32_t* datap) {
uint64_t u = 0;
if (!get(&u)) {
return false;
}
*tagp = uint32_t(u >> 32);
*datap = uint32_t(u);
return true;
}
void SCInput::getPair(uint64_t data, uint32_t* tagp, uint32_t* datap) {
uint64_t u = NativeEndian::swapFromLittleEndian(data);
*tagp = uint32_t(u >> 32);
*datap = uint32_t(u);
}
bool SCInput::readDouble(double* p) {
uint64_t u;
if (!read(&u)) {
return false;
}
*p = CanonicalizeNaN(mozilla::BitwiseCast<double>(u));
return true;
}
template <typename T>
static void swapFromLittleEndianInPlace(T* ptr, size_t nelems) {
if (nelems > 0) {
NativeEndian::swapFromLittleEndianInPlace(ptr, nelems);
}
}
template <>
void swapFromLittleEndianInPlace(uint8_t* ptr, size_t nelems) {}
// Data is packed into an integral number of uint64_t words. Compute the
// padding required to finish off the final word.
static size_t ComputePadding(size_t nelems, size_t elemSize) {
// We want total length mod 8, where total length is nelems * sizeof(T),
// but that might overflow. So reduce nelems to nelems mod 8, since we are
// going to be doing a mod 8 later anyway.
size_t leftoverLength = (nelems % sizeof(uint64_t)) * elemSize;
return (-leftoverLength) & (sizeof(uint64_t) - 1);
}
template <class T>
bool SCInput::readArray(T* p, size_t nelems) {
if (!nelems) {
return true;
}
static_assert(sizeof(uint64_t) % sizeof(T) == 0);
// Fail if nelems is so huge that computing the full size will overflow.
mozilla::CheckedInt<size_t> size =
mozilla::CheckedInt<size_t>(nelems) * sizeof(T);
if (!size.isValid()) {
return reportTruncated();
}
if (!point.readBytes(reinterpret_cast<char*>(p), size.value())) {
// To avoid any way in which uninitialized data could escape, zero the array
// if filling it failed.
std::uninitialized_fill_n(p, nelems, 0);
return reportTruncated();
}
swapFromLittleEndianInPlace(p, nelems);
point += ComputePadding(nelems, sizeof(T));
return true;
}
bool SCInput::readBytes(void* p, size_t nbytes) {
return readArray((uint8_t*)p, nbytes);
}
bool SCInput::readChars(Latin1Char* p, size_t nchars) {
static_assert(sizeof(Latin1Char) == sizeof(uint8_t),
"Latin1Char must fit in 1 byte");
return readBytes(p, nchars);
}
bool SCInput::readChars(char16_t* p, size_t nchars) {
MOZ_ASSERT(sizeof(char16_t) == sizeof(uint16_t));
return readArray((uint16_t*)p, nchars);
}
void SCInput::getPtr(uint64_t data, void** ptr) {
*ptr = reinterpret_cast<void*>(NativeEndian::swapFromLittleEndian(data));
}
bool SCInput::readPtr(void** p) {
uint64_t u;
if (!read(&u)) {
return false;
}
*p = reinterpret_cast<void*>(u);
return true;
}
SCOutput::SCOutput(JSContext* cx, JS::StructuredCloneScope scope)
: cx(cx), buf(scope) {}
bool SCOutput::write(uint64_t u) {
uint64_t v = NativeEndian::swapToLittleEndian(u);
if (!buf.AppendBytes(reinterpret_cast<char*>(&v), sizeof(u))) {
ReportOutOfMemory(context());
return false;
}
return true;
}
bool SCOutput::writePair(uint32_t tag, uint32_t data) {
// As it happens, the tag word appears after the data word in the output.
// This is because exponents occupy the last 2 bytes of doubles on the
// little-endian platforms we care most about.
//
// For example, TrueValue() is written using writePair(SCTAG_BOOLEAN, 1).
// PairToUInt64 produces the number 0xFFFF000200000001.
// That is written out as the bytes 01 00 00 00 02 00 FF FF.
return write(PairToUInt64(tag, data));
}
static inline double ReinterpretPairAsDouble(uint32_t tag, uint32_t data) {
return BitwiseCast<double>(PairToUInt64(tag, data));
}
bool SCOutput::writeDouble(double d) {
return write(BitwiseCast<uint64_t>(CanonicalizeNaN(d)));
}
template <class T>
bool SCOutput::writeArray(const T* p, size_t nelems) {
static_assert(8 % sizeof(T) == 0);
static_assert(sizeof(uint64_t) % sizeof(T) == 0);
if (nelems == 0) {
return true;
}
for (size_t i = 0; i < nelems; i++) {
T value = NativeEndian::swapToLittleEndian(p[i]);
if (!buf.AppendBytes(reinterpret_cast<char*>(&value), sizeof(value))) {
ReportOutOfMemory(context());
return false;
}
}
// Zero-pad to 8 bytes boundary.
size_t padbytes = ComputePadding(nelems, sizeof(T));
char zeroes[sizeof(uint64_t)] = {0};
if (!buf.AppendBytes(zeroes, padbytes)) {
ReportOutOfMemory(context());
return false;
}
return true;
}
template <>
bool SCOutput::writeArray<uint8_t>(const uint8_t* p, size_t nelems) {
if (nelems == 0) {
return true;
}
if (!buf.AppendBytes(reinterpret_cast<const char*>(p), nelems)) {
ReportOutOfMemory(context());
return false;
}
// zero-pad to 8 bytes boundary
size_t padbytes = ComputePadding(nelems, 1);
char zeroes[sizeof(uint64_t)] = {0};
if (!buf.AppendBytes(zeroes, padbytes)) {
ReportOutOfMemory(context());
return false;
}
return true;
}
bool SCOutput::writeBytes(const void* p, size_t nbytes) {
return writeArray((const uint8_t*)p, nbytes);
}
bool SCOutput::writeChars(const char16_t* p, size_t nchars) {
static_assert(sizeof(char16_t) == sizeof(uint16_t),
"required so that treating char16_t[] memory as uint16_t[] "
"memory is permissible");
return writeArray((const uint16_t*)p, nchars);
}
bool SCOutput::writeChars(const Latin1Char* p, size_t nchars) {
static_assert(sizeof(Latin1Char) == sizeof(uint8_t),
"Latin1Char must fit in 1 byte");
return writeBytes(p, nchars);
}
} // namespace js
JSStructuredCloneData::~JSStructuredCloneData() { discardTransferables(); }
// If the buffer contains Transferables, free them. Note that custom
// Transferables will use the JSStructuredCloneCallbacks::freeTransfer() to
// delete their transferables.
void JSStructuredCloneData::discardTransferables() {
if (!Size()) {
return;
}
if (ownTransferables_ != OwnTransferablePolicy::OwnsTransferablesIfAny) {
return;
}
// DifferentProcess clones cannot contain pointers, so nothing needs to be
// released.
if (scope() == JS::StructuredCloneScope::DifferentProcess) {
return;
}
FreeTransferStructuredCloneOp freeTransfer = nullptr;
if (callbacks_) {
freeTransfer = callbacks_->freeTransfer;
}
auto point = BufferIterator<uint64_t, SystemAllocPolicy>(*this);
if (point.done()) {
return; // Empty buffer
}
uint32_t tag, data;
MOZ_RELEASE_ASSERT(point.canPeek());
SCInput::getPair(point.peek(), &tag, &data);
MOZ_ALWAYS_TRUE(point.advance());
if (tag == SCTAG_HEADER) {
if (point.done()) {
return;
}
MOZ_RELEASE_ASSERT(point.canPeek());
SCInput::getPair(point.peek(), &tag, &data);
MOZ_ALWAYS_TRUE(point.advance());
}
if (tag != SCTAG_TRANSFER_MAP_HEADER) {
return;
}
if (TransferableMapHeader(data) == SCTAG_TM_TRANSFERRED) {
return;
}
// freeTransfer should not GC
JS::AutoSuppressGCAnalysis nogc;
if (point.done()) {
return;
}
MOZ_RELEASE_ASSERT(point.canPeek());
uint64_t numTransferables = NativeEndian::swapFromLittleEndian(point.peek());
MOZ_ALWAYS_TRUE(point.advance());
while (numTransferables--) {
if (!point.canPeek()) {
return;
}
uint32_t ownership;
SCInput::getPair(point.peek(), &tag, &ownership);
MOZ_ALWAYS_TRUE(point.advance());
MOZ_ASSERT(tag >= SCTAG_TRANSFER_MAP_PENDING_ENTRY);
if (!point.canPeek()) {
return;
}
void* content;
SCInput::getPtr(point.peek(), &content);
MOZ_ALWAYS_TRUE(point.advance());
if (!point.canPeek()) {
return;
}
uint64_t extraData = NativeEndian::swapFromLittleEndian(point.peek());
MOZ_ALWAYS_TRUE(point.advance());
if (ownership < JS::SCTAG_TMO_FIRST_OWNED) {
continue;
}
if (ownership == JS::SCTAG_TMO_ALLOC_DATA) {
js_free(content);
} else if (ownership == JS::SCTAG_TMO_MAPPED_DATA) {
JS::ReleaseMappedArrayBufferContents(content, extraData);
} else if (freeTransfer) {
freeTransfer(tag, JS::TransferableOwnership(ownership), content,
extraData, closure_);
} else {
MOZ_ASSERT(false, "unknown ownership");
}
}
}
static_assert(JSString::MAX_LENGTH < UINT32_MAX);
bool JSStructuredCloneWriter::parseTransferable() {
// NOTE: The transferables set is tested for non-emptiness at various
// junctures in structured cloning, so this set must be initialized
// by this method in all non-error cases.
MOZ_ASSERT(transferableObjects.empty(),
"parseTransferable called with stale data");
if (transferable.isNull() || transferable.isUndefined()) {
return true;
}
if (!transferable.isObject()) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
JSContext* cx = context();
RootedObject array(cx, &transferable.toObject());
bool isArray;
if (!JS::IsArrayObject(cx, array, &isArray)) {
return false;
}
if (!isArray) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
uint32_t length;
if (!JS::GetArrayLength(cx, array, &length)) {
return false;
}
// Initialize the set for the provided array's length.
if (!transferableObjects.reserve(length)) {
return false;
}
if (length == 0) {
return true;
}
RootedValue v(context());
RootedObject tObj(context());
for (uint32_t i = 0; i < length; ++i) {
if (!CheckForInterrupt(cx)) {
return false;
}
if (!JS_GetElement(cx, array, i, &v)) {
return false;
}
if (!v.isObject()) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
tObj = &v.toObject();
RootedObject unwrappedObj(cx, CheckedUnwrapStatic(tObj));
if (!unwrappedObj) {
ReportAccessDenied(cx);
return false;
}
// Shared memory cannot be transferred because it is not possible (nor
// desirable) to detach the memory in agents that already hold a
// reference to it.
if (unwrappedObj->is<SharedArrayBufferObject>()) {
return reportDataCloneError(JS_SCERR_SHMEM_TRANSFERABLE);
}
else if (unwrappedObj->is<WasmMemoryObject>()) {
if (unwrappedObj->as<WasmMemoryObject>().isShared()) {
return reportDataCloneError(JS_SCERR_SHMEM_TRANSFERABLE);
}
}
// External array buffers may be able to be transferred in the future,
// but that is not currently implemented.
else if (unwrappedObj->is<ArrayBufferObject>()) {
if (unwrappedObj->as<ArrayBufferObject>().isExternal()) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
}
else {
if (!out.buf.callbacks_ || !out.buf.callbacks_->canTransfer) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
JSAutoRealm ar(cx, unwrappedObj);
bool sameProcessScopeRequired = false;
if (!out.buf.callbacks_->canTransfer(
cx, unwrappedObj, &sameProcessScopeRequired, out.buf.closure_)) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
if (sameProcessScopeRequired) {
output().sameProcessScopeRequired();
}
}
// No duplicates allowed
if (std::find(transferableObjects.begin(), transferableObjects.end(),
tObj) != transferableObjects.end()) {
return reportDataCloneError(JS_SCERR_DUP_TRANSFERABLE);
}
if (!transferableObjects.append(tObj)) {
return false;
}
}
return true;
}
template <typename... Args>
bool JSStructuredCloneWriter::reportDataCloneError(uint32_t errorId,
Args&&... aArgs) {
ReportDataCloneError(context(), out.buf.callbacks_, errorId, out.buf.closure_,
std::forward<Args>(aArgs)...);
return false;
}
bool JSStructuredCloneWriter::writeString(uint32_t tag, JSString* str) {
JSLinearString* linear = str->ensureLinear(context());
if (!linear) {
return false;
}
#if FUZZING_JS_FUZZILLI
if (js::SupportDifferentialTesting()) {
// TODO we could always output a twoByteChar string
return true;
}
#endif
static_assert(JSString::MAX_LENGTH < (1 << 30),
"String length must fit in 30 bits");
// Try to share the underlying StringBuffer without copying the contents.
bool useBuffer = linear->hasStringBuffer() &&
output().scope() == JS::StructuredCloneScope::SameProcess;
uint32_t length = linear->length();
bool isLatin1 = linear->hasLatin1Chars();
uint32_t lengthAndBits =
length | (uint32_t(isLatin1) << 31) | (uint32_t(useBuffer) << 30);
if (!out.writePair(tag, lengthAndBits)) {
return false;
}
if (useBuffer) {
mozilla::StringBuffer* buffer = linear->stringBuffer();
if (!out.buf.stringBufferRefsHeld_.emplaceBack(buffer)) {
ReportOutOfMemory(context());
return false;
}
uintptr_t p = reinterpret_cast<uintptr_t>(buffer);
return out.writeBytes(&p, sizeof(p));
}
JS::AutoCheckCannotGC nogc;
return linear->hasLatin1Chars()
? out.writeChars(linear->latin1Chars(nogc), length)
: out.writeChars(linear->twoByteChars(nogc), length);
}
bool JSStructuredCloneWriter::writeBigInt(uint32_t tag, BigInt* bi) {
bool signBit = bi->isNegative();
size_t length = bi->digitLength();
// The length must fit in 31 bits to leave room for a sign bit.
if (length > size_t(INT32_MAX)) {
return false;
}
uint32_t lengthAndSign = length | (static_cast<uint32_t>(signBit) << 31);
if (!out.writePair(tag, lengthAndSign)) {
return false;
}
return out.writeArray(bi->digits().data(), length);
}
inline void JSStructuredCloneWriter::checkStack() {
#ifdef DEBUG
// To avoid making serialization O(n^2), limit stack-checking at 10.
const size_t MAX = 10;
size_t limit = std::min(counts.length(), MAX);
MOZ_ASSERT(objs.length() == counts.length());
size_t total = 0;
for (size_t i = 0; i < limit; i++) {
MOZ_ASSERT(total + counts[i] >= total);
total += counts[i];
}
if (counts.length() <= MAX) {
MOZ_ASSERT(total == objectEntries.length() + otherEntries.length());
} else {
MOZ_ASSERT(total <= objectEntries.length() + otherEntries.length());
}
size_t j = objs.length();
for (size_t i = 0; i < limit; i++) {
--j;
MOZ_ASSERT(memory.has(&objs[j].toObject()));
}
#endif
}
/*
* Write out a typed array. Note that post-v1 structured clone buffers do not
* perform endianness conversion on stored data, so multibyte typed arrays
* cannot be deserialized into a different endianness machine. Endianness
* conversion would prevent sharing ArrayBuffers: if you have Int8Array and
* Int16Array views of the same ArrayBuffer, should the data bytes be
* byte-swapped when writing or not? The Int8Array requires them to not be
* swapped; the Int16Array requires that they are.
*/
bool JSStructuredCloneWriter::writeTypedArray(HandleObject obj) {
Rooted<TypedArrayObject*> tarr(context(),
obj->maybeUnwrapAs<TypedArrayObject>());
JSAutoRealm ar(context(), tarr);
#ifdef FUZZING_JS_FUZZILLI
if (js::SupportDifferentialTesting() && !tarr->hasBuffer()) {
// fake oom because differential testing will fail
fprintf(stderr, "[unhandlable oom]");
_exit(-1);
return false;
}
#endif
if (!TypedArrayObject::ensureHasBuffer(context(), tarr)) {
return false;
}
if (!out.writePair(SCTAG_TYPED_ARRAY_OBJECT, uint32_t(tarr->type()))) {
return false;
}
mozilla::Maybe<size_t> nelems = tarr->length();
if (!nelems) {
return reportDataCloneError(JS_SCERR_TYPED_ARRAY_DETACHED);
}
// Auto-length TypedArrays are tagged by storing `-1` for the length. We still
// need to query the length to check for detached or out-of-bounds lengths.
bool isAutoLength = tarr->is<ResizableTypedArrayObject>() &&
tarr->as<ResizableTypedArrayObject>().isAutoLength();
uint64_t length = isAutoLength ? uint64_t(-1) : uint64_t(*nelems);
if (!out.write(length)) {
return false;
}
// Write out the ArrayBuffer tag and contents
RootedValue val(context(), tarr->bufferValue());
if (!startWrite(val)) {
return false;
}
uint64_t byteOffset = tarr->byteOffset().valueOr(0);
return out.write(byteOffset);
}
bool JSStructuredCloneWriter::writeDataView(HandleObject obj) {
Rooted<DataViewObject*> view(context(), obj->maybeUnwrapAs<DataViewObject>());
JSAutoRealm ar(context(), view);
if (!out.writePair(SCTAG_DATA_VIEW_OBJECT, 0)) {
return false;
}
mozilla::Maybe<size_t> byteLength = view->byteLength();
if (!byteLength) {
return reportDataCloneError(JS_SCERR_TYPED_ARRAY_DETACHED);
}
// Auto-length DataViews are tagged by storing `-1` for the length. We still
// need to query the length to check for detached or out-of-bounds lengths.
bool isAutoLength = view->is<ResizableDataViewObject>() &&
view->as<ResizableDataViewObject>().isAutoLength();
uint64_t length = isAutoLength ? uint64_t(-1) : uint64_t(*byteLength);
if (!out.write(length)) {
return false;
}
// Write out the ArrayBuffer tag and contents
RootedValue val(context(), view->bufferValue());
if (!startWrite(val)) {
return false;
}
uint64_t byteOffset = view->byteOffset().valueOr(0);
return out.write(byteOffset);
}
bool JSStructuredCloneWriter::writeArrayBuffer(HandleObject obj) {
Rooted<ArrayBufferObject*> buffer(context(),
obj->maybeUnwrapAs<ArrayBufferObject>());
JSAutoRealm ar(context(), buffer);
StructuredDataType type = !buffer->isResizable()
? SCTAG_ARRAY_BUFFER_OBJECT
: SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT;
if (!out.writePair(type, 0)) {
return false;
}
uint64_t byteLength = buffer->byteLength();
if (!out.write(byteLength)) {
return false;
}
if (buffer->isResizable()) {
uint64_t maxByteLength =
buffer->as<ResizableArrayBufferObject>().maxByteLength();
if (!out.write(maxByteLength)) {
return false;
}
}
return out.writeBytes(buffer->dataPointer(), byteLength);
}
bool JSStructuredCloneWriter::writeSharedArrayBuffer(HandleObject obj) {
MOZ_ASSERT(obj->canUnwrapAs<SharedArrayBufferObject>());
if (!cloneDataPolicy.areSharedMemoryObjectsAllowed()) {
auto error = context()->realm()->creationOptions().getCoopAndCoepEnabled()
? JS_SCERR_NOT_CLONABLE_WITH_COOP_COEP
: JS_SCERR_NOT_CLONABLE;
reportDataCloneError(error, "SharedArrayBuffer");
return false;
}
output().sameProcessScopeRequired();
// We must not transmit SAB pointers (including for WebAssembly.Memory)
// cross-process. The cloneDataPolicy should have guarded against this;
// since it did not then throw, with a very explicit message.
if (output().scope() > JS::StructuredCloneScope::SameProcess) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_SHMEM_POLICY);
return false;
}
Rooted<SharedArrayBufferObject*> sharedArrayBuffer(
context(), obj->maybeUnwrapAs<SharedArrayBufferObject>());
SharedArrayRawBuffer* rawbuf = sharedArrayBuffer->rawBufferObject();
if (!out.buf.refsHeld_.acquire(context(), rawbuf)) {
return false;
}
// We must serialize the length so that the buffer object arrives in the
// receiver with the same length, and not with the length read from the
// rawbuf - that length can be different, and it can change at any time.
StructuredDataType type = !sharedArrayBuffer->isGrowable()
? SCTAG_SHARED_ARRAY_BUFFER_OBJECT
: SCTAG_GROWABLE_SHARED_ARRAY_BUFFER_OBJECT;
intptr_t p = reinterpret_cast<intptr_t>(rawbuf);
uint64_t byteLength = sharedArrayBuffer->byteLengthOrMaxByteLength();
if (!(out.writePair(type, /* unused data word */ 0) &&
out.writeBytes(&byteLength, sizeof(byteLength)) &&
out.writeBytes(&p, sizeof(p)))) {
return false;
}
if (callbacks && callbacks->sabCloned &&
!callbacks->sabCloned(context(), /*receiving=*/false, closure)) {
return false;
}
return true;
}
bool JSStructuredCloneWriter::writeSharedWasmMemory(HandleObject obj) {
MOZ_ASSERT(obj->canUnwrapAs<WasmMemoryObject>());
// Check the policy here so that we can report a sane error.
if (!cloneDataPolicy.areSharedMemoryObjectsAllowed()) {
auto error = context()->realm()->creationOptions().getCoopAndCoepEnabled()
? JS_SCERR_NOT_CLONABLE_WITH_COOP_COEP
: JS_SCERR_NOT_CLONABLE;
reportDataCloneError(error, "WebAssembly.Memory");
return false;
}
// If this changes, might need to change what we write.
MOZ_ASSERT(WasmMemoryObject::RESERVED_SLOTS == 3);
Rooted<WasmMemoryObject*> memoryObj(context(),
&obj->unwrapAs<WasmMemoryObject>());
Rooted<SharedArrayBufferObject*> sab(
context(), &memoryObj->buffer().as<SharedArrayBufferObject>());
return out.writePair(SCTAG_SHARED_WASM_MEMORY_OBJECT, 0) &&
out.writePair(SCTAG_BOOLEAN, memoryObj->isHuge()) &&
writeSharedArrayBuffer(sab);
}
bool JSStructuredCloneWriter::startObject(HandleObject obj, bool* backref) {
// Handle cycles in the object graph.
CloneMemory::AddPtr p = memory.lookupForAdd(obj);
if ((*backref = p.found())) {
return out.writePair(SCTAG_BACK_REFERENCE_OBJECT, p->value());
}
if (!memory.add(p, obj, memory.count())) {
ReportOutOfMemory(context());
return false;
}
if (memory.count() == UINT32_MAX) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_NEED_DIET, "object graph to serialize");
return false;
}
return true;
}
static bool TryAppendNativeProperties(JSContext* cx, HandleObject obj,
MutableHandleIdVector entries,
size_t* properties, bool* optimized) {
*optimized = false;
if (!obj->is<NativeObject>()) {
return true;
}
Handle<NativeObject*> nobj = obj.as<NativeObject>();
if (nobj->isIndexed() || nobj->is<TypedArrayObject>() ||
nobj->getClass()->getNewEnumerate() || nobj->getClass()->getEnumerate()) {
return true;
}
*optimized = true;
size_t count = 0;
// We iterate from the last to the first property, so the property names
// are already in reverse order.
for (ShapePropertyIter<NoGC> iter(nobj->shape()); !iter.done(); iter++) {
jsid id = iter->key();
// Ignore symbols and non-enumerable properties.
if (!iter->enumerable() || id.isSymbol()) {
continue;
}
MOZ_ASSERT(id.isString());
if (!entries.append(id)) {
return false;
}
count++;
}
// Add dense element ids in reverse order.
for (uint32_t i = nobj->getDenseInitializedLength(); i > 0; --i) {
if (nobj->getDenseElement(i - 1).isMagic(JS_ELEMENTS_HOLE)) {
continue;
}
if (!entries.append(PropertyKey::Int(i - 1))) {
return false;
}
count++;
}
*properties = count;
return true;
}
// Objects are written as a "preorder" traversal of the object graph: object
// "headers" (the class tag and any data needed for initial construction) are
// visited first, then the children are recursed through (where children are
// properties, Set or Map entries, etc.). So for example
//
// obj1 = { key1: { key1.1: val1.1, key1.2: val1.2 }, key2: {} }
//
// would be stored as:
//
// <Object tag for obj1>
// <key1 data>
// <Object tag for key1's value>
// <key1.1 data>
// <val1.1 data>
// <key1.2 data>
// <val1.2 data>
// <end-of-children marker for key1's value>
// <key2 data>
// <Object tag for key2's value>
// <end-of-children marker for key2's value>
// <end-of-children marker for obj1>
//
// This nests nicely (ie, an entire recursive value starts with its tag and
// ends with its end-of-children marker) and so it can be presented indented.
// But see traverseMap below for how this looks different for Maps.
bool JSStructuredCloneWriter::traverseObject(HandleObject obj, ESClass cls) {
size_t count;
bool optimized = false;
if (!js::SupportDifferentialTesting()) {
if (!TryAppendNativeProperties(context(), obj, &objectEntries, &count,
&optimized)) {
return false;
}
}
if (!optimized) {
// Get enumerable property ids and put them in reverse order so that they
// will come off the stack in forward order.
RootedIdVector properties(context());
if (!GetPropertyKeys(context(), obj, JSITER_OWNONLY, &properties)) {
return false;
}
for (size_t i = properties.length(); i > 0; --i) {
jsid id = properties[i - 1];
MOZ_ASSERT(id.isString() || id.isInt());
if (!objectEntries.append(id)) {
return false;
}
}
count = properties.length();
}
// Push obj and count to the stack.
if (!objs.append(ObjectValue(*obj)) || !counts.append(count)) {
return false;
}
checkStack();
#if DEBUG
ESClass cls2;
if (!GetBuiltinClass(context(), obj, &cls2)) {
return false;
}
MOZ_ASSERT(cls2 == cls);
#endif
// Write the header for obj.
if (cls == ESClass::Array) {
uint32_t length = 0;
if (!JS::GetArrayLength(context(), obj, &length)) {
return false;
}
return out.writePair(SCTAG_ARRAY_OBJECT,
NativeEndian::swapToLittleEndian(length));
}
return out.writePair(SCTAG_OBJECT_OBJECT, 0);
}
// Use the same basic setup as for traverseObject, but now keys can themselves
// be complex objects. Keys and values are visited first via startWrite(), then
// the key's children (if any) are handled, then the value's children.
//
// m = new Map();
// m.set(key1 = ..., value1 = ...)
//
// where key1 and value2 are both objects would be stored as
//
// <Map tag>
// <key1 class tag>
// <value1 class tag>
// ...key1 fields...
// <end-of-children marker for key1>
// ...value1 fields...
// <end-of-children marker for value1>
// <end-of-children marker for Map>
//
// Notice how the end-of-children marker for key1 is sandwiched between the
// value1 beginning and end.
bool JSStructuredCloneWriter::traverseMap(HandleObject obj) {
Rooted<GCVector<Value>> newEntries(context(), GCVector<Value>(context()));
{
// If there is no wrapper, the compartment munging is a no-op.
Rooted<MapObject*> unwrapped(context(), obj->maybeUnwrapAs<MapObject>());
MOZ_ASSERT(unwrapped);
JSAutoRealm ar(context(), unwrapped);
if (!unwrapped->getKeysAndValuesInterleaved(&newEntries)) {
return false;
}
}
if (!context()->compartment()->wrap(context(), &newEntries)) {
return false;
}
for (size_t i = newEntries.length(); i > 0; --i) {
if (!otherEntries.append(newEntries[i - 1])) {
return false;
}
}
// Push obj and count to the stack.
if (!objs.append(ObjectValue(*obj)) || !counts.append(newEntries.length())) {
return false;
}
checkStack();
// Write the header for obj.
return out.writePair(SCTAG_MAP_OBJECT, 0);
}
// Similar to traverseMap, only there is a single value instead of a key and
// value, and thus no interleaving is possible: a value will be fully emitted
// before the next value is begun.
bool JSStructuredCloneWriter::traverseSet(HandleObject obj) {
Rooted<GCVector<Value>> keys(context(), GCVector<Value>(context()));
{
// If there is no wrapper, the compartment munging is a no-op.
Rooted<SetObject*> unwrapped(context(), obj->maybeUnwrapAs<SetObject>());
MOZ_ASSERT(unwrapped);
JSAutoRealm ar(context(), unwrapped);
if (!unwrapped->keys(&keys)) {
return false;
}
}
if (!context()->compartment()->wrap(context(), &keys)) {
return false;
}
for (size_t i = keys.length(); i > 0; --i) {
if (!otherEntries.append(keys[i - 1])) {
return false;
}
}
// Push obj and count to the stack.
if (!objs.append(ObjectValue(*obj)) || !counts.append(keys.length())) {
return false;
}
checkStack();
// Write the header for obj.
return out.writePair(SCTAG_SET_OBJECT, 0);
}
bool JSStructuredCloneWriter::traverseSavedFrame(HandleObject obj) {
Rooted<SavedFrame*> savedFrame(context(), obj->maybeUnwrapAs<SavedFrame>());
MOZ_ASSERT(savedFrame);
RootedObject parent(context(), savedFrame->getParent());
if (!context()->compartment()->wrap(context(), &parent)) {
return false;
}
if (!objs.append(ObjectValue(*obj)) ||
!otherEntries.append(parent ? ObjectValue(*parent) : NullValue()) ||
!counts.append(1)) {
return false;
}
checkStack();
// Write the SavedFrame tag and the SavedFrame's principals.
if (savedFrame->getPrincipals() ==
&ReconstructedSavedFramePrincipals::IsSystem) {
if (!out.writePair(SCTAG_SAVED_FRAME_OBJECT,
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_SYSTEM)) {
return false;
};
} else if (savedFrame->getPrincipals() ==
&ReconstructedSavedFramePrincipals::IsNotSystem) {
if (!out.writePair(
SCTAG_SAVED_FRAME_OBJECT,
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_NOT_SYSTEM)) {
return false;
}
} else {
if (auto principals = savedFrame->getPrincipals()) {
if (!out.writePair(SCTAG_SAVED_FRAME_OBJECT, SCTAG_JSPRINCIPALS) ||
!principals->write(context(), this)) {
return false;
}
} else {
if (!out.writePair(SCTAG_SAVED_FRAME_OBJECT, SCTAG_NULL_JSPRINCIPALS)) {
return false;
}
}
}
// Write the SavedFrame's reserved slots, except for the parent, which is
// queued on objs for further traversal.
RootedValue val(context());
val = BooleanValue(savedFrame->getMutedErrors());
if (!writePrimitive(val)) {
return false;
}
context()->markAtom(savedFrame->getSource());
val = StringValue(savedFrame->getSource());
if (!writePrimitive(val)) {
return false;
}
val = NumberValue(savedFrame->getLine());
if (!writePrimitive(val)) {
return false;
}
val = NumberValue(*savedFrame->getColumn().addressOfValueForTranscode());
if (!writePrimitive(val)) {
return false;
}
auto name = savedFrame->getFunctionDisplayName();
if (name) {
context()->markAtom(name);
}
val = name ? StringValue(name) : NullValue();
if (!writePrimitive(val)) {
return false;
}
auto cause = savedFrame->getAsyncCause();
if (cause) {
context()->markAtom(cause);
}
val = cause ? StringValue(cause) : NullValue();
if (!writePrimitive(val)) {
return false;
}
return true;
}
// 2.7.3 StructuredSerializeInternal ( value, forStorage [ , memory ] )
//
// Step 17. Otherwise, if value has an [[ErrorData]] internal slot and
// value is not a platform object, then:
//
// Note: This contains custom extensions for handling non-standard properties.
bool JSStructuredCloneWriter::traverseError(HandleObject obj) {
JSContext* cx = context();
// 1. Let name be ? Get(value, "name").
RootedValue name(cx);
if (!GetProperty(cx, obj, obj, cx->names().name, &name)) {
return false;
}
// 2. If name is not one of "Error", "EvalError", "RangeError",
// "ReferenceError", "SyntaxError", "TypeError", or "URIError",
// (not yet specified: or "AggregateError")
// then set name to "Error".
JSExnType type = JSEXN_ERR;
if (name.isString()) {
JSLinearString* linear = name.toString()->ensureLinear(cx);
if (!linear) {
return false;
}
if (EqualStrings(linear, cx->names().Error)) {
type = JSEXN_ERR;
} else if (EqualStrings(linear, cx->names().EvalError)) {
type = JSEXN_EVALERR;
} else if (EqualStrings(linear, cx->names().RangeError)) {
type = JSEXN_RANGEERR;
} else if (EqualStrings(linear, cx->names().ReferenceError)) {
type = JSEXN_REFERENCEERR;
} else if (EqualStrings(linear, cx->names().SyntaxError)) {
type = JSEXN_SYNTAXERR;
} else if (EqualStrings(linear, cx->names().TypeError)) {
type = JSEXN_TYPEERR;
} else if (EqualStrings(linear, cx->names().URIError)) {
type = JSEXN_URIERR;
} else if (EqualStrings(linear, cx->names().AggregateError)) {
type = JSEXN_AGGREGATEERR;
}
}
// 3. Let valueMessageDesc be ? value.[[GetOwnProperty]]("message").
RootedId messageId(cx, NameToId(cx->names().message));
Rooted<Maybe<PropertyDescriptor>> messageDesc(cx);
if (!GetOwnPropertyDescriptor(cx, obj, messageId, &messageDesc)) {
return false;
}
// 4. Let message be undefined if IsDataDescriptor(valueMessageDesc) is false,
// and ? ToString(valueMessageDesc.[[Value]]) otherwise.
RootedString message(cx);
if (messageDesc.isSome() && messageDesc->isDataDescriptor()) {
RootedValue messageVal(cx, messageDesc->value());
message = ToString<CanGC>(cx, messageVal);
if (!message) {
return false;
}
}
// 5. Set serialized to { [[Type]]: "Error", [[Name]]: name, [[Message]]:
// message }.
if (!objs.append(ObjectValue(*obj))) {
return false;
}
Rooted<ErrorObject*> unwrapped(cx, obj->maybeUnwrapAs<ErrorObject>());
MOZ_ASSERT(unwrapped);
// Non-standard: Serialize |stack|.
// The Error stack property is saved as SavedFrames.
RootedValue stack(cx, NullValue());
RootedObject stackObj(cx, unwrapped->stack());
if (stackObj) {
MOZ_ASSERT(stackObj->canUnwrapAs<SavedFrame>());
stack.setObject(*stackObj);
if (!cx->compartment()->wrap(cx, &stack)) {
return false;
}
}
if (!otherEntries.append(stack)) {
return false;
}
// Serialize |errors|
if (type == JSEXN_AGGREGATEERR) {
RootedValue errors(cx);
if (!GetProperty(cx, obj, obj, cx->names().errors, &errors)) {
return false;
}
if (!otherEntries.append(errors)) {
return false;
}
} else {
if (!otherEntries.append(NullValue())) {
return false;
}
}
// Non-standard: Serialize |cause|. Because this property
// might be missing we also write "hasCause" later.
RootedId causeId(cx, NameToId(cx->names().cause));
Rooted<Maybe<PropertyDescriptor>> causeDesc(cx);
if (!GetOwnPropertyDescriptor(cx, obj, causeId, &causeDesc)) {
return false;
}
Rooted<Maybe<Value>> cause(cx);
if (causeDesc.isSome() && causeDesc->isDataDescriptor()) {
cause = mozilla::Some(causeDesc->value());
}
if (!cx->compartment()->wrap(cx, &cause)) {
return false;
}
if (!otherEntries.append(cause.get().valueOr(NullValue()))) {
return false;
}
// |cause| + |errors| + |stack|, pushed in reverse order
if (!counts.append(3)) {
return false;
}
checkStack();
if (!out.writePair(SCTAG_ERROR_OBJECT, type)) {
return false;
}
RootedValue val(cx, message ? StringValue(message) : NullValue());
if (!writePrimitive(val)) {
return false;
}
// hasCause
val = BooleanValue(cause.isSome());
if (!writePrimitive(val)) {
return false;
}
// Non-standard: Also serialize fileName, lineNumber and columnNumber.
{
JSAutoRealm ar(cx, unwrapped);
val = StringValue(unwrapped->fileName(cx));
}
if (!cx->compartment()->wrap(cx, &val) || !writePrimitive(val)) {
return false;
}
val = Int32Value(unwrapped->lineNumber());
if (!writePrimitive(val)) {
return false;
}
val = Int32Value(*unwrapped->columnNumber().addressOfValueForTranscode());
return writePrimitive(val);
}
bool JSStructuredCloneWriter::writePrimitive(HandleValue v) {
MOZ_ASSERT(v.isPrimitive());
context()->check(v);
if (v.isString()) {
return writeString(SCTAG_STRING, v.toString());
} else if (v.isInt32()) {
if (js::SupportDifferentialTesting()) {
return out.writeDouble(v.toInt32());
}
return out.writePair(SCTAG_INT32, v.toInt32());
} else if (v.isDouble()) {
return out.writeDouble(v.toDouble());
} else if (v.isBoolean()) {
return out.writePair(SCTAG_BOOLEAN, v.toBoolean());
} else if (v.isNull()) {
return out.writePair(SCTAG_NULL, 0);
} else if (v.isUndefined()) {
return out.writePair(SCTAG_UNDEFINED, 0);
} else if (v.isBigInt()) {
return writeBigInt(SCTAG_BIGINT, v.toBigInt());
}
return reportDataCloneError(JS_SCERR_UNSUPPORTED_TYPE);
}
bool JSStructuredCloneWriter::startWrite(HandleValue v) {
context()->check(v);
if (v.isPrimitive()) {
return writePrimitive(v);
}
if (!v.isObject()) {
return reportDataCloneError(JS_SCERR_UNSUPPORTED_TYPE);
}
RootedObject obj(context(), &v.toObject());
bool backref;
if (!startObject(obj, &backref)) {
return false;
}
if (backref) {
return true;
}
ESClass cls;
if (!GetBuiltinClass(context(), obj, &cls)) {
return false;
}
switch (cls) {
case ESClass::Object:
case ESClass::Array:
return traverseObject(obj, cls);
case ESClass::Number: {
RootedValue unboxed(context());
if (!Unbox(context(), obj, &unboxed)) {
return false;
}
return out.writePair(SCTAG_NUMBER_OBJECT, 0) &&
out.writeDouble(unboxed.toNumber());
}
case ESClass::String: {
RootedValue unboxed(context());
if (!Unbox(context(), obj, &unboxed)) {
return false;
}
return writeString(SCTAG_STRING_OBJECT, unboxed.toString());
}
case ESClass::Boolean: {
RootedValue unboxed(context());
if (!Unbox(context(), obj, &unboxed)) {
return false;
}
return out.writePair(SCTAG_BOOLEAN_OBJECT, unboxed.toBoolean());
}
case ESClass::RegExp: {
RegExpShared* re = RegExpToShared(context(), obj);
if (!re) {
return false;
}
return out.writePair(SCTAG_REGEXP_OBJECT, re->getFlags().value()) &&
writeString(SCTAG_STRING, re->getSource());
}
case ESClass::ArrayBuffer: {
if (JS::IsArrayBufferObject(obj) && JS::ArrayBufferHasData(obj)) {
return writeArrayBuffer(obj);
}
break;
}
case ESClass::SharedArrayBuffer:
if (JS::IsSharedArrayBufferObject(obj)) {
return writeSharedArrayBuffer(obj);
}
break;
case ESClass::Date: {
RootedValue unboxed(context());
if (!Unbox(context(), obj, &unboxed)) {
return false;
}
return out.writePair(SCTAG_DATE_OBJECT, 0) &&
out.writeDouble(unboxed.toNumber());
}
case ESClass::Set:
return traverseSet(obj);
case ESClass::Map:
return traverseMap(obj);
case ESClass::Error:
return traverseError(obj);
case ESClass::BigInt: {
RootedValue unboxed(context());
if (!Unbox(context(), obj, &unboxed)) {
return false;
}
return writeBigInt(SCTAG_BIGINT_OBJECT, unboxed.toBigInt());
}
case ESClass::Promise:
case ESClass::MapIterator:
case ESClass::SetIterator:
case ESClass::Arguments:
case ESClass::Function:
break;
#ifdef ENABLE_RECORD_TUPLE
case ESClass::Record:
case ESClass::Tuple:
MOZ_CRASH("Record and Tuple are not supported");
#endif
case ESClass::Other: {
if (obj->canUnwrapAs<TypedArrayObject>()) {
return writeTypedArray(obj);
}
if (obj->canUnwrapAs<DataViewObject>()) {
return writeDataView(obj);
}
if (wasm::IsSharedWasmMemoryObject(obj)) {
return writeSharedWasmMemory(obj);
}
if (obj->canUnwrapAs<SavedFrame>()) {
return traverseSavedFrame(obj);
}
break;
}
}
if (out.buf.callbacks_ && out.buf.callbacks_->write) {
bool sameProcessScopeRequired = false;
if (!out.buf.callbacks_->write(context(), this, obj,
&sameProcessScopeRequired,
out.buf.closure_)) {
return false;
}
if (sameProcessScopeRequired) {
output().sameProcessScopeRequired();
}
return true;
}
return reportDataCloneError(JS_SCERR_UNSUPPORTED_TYPE);
}
bool JSStructuredCloneWriter::writeHeader() {
return out.writePair(SCTAG_HEADER, (uint32_t)output().scope());
}
bool JSStructuredCloneWriter::writeTransferMap() {
if (transferableObjects.empty()) {
return true;
}
if (!out.writePair(SCTAG_TRANSFER_MAP_HEADER, (uint32_t)SCTAG_TM_UNREAD)) {
return false;
}
if (!out.write(transferableObjects.length())) {
return false;
}
RootedObject obj(context());
for (auto* o : transferableObjects) {
obj = o;
if (!memory.put(obj, memory.count())) {
ReportOutOfMemory(context());
return false;
}
// Emit a placeholder pointer. We defer stealing the data until later
// (and, if necessary, detaching this object if it's an ArrayBuffer).
if (!out.writePair(SCTAG_TRANSFER_MAP_PENDING_ENTRY,
JS::SCTAG_TMO_UNFILLED)) {
return false;
}
if (!out.write(0)) { // Pointer to ArrayBuffer contents.
return false;
}
if (!out.write(0)) { // extraData
return false;
}
}
return true;
}
bool JSStructuredCloneWriter::transferOwnership() {
if (transferableObjects.empty()) {
return true;
}
// Walk along the transferables and the transfer map at the same time,
// grabbing out pointers from the transferables and stuffing them into the
// transfer map.
auto point = out.iter();
MOZ_RELEASE_ASSERT(point.canPeek());
MOZ_ASSERT(uint32_t(NativeEndian::swapFromLittleEndian(point.peek()) >> 32) ==
SCTAG_HEADER);
point++;
MOZ_RELEASE_ASSERT(point.canPeek());
MOZ_ASSERT(uint32_t(NativeEndian::swapFromLittleEndian(point.peek()) >> 32) ==
SCTAG_TRANSFER_MAP_HEADER);
point++;
MOZ_RELEASE_ASSERT(point.canPeek());
MOZ_ASSERT(NativeEndian::swapFromLittleEndian(point.peek()) ==
transferableObjects.length());
point++;
JSContext* cx = context();
RootedObject obj(cx);
JS::StructuredCloneScope scope = output().scope();
for (auto* o : transferableObjects) {
obj = o;
uint32_t tag;
JS::TransferableOwnership ownership;
void* content;
uint64_t extraData;
#if DEBUG
SCInput::getPair(point.peek(), &tag, (uint32_t*)&ownership);
MOZ_ASSERT(tag == SCTAG_TRANSFER_MAP_PENDING_ENTRY);
MOZ_ASSERT(ownership == JS::SCTAG_TMO_UNFILLED);
#endif
ESClass cls;
if (!GetBuiltinClass(cx, obj, &cls)) {
return false;
}
if (cls == ESClass::ArrayBuffer) {
tag = SCTAG_TRANSFER_MAP_ARRAY_BUFFER;
// The current setup of the array buffer inheritance hierarchy doesn't
// lend itself well to generic manipulation via proxies.
Rooted<ArrayBufferObject*> arrayBuffer(
cx, obj->maybeUnwrapAs<ArrayBufferObject>());
JSAutoRealm ar(cx, arrayBuffer);
if (arrayBuffer->isDetached()) {
reportDataCloneError(JS_SCERR_TYPED_ARRAY_DETACHED);
return false;
}
if (arrayBuffer->isPreparedForAsmJS()) {
reportDataCloneError(JS_SCERR_WASM_NO_TRANSFER);
return false;
}
if (scope == JS::StructuredCloneScope::DifferentProcess ||
scope == JS::StructuredCloneScope::DifferentProcessForIndexedDB ||
arrayBuffer->isResizable()) {
// Write Transferred ArrayBuffers in DifferentProcess scope at
// the end of the clone buffer, and store the offset within the
// buffer to where the ArrayBuffer was written. Note that this
// will invalidate the current position iterator.
//
// Resizable ArrayBuffers need to store two extra data, the byte length
// and the maximum byte length, but the current transferables format
// supports only a single additional datum. Therefore resizable buffers
// currently go through this slower code path.
size_t pointOffset = out.offset(point);
tag = SCTAG_TRANSFER_MAP_STORED_ARRAY_BUFFER;
ownership = JS::SCTAG_TMO_UNOWNED;
content = nullptr;
extraData = out.tell() -
pointOffset; // Offset from tag to current end of buffer
if (!writeArrayBuffer(arrayBuffer)) {
ReportOutOfMemory(cx);
return false;
}
// Must refresh the point iterator after its collection has
// been modified.
point = out.iter();
point += pointOffset;
if (!JS::DetachArrayBuffer(cx, arrayBuffer)) {
return false;
}
} else {
size_t nbytes = arrayBuffer->byteLength();
using BufferContents = ArrayBufferObject::BufferContents;
BufferContents bufContents =
ArrayBufferObject::extractStructuredCloneContents(cx, arrayBuffer);
if (!bufContents) {
return false; // out of memory
}
content = bufContents.data();
if (bufContents.kind() == ArrayBufferObject::MAPPED) {
ownership = JS::SCTAG_TMO_MAPPED_DATA;
} else {
MOZ_ASSERT(
bufContents.kind() ==
ArrayBufferObject::MALLOCED_ARRAYBUFFER_CONTENTS_ARENA ||
bufContents.kind() ==
ArrayBufferObject::MALLOCED_UNKNOWN_ARENA,
"failing to handle new ArrayBuffer kind?");
ownership = JS::SCTAG_TMO_ALLOC_DATA;
}
extraData = nbytes;
}
} else {
if (!out.buf.callbacks_ || !out.buf.callbacks_->writeTransfer) {
return reportDataCloneError(JS_SCERR_TRANSFERABLE);
}
if (!out.buf.callbacks_->writeTransfer(cx, obj, out.buf.closure_, &tag,
&ownership, &content,
&extraData)) {
return false;
}
MOZ_ASSERT(tag > SCTAG_TRANSFER_MAP_PENDING_ENTRY);
}
point.write(NativeEndian::swapToLittleEndian(PairToUInt64(tag, ownership)));
MOZ_ALWAYS_TRUE(point.advance());
point.write(
NativeEndian::swapToLittleEndian(reinterpret_cast<uint64_t>(content)));
MOZ_ALWAYS_TRUE(point.advance());
point.write(NativeEndian::swapToLittleEndian(extraData));
MOZ_ALWAYS_TRUE(point.advance());
}
#if DEBUG
// Make sure there aren't any more transfer map entries after the expected
// number we read out.
if (!point.done()) {
uint32_t tag, data;
SCInput::getPair(point.peek(), &tag, &data);
MOZ_ASSERT(tag < SCTAG_TRANSFER_MAP_HEADER ||
tag >= SCTAG_TRANSFER_MAP_END_OF_BUILTIN_TYPES);
}
#endif
return true;
}
bool JSStructuredCloneWriter::write(HandleValue v) {
if (!startWrite(v)) {
return false;
}
RootedObject obj(context());
RootedValue key(context());
RootedValue val(context());
RootedId id(context());
RootedValue cause(context());
RootedValue errors(context());
RootedValue stack(context());
while (!counts.empty()) {
obj = &objs.back().toObject();
context()->check(obj);
if (counts.back()) {
counts.back()--;
ESClass cls;
if (!GetBuiltinClass(context(), obj, &cls)) {
return false;
}
if (cls == ESClass::Map) {
key = otherEntries.popCopy();
checkStack();
counts.back()--;
val = otherEntries.popCopy();
checkStack();
if (!startWrite(key) || !startWrite(val)) {
return false;
}
} else if (cls == ESClass::Set || obj->canUnwrapAs<SavedFrame>()) {
key = otherEntries.popCopy();
checkStack();
if (!startWrite(key)) {
return false;
}
} else if (cls == ESClass::Error) {
cause = otherEntries.popCopy();
checkStack();
counts.back()--;
errors = otherEntries.popCopy();
checkStack();
counts.back()--;
stack = otherEntries.popCopy();
checkStack();
if (!startWrite(cause) || !startWrite(errors) || !startWrite(stack)) {
return false;
}
} else {
id = objectEntries.popCopy();
key = IdToValue(id);
checkStack();
// If obj still has an own property named id, write it out.
bool found;
if (GetOwnPropertyPure(context(), obj, id, val.address(), &found)) {
if (found) {
if (!writePrimitive(key) || !startWrite(val)) {
return false;
}
}
continue;
}
if (!HasOwnProperty(context(), obj, id, &found)) {
return false;
}
if (found) {
#if FUZZING_JS_FUZZILLI
// supress calls into user code
if (js::SupportDifferentialTesting()) {
fprintf(stderr, "Differential testing: cannot call GetProperty\n");
return false;
}
#endif
if (!writePrimitive(key) ||
!GetProperty(context(), obj, obj, id, &val) || !startWrite(val)) {
return false;
}
}
}
} else {
if (!out.writePair(SCTAG_END_OF_KEYS, 0)) {
return false;
}
objs.popBack();
counts.popBack();
}
}
memory.clear();
return transferOwnership();
}
JSStructuredCloneReader::JSStructuredCloneReader(
SCInput& in, JS::StructuredCloneScope scope,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* cb, void* cbClosure)
: in(in),
allowedScope(scope),
cloneDataPolicy(cloneDataPolicy),
objs(in.context()),
objState(in.context(), in.context()),
allObjs(in.context()),
numItemsRead(0),
callbacks(cb),
closure(cbClosure),
gcHeap(in.context()) {
// Avoid the need to bounds check by keeping a never-matching element at the
// base of the `objState` stack. This append() will always succeed because
// the objState vector has a nonzero MinInlineCapacity.
MOZ_ALWAYS_TRUE(objState.append(std::make_pair(nullptr, true)));
}
template <typename CharT>
JSString* JSStructuredCloneReader::readStringImpl(
uint32_t nchars, ShouldAtomizeStrings atomize) {
InlineCharBuffer<CharT> chars;
if (!chars.maybeAlloc(context(), nchars) ||
!in.readChars(chars.get(), nchars)) {
return nullptr;
}
if (atomize) {
return chars.toAtom(context(), nchars);
}
return chars.toStringDontDeflate(context(), nchars, gcHeap);
}
JSString* JSStructuredCloneReader::readString(uint32_t data,
ShouldAtomizeStrings atomize) {
uint32_t nchars = data & BitMask(30);
bool latin1 = data & (1 << 31);
bool hasBuffer = data & (1 << 30);
if (nchars > JSString::MAX_LENGTH) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "string length");
return nullptr;
}
if (hasBuffer) {
if (allowedScope > JS::StructuredCloneScope::SameProcess) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid scope for string buffer");
return nullptr;
}
uintptr_t p;
if (!in.readBytes(&p, sizeof(p))) {
in.reportTruncated();
return nullptr;
}
RefPtr<mozilla::StringBuffer> buffer(
reinterpret_cast<mozilla::StringBuffer*>(p));
JSContext* cx = context();
if (atomize) {
if (latin1) {
return AtomizeChars(cx, static_cast<Latin1Char*>(buffer->Data()),
nchars);
}
return AtomizeChars(cx, static_cast<char16_t*>(buffer->Data()), nchars);
}
if (latin1) {
Rooted<JSString::OwnedChars<Latin1Char>> owned(cx, std::move(buffer),
nchars);
return JSLinearString::newValidLength<CanGC, Latin1Char>(cx, &owned,
gcHeap);
}
Rooted<JSString::OwnedChars<char16_t>> owned(cx, std::move(buffer), nchars);
return JSLinearString::newValidLength<CanGC, char16_t>(cx, &owned, gcHeap);
}
return latin1 ? readStringImpl<Latin1Char>(nchars, atomize)
: readStringImpl<char16_t>(nchars, atomize);
}
[[nodiscard]] bool JSStructuredCloneReader::readUint32(uint32_t* num) {
Rooted<Value> lineVal(context());
if (!startRead(&lineVal)) {
return false;
}
if (!lineVal.isInt32()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "integer required");
return false;
}
*num = uint32_t(lineVal.toInt32());
return true;
}
BigInt* JSStructuredCloneReader::readBigInt(uint32_t data) {
size_t length = data & BitMask(31);
bool isNegative = data & (1 << 31);
if (length == 0) {
return BigInt::zero(context());
}
RootedBigInt result(context(), BigInt::createUninitialized(
context(), length, isNegative, gcHeap));
if (!result) {
return nullptr;
}
if (!in.readArray(result->digits().data(), length)) {
return nullptr;
}
return JS::BigInt::destructivelyTrimHighZeroDigits(context(), result);
}
static uint32_t TagToV1ArrayType(uint32_t tag) {
MOZ_ASSERT(tag >= SCTAG_TYPED_ARRAY_V1_MIN &&
tag <= SCTAG_TYPED_ARRAY_V1_MAX);
return tag - SCTAG_TYPED_ARRAY_V1_MIN;
}
bool JSStructuredCloneReader::readTypedArray(uint32_t arrayType,
uint64_t nelems,
MutableHandleValue vp,
bool v1Read) {
if (arrayType > (v1Read ? Scalar::Uint8Clamped : Scalar::Float16)) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"unhandled typed array element type");
return false;
}
// Push a placeholder onto the allObjs list to stand in for the typed array.
uint32_t placeholderIndex = allObjs.length();
Value dummy = UndefinedValue();
if (!allObjs.append(dummy)) {
return false;
}
// Auto-length TypedArrays are tagged by using `-1` for their length.
bool isAutoLength = nelems == uint64_t(-1);
// Zero |nelems| if it was only used as a tag.
if (isAutoLength) {
nelems = 0;
}
// Read the ArrayBuffer object and its contents (but no properties)
RootedValue v(context());
uint64_t byteOffset;
if (v1Read) {
MOZ_ASSERT(!isAutoLength, "v1Read can't produce auto-length TypedArrays");
if (!readV1ArrayBuffer(arrayType, nelems, &v)) {
return false;
}
byteOffset = 0;
} else {
if (!startRead(&v)) {
return false;
}
if (!in.read(&byteOffset)) {
return false;
}
}
// Ensure invalid 64-bit values won't be truncated below.
if (nelems > ArrayBufferObject::ByteLengthLimit ||
byteOffset > ArrayBufferObject::ByteLengthLimit) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid typed array length or offset");
return false;
}
if (!v.isObject() || !v.toObject().is<ArrayBufferObjectMaybeShared>()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"typed array must be backed by an ArrayBuffer");
return false;
}
RootedObject buffer(context(), &v.toObject());
RootedObject obj(context(), nullptr);
// Negative values represent an absent length parameter.
int64_t length = isAutoLength ? -1 : int64_t(nelems);
switch (arrayType) {
#define CREATE_FROM_BUFFER(ExternalType, NativeType, Name) \
case Scalar::Name: \
obj = JS::TypedArray<Scalar::Name>::fromBuffer(context(), buffer, \
byteOffset, length) \
.asObject(); \
break;
JS_FOR_EACH_TYPED_ARRAY(CREATE_FROM_BUFFER)
#undef CREATE_FROM_BUFFER
default:
MOZ_CRASH("Can't happen: arrayType range checked above");
}
if (!obj) {
return false;
}
vp.setObject(*obj);
allObjs[placeholderIndex].set(vp);
return true;
}
bool JSStructuredCloneReader::readDataView(uint64_t byteLength,
MutableHandleValue vp) {
// Push a placeholder onto the allObjs list to stand in for the DataView.
uint32_t placeholderIndex = allObjs.length();
Value dummy = UndefinedValue();
if (!allObjs.append(dummy)) {
return false;
}
// Read the ArrayBuffer object and its contents (but no properties).
RootedValue v(context());
if (!startRead(&v)) {
return false;
}
if (!v.isObject() || !v.toObject().is<ArrayBufferObjectMaybeShared>()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"DataView must be backed by an ArrayBuffer");
return false;
}
// Read byteOffset.
uint64_t byteOffset;
if (!in.read(&byteOffset)) {
return false;
}
// Auto-length DataViews are tagged by using `-1` for their byte length.
bool isAutoLength = byteLength == uint64_t(-1);
// Zero |byteLength| if it was only used as a tag.
if (isAutoLength) {
byteLength = 0;
}
// Ensure invalid 64-bit values won't be truncated below.
if (byteLength > ArrayBufferObject::ByteLengthLimit ||
byteOffset > ArrayBufferObject::ByteLengthLimit) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid DataView length or offset");
return false;
}
RootedObject buffer(context(), &v.toObject());
RootedObject obj(context());
if (!isAutoLength) {
obj = JS_NewDataView(context(), buffer, byteOffset, byteLength);
} else {
obj = js::NewDataView(context(), buffer, byteOffset);
}
if (!obj) {
return false;
}
vp.setObject(*obj);
allObjs[placeholderIndex].set(vp);
return true;
}
bool JSStructuredCloneReader::readArrayBuffer(StructuredDataType type,
uint32_t data,
MutableHandleValue vp) {
// V2 stores the length in |data|. The current version stores the
// length separately to allow larger length values.
uint64_t nbytes = 0;
uint64_t maxbytes = 0;
if (type == SCTAG_ARRAY_BUFFER_OBJECT) {
if (!in.read(&nbytes)) {
return false;
}
} else if (type == SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT) {
if (!in.read(&nbytes)) {
return false;
}
if (!in.read(&maxbytes)) {
return false;
}
} else {
MOZ_ASSERT(type == SCTAG_ARRAY_BUFFER_OBJECT_V2);
nbytes = data;
}
// The maximum ArrayBuffer size depends on the platform, and we cast to size_t
// below, so we have to check this here.
if (nbytes > ArrayBufferObject::ByteLengthLimit ||
maxbytes > ArrayBufferObject::ByteLengthLimit) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_BAD_ARRAY_LENGTH);
return false;
}
JSObject* obj;
if (type != SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT) {
MOZ_ASSERT(maxbytes == 0);
obj = ArrayBufferObject::createZeroed(context(), size_t(nbytes));
} else {
obj = ResizableArrayBufferObject::createZeroed(context(), size_t(nbytes),
size_t(maxbytes));
}
if (!obj) {
return false;
}
vp.setObject(*obj);
ArrayBufferObject& buffer = obj->as<ArrayBufferObject>();
MOZ_ASSERT(buffer.byteLength() == nbytes);
return in.readArray(buffer.dataPointer(), nbytes);
}
bool JSStructuredCloneReader::readSharedArrayBuffer(StructuredDataType type,
MutableHandleValue vp) {
MOZ_ASSERT(type == SCTAG_SHARED_ARRAY_BUFFER_OBJECT ||
type == SCTAG_GROWABLE_SHARED_ARRAY_BUFFER_OBJECT);
if (!cloneDataPolicy.areIntraClusterClonableSharedObjectsAllowed() ||
!cloneDataPolicy.areSharedMemoryObjectsAllowed()) {
auto error = context()->realm()->creationOptions().getCoopAndCoepEnabled()
? JS_SCERR_NOT_CLONABLE_WITH_COOP_COEP
: JS_SCERR_NOT_CLONABLE;
ReportDataCloneError(context(), callbacks, error, closure,
"SharedArrayBuffer");
return false;
}
uint64_t byteLength;
if (!in.readBytes(&byteLength, sizeof(byteLength))) {
return in.reportTruncated();
}
// The maximum ArrayBuffer size depends on the platform, and we cast to size_t
// below, so we have to check this here.
if (byteLength > ArrayBufferObject::ByteLengthLimit) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_BAD_ARRAY_LENGTH);
return false;
}
intptr_t p;
if (!in.readBytes(&p, sizeof(p))) {
return in.reportTruncated();
}
bool isGrowable = type == SCTAG_GROWABLE_SHARED_ARRAY_BUFFER_OBJECT;
SharedArrayRawBuffer* rawbuf = reinterpret_cast<SharedArrayRawBuffer*>(p);
MOZ_RELEASE_ASSERT(isGrowable == rawbuf->isGrowable());
// There's no guarantee that the receiving agent has enabled shared memory
// even if the transmitting agent has done so. Ideally we'd check at the
// transmission point, but that's tricky, and it will be a very rare problem
// in any case. Just fail at the receiving end if we can't handle it.
if (!context()
->realm()
->creationOptions()
.getSharedMemoryAndAtomicsEnabled()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_SAB_DISABLED);
return false;
}
// The new object will have a new reference to the rawbuf.
if (!rawbuf->addReference()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_SAB_REFCNT_OFLO);
return false;
}
RootedObject obj(context());
if (!isGrowable) {
obj = SharedArrayBufferObject::New(context(), rawbuf, byteLength);
} else {
obj = SharedArrayBufferObject::NewGrowable(context(), rawbuf, byteLength);
}
if (!obj) {
rawbuf->dropReference();
return false;
}
// `rawbuf` is now owned by `obj`.
if (callbacks && callbacks->sabCloned &&
!callbacks->sabCloned(context(), /*receiving=*/true, closure)) {
return false;
}
vp.setObject(*obj);
return true;
}
bool JSStructuredCloneReader::readSharedWasmMemory(uint32_t nbytes,
MutableHandleValue vp) {
JSContext* cx = context();
if (nbytes != 0) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid shared wasm memory tag");
return false;
}
if (!cloneDataPolicy.areIntraClusterClonableSharedObjectsAllowed() ||
!cloneDataPolicy.areSharedMemoryObjectsAllowed()) {
auto error = context()->realm()->creationOptions().getCoopAndCoepEnabled()
? JS_SCERR_NOT_CLONABLE_WITH_COOP_COEP
: JS_SCERR_NOT_CLONABLE;
ReportDataCloneError(cx, callbacks, error, closure, "WebAssembly.Memory");
return false;
}
// Read the isHuge flag
RootedValue isHuge(cx);
if (!startRead(&isHuge)) {
return false;
}
// Read the SharedArrayBuffer object.
RootedValue payload(cx);
if (!startRead(&payload)) {
return false;
}
if (!payload.isObject() ||
!payload.toObject().is<SharedArrayBufferObject>() ||
payload.toObject().as<SharedArrayBufferObject>().isGrowable()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"shared wasm memory must be backed by a "
"non-growable SharedArrayBuffer");
return false;
}
Rooted<ArrayBufferObjectMaybeShared*> sab(
cx, &payload.toObject().as<SharedArrayBufferObject>());
// Construct the memory.
RootedObject proto(
cx, GlobalObject::getOrCreatePrototype(cx, JSProto_WasmMemory));
if (!proto) {
return false;
}
RootedObject memory(
cx, WasmMemoryObject::create(cx, sab, isHuge.toBoolean(), proto));
if (!memory) {
return false;
}
vp.setObject(*memory);
return true;
}
/*
* Read in the data for a structured clone version 1 ArrayBuffer, performing
* endianness-conversion while reading.
*/
bool JSStructuredCloneReader::readV1ArrayBuffer(uint32_t arrayType,
uint32_t nelems,
MutableHandleValue vp) {
if (arrayType > Scalar::Uint8Clamped) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid TypedArray type");
return false;
}
mozilla::CheckedInt<size_t> nbytes =
mozilla::CheckedInt<size_t>(nelems) *
TypedArrayElemSize(static_cast<Scalar::Type>(arrayType));
if (!nbytes.isValid() || nbytes.value() > UINT32_MAX) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid typed array size");
return false;
}
JSObject* obj = ArrayBufferObject::createZeroed(context(), nbytes.value());
if (!obj) {
return false;
}
vp.setObject(*obj);
ArrayBufferObject& buffer = obj->as<ArrayBufferObject>();
MOZ_ASSERT(buffer.byteLength() == nbytes);
switch (arrayType) {
case Scalar::Int8:
case Scalar::Uint8:
case Scalar::Uint8Clamped:
return in.readArray((uint8_t*)buffer.dataPointer(), nelems);
case Scalar::Int16:
case Scalar::Uint16:
return in.readArray((uint16_t*)buffer.dataPointer(), nelems);
case Scalar::Int32:
case Scalar::Uint32:
case Scalar::Float32:
return in.readArray((uint32_t*)buffer.dataPointer(), nelems);
case Scalar::Float64:
case Scalar::BigInt64:
case Scalar::BigUint64:
return in.readArray((uint64_t*)buffer.dataPointer(), nelems);
default:
MOZ_CRASH("Can't happen: arrayType range checked by caller");
}
}
static bool PrimitiveToObject(JSContext* cx, MutableHandleValue vp) {
JSObject* obj = js::PrimitiveToObject(cx, vp);
if (!obj) {
return false;
}
vp.setObject(*obj);
return true;
}
bool JSStructuredCloneReader::startRead(MutableHandleValue vp,
ShouldAtomizeStrings atomizeStrings) {
uint32_t tag, data;
bool alreadAppended = false;
AutoCheckRecursionLimit recursion(in.context());
if (!recursion.check(in.context())) {
return false;
}
if (!in.readPair(&tag, &data)) {
return false;
}
numItemsRead++;
switch (tag) {
case SCTAG_NULL:
vp.setNull();
break;
case SCTAG_UNDEFINED:
vp.setUndefined();
break;
case SCTAG_INT32:
vp.setInt32(data);
break;
case SCTAG_BOOLEAN:
case SCTAG_BOOLEAN_OBJECT:
vp.setBoolean(!!data);
if (tag == SCTAG_BOOLEAN_OBJECT && !PrimitiveToObject(context(), vp)) {
return false;
}
break;
case SCTAG_STRING:
case SCTAG_STRING_OBJECT: {
JSString* str = readString(data, atomizeStrings);
if (!str) {
return false;
}
vp.setString(str);
if (tag == SCTAG_STRING_OBJECT && !PrimitiveToObject(context(), vp)) {
return false;
}
break;
}
case SCTAG_NUMBER_OBJECT: {
double d;
if (!in.readDouble(&d)) {
return false;
}
vp.setDouble(CanonicalizeNaN(d));
if (!PrimitiveToObject(context(), vp)) {
return false;
}
break;
}
case SCTAG_BIGINT:
case SCTAG_BIGINT_OBJECT: {
RootedBigInt bi(context(), readBigInt(data));
if (!bi) {
return false;
}
vp.setBigInt(bi);
if (tag == SCTAG_BIGINT_OBJECT && !PrimitiveToObject(context(), vp)) {
return false;
}
break;
}
case SCTAG_DATE_OBJECT: {
double d;
if (!in.readDouble(&d)) {
return false;
}
JS::ClippedTime t = JS::TimeClip(d);
if (!NumbersAreIdentical(d, t.toDouble())) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "date");
return false;
}
JSObject* obj = NewDateObjectMsec(context(), t);
if (!obj) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_REGEXP_OBJECT: {
if ((data & RegExpFlag::AllFlags) != data) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "regexp");
return false;
}
RegExpFlags flags(AssertedCast<uint8_t>(data));
uint32_t tag2, stringData;
if (!in.readPair(&tag2, &stringData)) {
return false;
}
if (tag2 != SCTAG_STRING) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "regexp");
return false;
}
JSString* str = readString(stringData, AtomizeStrings);
if (!str) {
return false;
}
Rooted<JSAtom*> atom(context(), &str->asAtom());
NewObjectKind kind =
gcHeap == gc::Heap::Tenured ? TenuredObject : GenericObject;
RegExpObject* reobj = RegExpObject::create(context(), atom, flags, kind);
if (!reobj) {
return false;
}
vp.setObject(*reobj);
break;
}
case SCTAG_ARRAY_OBJECT:
case SCTAG_OBJECT_OBJECT: {
NewObjectKind kind =
gcHeap == gc::Heap::Tenured ? TenuredObject : GenericObject;
JSObject* obj;
if (tag == SCTAG_ARRAY_OBJECT) {
obj = NewDenseUnallocatedArray(
context(), NativeEndian::swapFromLittleEndian(data), kind);
} else {
obj = NewPlainObject(context(), kind);
}
if (!obj || !objs.append(ObjectValue(*obj))) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_BACK_REFERENCE_OBJECT: {
if (data >= allObjs.length() || !allObjs[data].isObject()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid back reference in input");
return false;
}
vp.set(allObjs[data]);
return true;
}
case SCTAG_TRANSFER_MAP_HEADER:
case SCTAG_TRANSFER_MAP_PENDING_ENTRY:
// We should be past all the transfer map tags.
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "invalid input");
return false;
case SCTAG_ARRAY_BUFFER_OBJECT_V2:
case SCTAG_ARRAY_BUFFER_OBJECT:
case SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT:
if (!readArrayBuffer(StructuredDataType(tag), data, vp)) {
return false;
}
break;
case SCTAG_SHARED_ARRAY_BUFFER_OBJECT:
case SCTAG_GROWABLE_SHARED_ARRAY_BUFFER_OBJECT:
if (!readSharedArrayBuffer(StructuredDataType(tag), vp)) {
return false;
}
break;
case SCTAG_SHARED_WASM_MEMORY_OBJECT:
if (!readSharedWasmMemory(data, vp)) {
return false;
}
break;
case SCTAG_TYPED_ARRAY_OBJECT_V2: {
// readTypedArray adds the array to allObjs.
// V2 stores the length (nelems) in |data| and the arrayType separately.
uint64_t arrayType;
if (!in.read(&arrayType)) {
return false;
}
uint64_t nelems = data;
return readTypedArray(arrayType, nelems, vp);
}
case SCTAG_TYPED_ARRAY_OBJECT: {
// readTypedArray adds the array to allObjs.
// The current version stores the array type in |data| and the length
// (nelems) separately to support large TypedArrays.
uint32_t arrayType = data;
uint64_t nelems;
if (!in.read(&nelems)) {
return false;
}
return readTypedArray(arrayType, nelems, vp);
}
case SCTAG_DATA_VIEW_OBJECT_V2: {
// readDataView adds the array to allObjs.
uint64_t byteLength = data;
return readDataView(byteLength, vp);
}
case SCTAG_DATA_VIEW_OBJECT: {
// readDataView adds the array to allObjs.
uint64_t byteLength;
if (!in.read(&byteLength)) {
return false;
}
return readDataView(byteLength, vp);
}
case SCTAG_MAP_OBJECT: {
JSObject* obj = MapObject::create(context());
if (!obj || !objs.append(ObjectValue(*obj))) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_SET_OBJECT: {
JSObject* obj = SetObject::create(context());
if (!obj || !objs.append(ObjectValue(*obj))) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_SAVED_FRAME_OBJECT: {
auto* obj = readSavedFrameHeader(data);
if (!obj || !objs.append(ObjectValue(*obj)) ||
!objState.append(std::make_pair(obj, false))) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_ERROR_OBJECT: {
auto* obj = readErrorHeader(data);
if (!obj || !objs.append(ObjectValue(*obj)) ||
!objState.append(std::make_pair(obj, false))) {
return false;
}
vp.setObject(*obj);
break;
}
case SCTAG_END_OF_KEYS:
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"truncated input");
return false;
break;
default: {
if (tag <= SCTAG_FLOAT_MAX) {
double d = ReinterpretPairAsDouble(tag, data);
vp.setNumber(CanonicalizeNaN(d));
break;
}
if (SCTAG_TYPED_ARRAY_V1_MIN <= tag && tag <= SCTAG_TYPED_ARRAY_V1_MAX) {
// A v1-format typed array
// readTypedArray adds the array to allObjs
return readTypedArray(TagToV1ArrayType(tag), data, vp, true);
}
if (!callbacks || !callbacks->read) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"unsupported type");
return false;
}
// callbacks->read() might read other objects from the buffer.
// In startWrite we always write the object itself before calling
// the custom function. We should do the same here to keep
// indexing consistent.
uint32_t placeholderIndex = allObjs.length();
Value dummy = UndefinedValue();
if (!allObjs.append(dummy)) {
return false;
}
JSObject* obj =
callbacks->read(context(), this, cloneDataPolicy, tag, data, closure);
if (!obj) {
return false;
}
vp.setObject(*obj);
allObjs[placeholderIndex].set(vp);
alreadAppended = true;
}
}
if (!alreadAppended && vp.isObject() && !allObjs.append(vp)) {
return false;
}
return true;
}
bool JSStructuredCloneReader::readHeader() {
uint32_t tag, data;
if (!in.getPair(&tag, &data)) {
return in.reportTruncated();
}
JS::StructuredCloneScope storedScope;
if (tag == SCTAG_HEADER) {
MOZ_ALWAYS_TRUE(in.readPair(&tag, &data));
storedScope = JS::StructuredCloneScope(data);
} else {
// Old structured clone buffer. We must have read it from disk.
storedScope = JS::StructuredCloneScope::DifferentProcessForIndexedDB;
}
// Backward compatibility with old structured clone buffers. Value '0' was
// used for SameProcessSameThread scope.
if ((int)storedScope == 0) {
storedScope = JS::StructuredCloneScope::SameProcess;
}
if (storedScope < JS::StructuredCloneScope::SameProcess ||
storedScope > JS::StructuredCloneScope::DifferentProcessForIndexedDB) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid structured clone scope");
return false;
}
if (allowedScope == JS::StructuredCloneScope::DifferentProcessForIndexedDB) {
// clones are incorrect. Treat them as if they were DifferentProcess.
allowedScope = JS::StructuredCloneScope::DifferentProcess;
return true;
}
if (storedScope < allowedScope) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"incompatible structured clone scope");
return false;
}
return true;
}
bool JSStructuredCloneReader::readTransferMap() {
JSContext* cx = context();
auto headerPos = in.tell();
uint32_t tag, data;
if (!in.getPair(&tag, &data)) {
return in.reportTruncated();
}
if (tag != SCTAG_TRANSFER_MAP_HEADER) {
// No transfer map header found.
return true;
}
if (data >= SCTAG_TM_END) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid transfer map header");
return false;
}
auto transferState = static_cast<TransferableMapHeader>(data);
if (transferState == SCTAG_TM_TRANSFERRED) {
return true;
}
if (transferState == SCTAG_TM_TRANSFERRING) {
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE_TWICE, closure);
return false;
}
headerPos.write(
PairToUInt64(SCTAG_TRANSFER_MAP_HEADER, SCTAG_TM_TRANSFERRING));
uint64_t numTransferables;
MOZ_ALWAYS_TRUE(in.readPair(&tag, &data));
if (!in.read(&numTransferables)) {
return false;
}
for (uint64_t i = 0; i < numTransferables; i++) {
auto pos = in.tell();
if (!in.readPair(&tag, &data)) {
return false;
}
if (tag == SCTAG_TRANSFER_MAP_PENDING_ENTRY) {
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE, closure);
return false;
}
RootedObject obj(cx);
void* content;
if (!in.readPtr(&content)) {
return false;
}
uint64_t extraData;
if (!in.read(&extraData)) {
return false;
}
if (tag == SCTAG_TRANSFER_MAP_ARRAY_BUFFER) {
MOZ_ASSERT(allowedScope <= JS::StructuredCloneScope::LastResolvedScope);
if (allowedScope == JS::StructuredCloneScope::DifferentProcess) {
// Transferred ArrayBuffers in a DifferentProcess clone buffer
// are treated as if they weren't Transferred at all. We should
// only see SCTAG_TRANSFER_MAP_STORED_ARRAY_BUFFER.
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE, closure);
return false;
}
MOZ_RELEASE_ASSERT(extraData <= ArrayBufferObject::ByteLengthLimit);
size_t nbytes = extraData;
MOZ_ASSERT(data == JS::SCTAG_TMO_ALLOC_DATA ||
data == JS::SCTAG_TMO_MAPPED_DATA);
if (data == JS::SCTAG_TMO_ALLOC_DATA) {
// When the ArrayBuffer can't be allocated, |content| will be free'ed
// in `JSStructuredCloneData::discardTransferables()`.
obj = JS::NewArrayBufferWithContents(
cx, nbytes, content,
JS::NewArrayBufferOutOfMemory::CallerMustFreeMemory);
} else if (data == JS::SCTAG_TMO_MAPPED_DATA) {
obj = JS::NewMappedArrayBufferWithContents(cx, nbytes, content);
}
} else if (tag == SCTAG_TRANSFER_MAP_STORED_ARRAY_BUFFER) {
auto savedPos = in.tell();
auto guard = mozilla::MakeScopeExit([&] { in.seekTo(savedPos); });
in.seekTo(pos);
if (!in.seekBy(static_cast<size_t>(extraData))) {
return false;
}
if (tailStartPos.isNothing()) {
tailStartPos = mozilla::Some(in.tell());
}
uint32_t tag, data;
if (!in.readPair(&tag, &data)) {
return false;
}
if (tag != SCTAG_ARRAY_BUFFER_OBJECT_V2 &&
tag != SCTAG_ARRAY_BUFFER_OBJECT &&
tag != SCTAG_RESIZABLE_ARRAY_BUFFER_OBJECT) {
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE, closure);
return false;
}
RootedValue val(cx);
if (!readArrayBuffer(StructuredDataType(tag), data, &val)) {
return false;
}
obj = &val.toObject();
tailEndPos = mozilla::Some(in.tell());
} else {
if (!callbacks || !callbacks->readTransfer) {
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE, closure);
return false;
}
if (!callbacks->readTransfer(cx, this, cloneDataPolicy, tag, content,
extraData, closure, &obj)) {
if (!cx->isExceptionPending()) {
ReportDataCloneError(cx, callbacks, JS_SCERR_TRANSFERABLE, closure);
}
return false;
}
MOZ_ASSERT(obj);
MOZ_ASSERT(!cx->isExceptionPending());
}
// On failure, the buffer will still own the data (since its ownership
// will not get set to SCTAG_TMO_UNOWNED), so the data will be freed by
// DiscardTransferables.
if (!obj) {
return false;
}
// Mark the SCTAG_TRANSFER_MAP_* entry as no longer owned by the input
// buffer.
pos.write(PairToUInt64(tag, JS::SCTAG_TMO_UNOWNED));
MOZ_ASSERT(!pos.done());
if (!allObjs.append(ObjectValue(*obj))) {
return false;
}
}
// Mark the whole transfer map as consumed.
#ifdef DEBUG
SCInput::getPair(headerPos.peek(), &tag, &data);
MOZ_ASSERT(tag == SCTAG_TRANSFER_MAP_HEADER);
MOZ_ASSERT(TransferableMapHeader(data) == SCTAG_TM_TRANSFERRING);
#endif
headerPos.write(
PairToUInt64(SCTAG_TRANSFER_MAP_HEADER, SCTAG_TM_TRANSFERRED));
return true;
}
JSObject* JSStructuredCloneReader::readSavedFrameHeader(
uint32_t principalsTag) {
Rooted<SavedFrame*> savedFrame(context(), SavedFrame::create(context()));
if (!savedFrame) {
return nullptr;
}
JSPrincipals* principals;
if (principalsTag == SCTAG_JSPRINCIPALS) {
if (!context()->runtime()->readPrincipals) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_UNSUPPORTED_TYPE);
return nullptr;
}
if (!context()->runtime()->readPrincipals(context(), this, &principals)) {
return nullptr;
}
} else if (principalsTag ==
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_SYSTEM) {
principals = &ReconstructedSavedFramePrincipals::IsSystem;
principals->refcount++;
} else if (principalsTag ==
SCTAG_RECONSTRUCTED_SAVED_FRAME_PRINCIPALS_IS_NOT_SYSTEM) {
principals = &ReconstructedSavedFramePrincipals::IsNotSystem;
principals->refcount++;
} else if (principalsTag == SCTAG_NULL_JSPRINCIPALS) {
principals = nullptr;
} else {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"bad SavedFrame principals");
return nullptr;
}
RootedValue mutedErrors(context());
RootedValue source(context());
{
// Read a |mutedErrors| boolean followed by a |source| string.
// The |mutedErrors| boolean is present in all new structured-clone data,
// but in older data it will be absent and only the |source| string will be
// found.
if (!startRead(&mutedErrors, AtomizeStrings)) {
return nullptr;
}
if (mutedErrors.isBoolean()) {
if (!startRead(&source, AtomizeStrings) || !source.isString()) {
return nullptr;
}
} else if (mutedErrors.isString()) {
// Backwards compatibility: Handle missing |mutedErrors| boolean,
// this is actually just a |source| string.
source = mutedErrors;
mutedErrors.setBoolean(true); // Safe default value.
} else {
// Invalid type.
return nullptr;
}
}
savedFrame->initPrincipalsAlreadyHeldAndMutedErrors(principals,
mutedErrors.toBoolean());
savedFrame->initSource(&source.toString()->asAtom());
uint32_t line;
if (!readUint32(&line)) {
return nullptr;
}
savedFrame->initLine(line);
JS::TaggedColumnNumberOneOrigin column;
if (!readUint32(column.addressOfValueForTranscode())) {
return nullptr;
}
savedFrame->initColumn(column);
// Don't specify a source ID when reading a cloned saved frame, as these IDs
// are only valid within a specific process.
savedFrame->initSourceId(0);
RootedValue name(context());
if (!startRead(&name, AtomizeStrings)) {
return nullptr;
}
if (!(name.isString() || name.isNull())) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid saved frame cause");
return nullptr;
}
JSAtom* atomName = nullptr;
if (name.isString()) {
atomName = &name.toString()->asAtom();
}
savedFrame->initFunctionDisplayName(atomName);
RootedValue cause(context());
if (!startRead(&cause, AtomizeStrings)) {
return nullptr;
}
if (!(cause.isString() || cause.isNull())) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid saved frame cause");
return nullptr;
}
JSAtom* atomCause = nullptr;
if (cause.isString()) {
atomCause = &cause.toString()->asAtom();
}
savedFrame->initAsyncCause(atomCause);
return savedFrame;
}
// SavedFrame object: there is one child value, the parent SavedFrame,
// which is either null or another SavedFrame object.
bool JSStructuredCloneReader::readSavedFrameFields(Handle<SavedFrame*> frameObj,
HandleValue parent,
bool* state) {
if (*state) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"multiple SavedFrame parents");
return false;
}
SavedFrame* parentFrame;
if (parent.isNull()) {
parentFrame = nullptr;
} else if (parent.isObject() && parent.toObject().is<SavedFrame>()) {
parentFrame = &parent.toObject().as<SavedFrame>();
} else {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid SavedFrame parent");
return false;
}
frameObj->initParent(parentFrame);
*state = true;
return true;
}
JSObject* JSStructuredCloneReader::readErrorHeader(uint32_t type) {
JSContext* cx = context();
switch (type) {
case JSEXN_ERR:
case JSEXN_EVALERR:
case JSEXN_RANGEERR:
case JSEXN_REFERENCEERR:
case JSEXN_SYNTAXERR:
case JSEXN_TYPEERR:
case JSEXN_URIERR:
case JSEXN_AGGREGATEERR:
break;
default:
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid error type");
return nullptr;
}
RootedString message(cx);
{
RootedValue messageVal(cx);
if (!startRead(&messageVal)) {
return nullptr;
}
if (messageVal.isString()) {
message = messageVal.toString();
} else if (!messageVal.isNull()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid 'message' field for Error object");
return nullptr;
}
}
// We have to set |cause| to something if it exists, otherwise the shape
// would be wrong. The actual value will be overwritten later.
RootedValue val(cx);
if (!startRead(&val)) {
return nullptr;
}
bool hasCause = ToBoolean(val);
Rooted<Maybe<Value>> cause(cx, mozilla::Nothing());
if (hasCause) {
cause = mozilla::Some(BooleanValue(true));
}
if (!startRead(&val)) {
return nullptr;
}
if (!val.isString()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid 'fileName' field for Error object");
return nullptr;
}
RootedString fileName(cx, val.toString());
uint32_t lineNumber;
JS::ColumnNumberOneOrigin columnNumber;
if (!readUint32(&lineNumber) ||
!readUint32(columnNumber.addressOfValueForTranscode())) {
return nullptr;
}
// The |cause| and |stack| slots of the objects might be overwritten later.
// For AggregateErrors the |errors| property will be added.
RootedObject errorObj(
cx, ErrorObject::create(cx, static_cast<JSExnType>(type), nullptr,
fileName, 0, lineNumber, columnNumber, nullptr,
message, cause));
if (!errorObj) {
return nullptr;
}
return errorObj;
}
// Error objects have 3 fields, some or all of them null: cause,
// errors, and stack.
bool JSStructuredCloneReader::readErrorFields(Handle<ErrorObject*> errorObj,
HandleValue cause, bool* state) {
JSContext* cx = context();
if (*state) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"unexpected child value seen for Error object");
return false;
}
RootedValue errors(cx);
RootedValue stack(cx);
if (!startRead(&errors) || !startRead(&stack)) {
return false;
}
bool hasCause = errorObj->getCause().isSome();
if (hasCause) {
errorObj->setCauseSlot(cause);
} else if (!cause.isNull()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid 'cause' field for Error object");
return false;
}
if (errorObj->type() == JSEXN_AGGREGATEERR) {
if (!DefineDataProperty(context(), errorObj, cx->names().errors, errors,
0)) {
return false;
}
} else if (!errors.isNull()) {
JS_ReportErrorNumberASCII(
cx, GetErrorMessage, nullptr, JSMSG_SC_BAD_SERIALIZED_DATA,
"unexpected 'errors' field seen for non-AggregateError");
return false;
}
if (stack.isObject()) {
RootedObject stackObj(cx, &stack.toObject());
if (!stackObj->is<SavedFrame>()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid 'stack' field for Error object");
return false;
}
errorObj->setStackSlot(stack);
} else if (!stack.isNull()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"invalid 'stack' field for Error object");
return false;
}
*state = true;
return true;
}
// Read a value and treat as a key,value pair.
bool JSStructuredCloneReader::readMapField(Handle<MapObject*> mapObj,
HandleValue key) {
RootedValue val(context());
if (!startRead(&val)) {
return false;
}
return mapObj->set(context(), key, val);
}
// Read a value and treat as a key,value pair. Interpret as a plain property
// value.
bool JSStructuredCloneReader::readObjectField(HandleObject obj,
HandleValue key) {
if (!key.isString() && !key.isInt32()) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"property key expected");
return false;
}
RootedValue val(context());
if (!startRead(&val)) {
return false;
}
RootedId id(context());
if (!PrimitiveValueToId<CanGC>(context(), key, &id)) {
return false;
}
// Fast path for adding a new property to a plain object. The property names
// we see here should be unique, but we check for duplicates to guard against
// corrupt or malicious data.
if (id.isString() && obj->is<PlainObject>() &&
MOZ_LIKELY(!obj->as<PlainObject>().contains(context(), id))) {
return AddDataPropertyToPlainObject(context(), obj.as<PlainObject>(), id,
val);
}
// Fast path for adding an array element. The index shouldn't exceed the
// array's length, but we check for this in `addDenseElementNoLengthChange` to
// guard against corrupt or malicious data.
if (id.isInt() && obj->is<ArrayObject>()) {
ArrayObject* arr = &obj->as<ArrayObject>();
switch (arr->addDenseElementNoLengthChange(context(), id.toInt(), val)) {
case DenseElementResult::Failure:
return false;
case DenseElementResult::Success:
return true;
case DenseElementResult::Incomplete:
// Fall-through to slow path.
break;
}
}
return DefineDataProperty(context(), obj, id, val);
}
// Perform the whole recursive reading procedure.
bool JSStructuredCloneReader::read(MutableHandleValue vp, size_t nbytes) {
auto startTime = mozilla::TimeStamp::Now();
if (!readHeader()) {
return false;
}
MOZ_ASSERT(allowedScope <= JS::StructuredCloneScope::LastResolvedScope,
"allowedScope should have been resolved by now");
if (!readTransferMap()) {
return false;
}
MOZ_ASSERT(objs.length() == 0);
MOZ_ASSERT(objState.length() == 1);
// Start out by reading in the main object and pushing it onto the 'objs'
// stack. The data related to this object and its descendants extends from
// here to the SCTAG_END_OF_KEYS at the end of the stream.
if (!startRead(vp)) {
return false;
}
// Stop when the stack shows that all objects have been read.
while (objs.length() != 0) {
// What happens depends on the top obj on the objs stack.
RootedObject obj(context(), &objs.back().toObject());
uint32_t tag, data;
if (!in.getPair(&tag, &data)) {
return false;
}
if (tag == SCTAG_END_OF_KEYS) {
// Pop the current obj off the stack, since we are done with it and
// its children.
MOZ_ALWAYS_TRUE(in.readPair(&tag, &data));
objs.popBack();
if (objState.back().first == obj) {
objState.popBack();
}
continue;
}
// Remember the index of the current top of the state stack, which will
// correspond to the state for `obj` iff `obj` is a type that uses state.
// startRead() may push additional entries before the state is accessed and
// updated while filling in the object's data.
size_t objStateIdx = objState.length() - 1;
// The input stream contains a sequence of "child" values, whose
// interpretation depends on the type of obj. These values can be
// anything, and startRead() will push onto 'objs' for any non-leaf
// value (i.e., anything that may contain children).
//
// startRead() will allocate the (empty) object, but note that when
// startRead() returns, 'key' is not yet initialized with any of its
// properties. Those will be filled in by returning to the head of this
// loop, processing the first child obj, and continuing until all
// children have been fully created.
//
// Note that this means the ordering in the stream is a little funky for
// things like Map. See the comment above traverseMap() for an example.
bool expectKeyValuePairs =
!(obj->is<MapObject>() || obj->is<SetObject>() ||
obj->is<SavedFrame>() || obj->is<ErrorObject>());
RootedValue key(context());
ShouldAtomizeStrings atomize =
expectKeyValuePairs ? AtomizeStrings : DontAtomizeStrings;
if (!startRead(&key, atomize)) {
return false;
}
if (key.isNull() && expectKeyValuePairs) {
// Backwards compatibility: Null formerly indicated the end of
// object properties.
// No legacy objects used the state stack.
MOZ_ASSERT(objState[objStateIdx].first() != obj);
objs.popBack();
continue;
}
context()->check(key);
if (obj->is<SetObject>()) {
// Set object: the values between obj header (from startRead()) and
// SCTAG_END_OF_KEYS are all interpreted as values to add to the set.
if (!obj->as<SetObject>().add(context(), key)) {
return false;
}
} else if (obj->is<MapObject>()) {
Rooted<MapObject*> mapObj(context(), &obj->as<MapObject>());
if (!readMapField(mapObj, key)) {
return false;
}
} else if (obj->is<SavedFrame>()) {
Rooted<SavedFrame*> frameObj(context(), &obj->as<SavedFrame>());
MOZ_ASSERT(objState[objStateIdx].first() == obj);
bool state = objState[objStateIdx].second();
if (!readSavedFrameFields(frameObj, key, &state)) {
return false;
}
objState[objStateIdx].second() = state;
} else if (obj->is<ErrorObject>()) {
Rooted<ErrorObject*> errorObj(context(), &obj->as<ErrorObject>());
MOZ_ASSERT(objState[objStateIdx].first() == obj);
bool state = objState[objStateIdx].second();
if (!readErrorFields(errorObj, key, &state)) {
return false;
}
objState[objStateIdx].second() = state;
} else {
MOZ_ASSERT(expectKeyValuePairs);
// Everything else uses a series of key,value,key,value,... Value
// objects.
if (!readObjectField(obj, key)) {
return false;
}
}
}
allObjs.clear();
// For fuzzing, it is convenient to allow extra data at the end
// of the input buffer so that more possible inputs are considered
// valid.
#ifndef FUZZING
bool extraData;
if (tailStartPos.isSome()) {
// in.tell() is the end of the main data. If "tail" data was consumed,
// then check whether there's any data between the main data and the
// beginning of the tail, or after the last read point in the tail.
extraData = (in.tell() != *tailStartPos || !tailEndPos->done());
} else {
extraData = !in.tell().done();
}
if (extraData) {
JS_ReportErrorNumberASCII(context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"extra data after end");
return false;
}
#endif
JSRuntime* rt = context()->runtime();
rt->metrics().DESERIALIZE_BYTES(nbytes);
rt->metrics().DESERIALIZE_ITEMS(numItemsRead);
mozilla::TimeDuration elapsed = mozilla::TimeStamp::Now() - startTime;
rt->metrics().DESERIALIZE_US(elapsed);
return true;
}
JS_PUBLIC_API bool JS_ReadStructuredClone(
JSContext* cx, const JSStructuredCloneData& buf, uint32_t version,
JS::StructuredCloneScope scope, MutableHandleValue vp,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
if (version > JS_STRUCTURED_CLONE_VERSION) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_SC_BAD_CLONE_VERSION);
return false;
}
const JSStructuredCloneCallbacks* callbacks = optionalCallbacks;
return ReadStructuredClone(cx, buf, scope, vp, cloneDataPolicy, callbacks,
closure);
}
JS_PUBLIC_API bool JS_WriteStructuredClone(
JSContext* cx, HandleValue value, JSStructuredCloneData* bufp,
JS::StructuredCloneScope scope, const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure,
HandleValue transferable) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
cx->check(value);
const JSStructuredCloneCallbacks* callbacks = optionalCallbacks;
return WriteStructuredClone(cx, value, bufp, scope, cloneDataPolicy,
callbacks, closure, transferable);
}
JS_PUBLIC_API bool JS_StructuredCloneHasTransferables(
JSStructuredCloneData& data, bool* hasTransferable) {
*hasTransferable = StructuredCloneHasTransferObjects(data);
return true;
}
JS_PUBLIC_API bool JS_StructuredClone(
JSContext* cx, HandleValue value, MutableHandleValue vp,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
// Strings are associated with zones, not compartments,
// so we copy the string by wrapping it.
if (value.isString()) {
RootedString strValue(cx, value.toString());
if (!cx->compartment()->wrap(cx, &strValue)) {
return false;
}
vp.setString(strValue);
return true;
}
const JSStructuredCloneCallbacks* callbacks = optionalCallbacks;
JSAutoStructuredCloneBuffer buf(JS::StructuredCloneScope::SameProcess,
callbacks, closure);
{
if (value.isObject()) {
RootedObject obj(cx, &value.toObject());
obj = CheckedUnwrapStatic(obj);
if (!obj) {
ReportAccessDenied(cx);
return false;
}
AutoRealm ar(cx, obj);
RootedValue unwrappedVal(cx, ObjectValue(*obj));
if (!buf.write(cx, unwrappedVal, callbacks, closure)) {
return false;
}
} else {
if (!buf.write(cx, value, callbacks, closure)) {
return false;
}
}
}
return buf.read(cx, vp, JS::CloneDataPolicy(), callbacks, closure);
}
JSAutoStructuredCloneBuffer::JSAutoStructuredCloneBuffer(
JSAutoStructuredCloneBuffer&& other)
: data_(other.scope()) {
version_ = other.version_;
other.giveTo(&data_);
}
JSAutoStructuredCloneBuffer& JSAutoStructuredCloneBuffer::operator=(
JSAutoStructuredCloneBuffer&& other) {
MOZ_ASSERT(&other != this);
MOZ_ASSERT(scope() == other.scope());
clear();
version_ = other.version_;
other.giveTo(&data_);
return *this;
}
void JSAutoStructuredCloneBuffer::clear() {
data_.discardTransferables();
data_.ownTransferables_ = OwnTransferablePolicy::NoTransferables;
data_.refsHeld_.releaseAll();
data_.stringBufferRefsHeld_.clear();
data_.Clear();
version_ = 0;
}
void JSAutoStructuredCloneBuffer::adopt(
JSStructuredCloneData&& data, uint32_t version,
const JSStructuredCloneCallbacks* callbacks, void* closure) {
clear();
data_ = std::move(data);
version_ = version;
data_.setCallbacks(callbacks, closure,
OwnTransferablePolicy::OwnsTransferablesIfAny);
}
void JSAutoStructuredCloneBuffer::giveTo(JSStructuredCloneData* data) {
*data = std::move(data_);
version_ = 0;
data_.setCallbacks(nullptr, nullptr, OwnTransferablePolicy::NoTransferables);
data_.Clear();
}
bool JSAutoStructuredCloneBuffer::read(
JSContext* cx, MutableHandleValue vp,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure) {
MOZ_ASSERT(cx);
return !!JS_ReadStructuredClone(
cx, data_, version_, data_.scope(), vp, cloneDataPolicy,
optionalCallbacks ? optionalCallbacks : data_.callbacks_,
optionalCallbacks ? closure : data_.closure_);
}
bool JSAutoStructuredCloneBuffer::write(
JSContext* cx, HandleValue value,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure) {
HandleValue transferable = UndefinedHandleValue;
return write(cx, value, transferable, JS::CloneDataPolicy(),
optionalCallbacks ? optionalCallbacks : data_.callbacks_,
optionalCallbacks ? closure : data_.closure_);
}
bool JSAutoStructuredCloneBuffer::write(
JSContext* cx, HandleValue value, HandleValue transferable,
const JS::CloneDataPolicy& cloneDataPolicy,
const JSStructuredCloneCallbacks* optionalCallbacks, void* closure) {
clear();
bool ok = JS_WriteStructuredClone(
cx, value, &data_, data_.scopeForInternalWriting(), cloneDataPolicy,
optionalCallbacks ? optionalCallbacks : data_.callbacks_,
optionalCallbacks ? closure : data_.closure_, transferable);
if (!ok) {
version_ = JS_STRUCTURED_CLONE_VERSION;
}
return ok;
}
JS_PUBLIC_API bool JS_ReadUint32Pair(JSStructuredCloneReader* r, uint32_t* p1,
uint32_t* p2) {
return r->input().readPair((uint32_t*)p1, (uint32_t*)p2);
}
JS_PUBLIC_API bool JS_ReadBytes(JSStructuredCloneReader* r, void* p,
size_t len) {
return r->input().readBytes(p, len);
}
JS_PUBLIC_API bool JS_ReadString(JSStructuredCloneReader* r,
MutableHandleString str) {
uint32_t tag, data;
if (!r->input().readPair(&tag, &data)) {
return false;
}
if (tag == SCTAG_STRING) {
if (JSString* s =
r->readString(data, JSStructuredCloneReader::DontAtomizeStrings)) {
str.set(s);
return true;
}
return false;
}
JS_ReportErrorNumberASCII(r->context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA, "expected string");
return false;
}
JS_PUBLIC_API bool JS_ReadDouble(JSStructuredCloneReader* r, double* v) {
return r->input().readDouble(v);
}
JS_PUBLIC_API bool JS_ReadTypedArray(JSStructuredCloneReader* r,
MutableHandleValue vp) {
uint32_t tag, data;
if (!r->input().readPair(&tag, &data)) {
return false;
}
if (tag >= SCTAG_TYPED_ARRAY_V1_MIN && tag <= SCTAG_TYPED_ARRAY_V1_MAX) {
return r->readTypedArray(TagToV1ArrayType(tag), data, vp, true);
}
if (tag == SCTAG_TYPED_ARRAY_OBJECT_V2) {
// V2 stores the length (nelems) in |data| and the arrayType separately.
uint64_t arrayType;
if (!r->input().read(&arrayType)) {
return false;
}
uint64_t nelems = data;
return r->readTypedArray(arrayType, nelems, vp);
}
if (tag == SCTAG_TYPED_ARRAY_OBJECT) {
// The current version stores the array type in |data| and the length
// (nelems) separately to support large TypedArrays.
uint32_t arrayType = data;
uint64_t nelems;
if (!r->input().read(&nelems)) {
return false;
}
return r->readTypedArray(arrayType, nelems, vp);
}
JS_ReportErrorNumberASCII(r->context(), GetErrorMessage, nullptr,
JSMSG_SC_BAD_SERIALIZED_DATA,
"expected type array");
return false;
}
JS_PUBLIC_API bool JS_WriteUint32Pair(JSStructuredCloneWriter* w, uint32_t tag,
uint32_t data) {
return w->output().writePair(tag, data);
}
JS_PUBLIC_API bool JS_WriteBytes(JSStructuredCloneWriter* w, const void* p,
size_t len) {
return w->output().writeBytes(p, len);
}
JS_PUBLIC_API bool JS_WriteString(JSStructuredCloneWriter* w,
HandleString str) {
return w->writeString(SCTAG_STRING, str);
}
JS_PUBLIC_API bool JS_WriteDouble(JSStructuredCloneWriter* w, double v) {
return w->output().writeDouble(v);
}
JS_PUBLIC_API bool JS_WriteTypedArray(JSStructuredCloneWriter* w,
HandleValue v) {
MOZ_ASSERT(v.isObject());
w->context()->check(v);
RootedObject obj(w->context(), &v.toObject());
// startWrite can write everything, thus we should check here
// and report error if the user passes a wrong type.
if (!obj->canUnwrapAs<TypedArrayObject>()) {
ReportAccessDenied(w->context());
return false;
}
// We should use startWrite instead of writeTypedArray, because
// typed array is an object, we should add it to the |memory|
// (allObjs) list. Directly calling writeTypedArray won't add it.
return w->startWrite(v);
}
JS_PUBLIC_API bool JS_ObjectNotWritten(JSStructuredCloneWriter* w,
HandleObject obj) {
w->memory.remove(w->memory.lookup(obj));
return true;
}
JS_PUBLIC_API JS::StructuredCloneScope JS_GetStructuredCloneScope(
JSStructuredCloneWriter* w) {
return w->output().scope();
}