Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portions of this code taken from WebKit, whose copyright is as follows:
*
* Copyright (C) 2017 Caio Lima <ticaiolima@gmail.com>
* Copyright (C) 2017-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this code taken from V8, whose copyright notice is as follows:
*
* Copyright 2017 the V8 project authors. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this code taken from Dart, whose copyright notice is as follows:
*
* Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file
* [1] for details. All rights reserved. Use of this source code is governed by
* a BSD-style license that can be found in the LICENSE file [2].
*
*
* Portions of this code taken from Go, whose copyright notice is as follows:
*
* Copyright 2009 The Go Authors. All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file [3].
*
*/
#include "vm/BigIntType.h"
#include "mozilla/Casting.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/HashFunctions.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryChecking.h"
#include "mozilla/Range.h"
#include "mozilla/RangedPtr.h"
#include "mozilla/Span.h" // mozilla::Span
#include "mozilla/TextUtils.h"
#include "mozilla/Try.h"
#include "mozilla/WrappingOperations.h"
#include <functional>
#include <limits>
#include <memory>
#include <type_traits> // std::is_same_v
#include "jsnum.h"
#include "gc/GCEnum.h"
#include "js/BigInt.h"
#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
#include "js/Printer.h" // js::GenericPrinter
#include "js/StableStringChars.h"
#include "js/Utility.h"
#include "util/CheckedArithmetic.h"
#include "util/DifferentialTesting.h"
#include "vm/JSONPrinter.h" // js::JSONPrinter
#include "vm/StaticStrings.h"
#include "gc/GCContext-inl.h"
#include "gc/Nursery-inl.h"
#include "vm/JSContext-inl.h"
using namespace js;
using JS::AutoStableStringChars;
using mozilla::Abs;
using mozilla::AssertedCast;
using mozilla::Maybe;
using mozilla::NegativeInfinity;
using mozilla::Nothing;
using mozilla::PositiveInfinity;
using mozilla::Range;
using mozilla::RangedPtr;
using mozilla::Some;
using mozilla::WrapToSigned;
static inline unsigned DigitLeadingZeroes(BigInt::Digit x) {
return sizeof(x) == 4 ? mozilla::CountLeadingZeroes32(x)
: mozilla::CountLeadingZeroes64(x);
}
#ifdef DEBUG
static bool HasLeadingZeroes(const BigInt* bi) {
return bi->digitLength() > 0 && bi->digit(bi->digitLength() - 1) == 0;
}
#endif
BigInt* BigInt::createUninitialized(JSContext* cx, size_t digitLength,
bool isNegative, gc::Heap heap) {
if (digitLength > MaxDigitLength) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
return nullptr;
}
BigInt* x = cx->newCell<BigInt>(heap);
if (!x) {
return nullptr;
}
x->setLengthAndFlags(digitLength, isNegative ? SignBit : 0);
MOZ_ASSERT(x->digitLength() == digitLength);
MOZ_ASSERT(x->isNegative() == isNegative);
if (digitLength > InlineDigitsLength) {
x->heapDigits_ = js::AllocateCellBuffer<Digit>(cx, x, digitLength);
if (!x->heapDigits_) {
// |x| is partially initialized, expose it as a BigInt using inline digits
// to the GC.
x->setLengthAndFlags(0, 0);
return nullptr;
}
AddCellMemory(x, digitLength * sizeof(Digit), js::MemoryUse::BigIntDigits);
}
return x;
}
void BigInt::initializeDigitsToZero() {
auto digs = digits();
std::uninitialized_fill_n(digs.begin(), digs.Length(), 0);
}
void BigInt::finalize(JS::GCContext* gcx) {
MOZ_ASSERT(isTenured());
if (hasHeapDigits()) {
size_t size = digitLength() * sizeof(Digit);
gcx->free_(this, heapDigits_, size, js::MemoryUse::BigIntDigits);
}
}
js::HashNumber BigInt::hash() const {
js::HashNumber h =
mozilla::HashBytes(digits().data(), digitLength() * sizeof(Digit));
return mozilla::AddToHash(h, isNegative());
}
size_t BigInt::sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
return hasInlineDigits() ? 0 : mallocSizeOf(heapDigits_);
}
size_t BigInt::sizeOfExcludingThisInNursery(
mozilla::MallocSizeOf mallocSizeOf) const {
MOZ_ASSERT(!isTenured());
if (hasInlineDigits()) {
return 0;
}
const Nursery& nursery = runtimeFromMainThread()->gc.nursery();
if (nursery.isInside(heapDigits_)) {
// Buffer allocations are aligned to the size of JS::Value.
return RoundUp(digitLength() * sizeof(Digit), sizeof(Value));
}
return mallocSizeOf(heapDigits_);
}
BigInt* BigInt::zero(JSContext* cx, gc::Heap heap) {
return createUninitialized(cx, 0, false, heap);
}
BigInt* BigInt::createFromDigit(JSContext* cx, Digit d, bool isNegative,
gc::Heap heap) {
MOZ_ASSERT(d != 0);
BigInt* res = createUninitialized(cx, 1, isNegative, heap);
if (!res) {
return nullptr;
}
res->setDigit(0, d);
return res;
}
BigInt* BigInt::one(JSContext* cx) { return createFromDigit(cx, 1, false); }
BigInt* BigInt::negativeOne(JSContext* cx) {
return createFromDigit(cx, 1, true);
}
BigInt* BigInt::createFromNonZeroRawUint64(JSContext* cx, uint64_t n,
bool isNegative) {
MOZ_ASSERT(n != 0);
size_t resultLength = 1;
if (DigitBits == 32 && (n >> 32) != 0) {
resultLength = 2;
}
BigInt* result = createUninitialized(cx, resultLength, isNegative);
if (!result) {
return nullptr;
}
result->setDigit(0, n);
if (DigitBits == 32 && resultLength > 1) {
result->setDigit(1, n >> 32);
}
MOZ_ASSERT(!HasLeadingZeroes(result));
return result;
}
BigInt* BigInt::neg(JSContext* cx, HandleBigInt x) {
if (x->isZero()) {
return x;
}
BigInt* result = copy(cx, x);
if (!result) {
return nullptr;
}
result->toggleHeaderFlagBit(SignBit);
return result;
}
#if !defined(JS_64BIT)
# define HAVE_TWO_DIGIT 1
using TwoDigit = uint64_t;
#elif defined(__SIZEOF_INT128__)
# define HAVE_TWO_DIGIT 1
using TwoDigit = __uint128_t;
#endif
inline BigInt::Digit BigInt::digitMul(Digit a, Digit b, Digit* high) {
#if defined(HAVE_TWO_DIGIT)
TwoDigit result = static_cast<TwoDigit>(a) * static_cast<TwoDigit>(b);
*high = result >> DigitBits;
return static_cast<Digit>(result);
#else
// Multiply in half-pointer-sized chunks.
// For inputs [AH AL]*[BH BL], the result is:
//
// [AL*BL] // rLow
// + [AL*BH] // rMid1
// + [AH*BL] // rMid2
// + [AH*BH] // rHigh
// = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1]
//
// Where of course we must be careful with carries between the columns.
Digit aLow = a & HalfDigitMask;
Digit aHigh = a >> HalfDigitBits;
Digit bLow = b & HalfDigitMask;
Digit bHigh = b >> HalfDigitBits;
Digit rLow = aLow * bLow;
Digit rMid1 = aLow * bHigh;
Digit rMid2 = aHigh * bLow;
Digit rHigh = aHigh * bHigh;
Digit carry = 0;
Digit low = digitAdd(rLow, rMid1 << HalfDigitBits, &carry);
low = digitAdd(low, rMid2 << HalfDigitBits, &carry);
*high = (rMid1 >> HalfDigitBits) + (rMid2 >> HalfDigitBits) + rHigh + carry;
return low;
#endif
}
BigInt::Digit BigInt::digitDiv(Digit high, Digit low, Digit divisor,
Digit* remainder) {
MOZ_ASSERT(high < divisor, "division must not overflow");
#if defined(__x86_64__)
Digit quotient;
Digit rem;
__asm__("divq %[divisor]"
// Outputs: `quotient` will be in rax, `rem` in rdx.
: "=a"(quotient), "=d"(rem)
// Inputs: put `high` into rdx, `low` into rax, and `divisor` into
// any register or stack slot.
: "d"(high), "a"(low), [divisor] "rm"(divisor));
*remainder = rem;
return quotient;
#elif defined(__i386__)
Digit quotient;
Digit rem;
__asm__("divl %[divisor]"
// Outputs: `quotient` will be in eax, `rem` in edx.
: "=a"(quotient), "=d"(rem)
// Inputs: put `high` into edx, `low` into eax, and `divisor` into
// any register or stack slot.
: "d"(high), "a"(low), [divisor] "rm"(divisor));
*remainder = rem;
return quotient;
#else
static constexpr Digit HalfDigitBase = 1ull << HalfDigitBits;
// Adapted from Warren, Hacker's Delight, p. 152.
unsigned s = DigitLeadingZeroes(divisor);
// If `s` is DigitBits here, it causes an undefined behavior.
// But `s` is never DigitBits since `divisor` is never zero here.
MOZ_ASSERT(s != DigitBits);
divisor <<= s;
Digit vn1 = divisor >> HalfDigitBits;
Digit vn0 = divisor & HalfDigitMask;
// `sZeroMask` which is 0 if s == 0 and all 1-bits otherwise.
//
// `s` can be 0. If `s` is 0, performing "low >> (DigitBits - s)" must not
// be done since it causes an undefined behavior since `>> DigitBits` is
// undefined in C++. Quoted from C++ spec, "The type of the result is that of
// the promoted left operand.
//
// The behavior is undefined if the right operand is negative, or greater
// than or equal to the length in bits of the promoted left operand". We
// mask the right operand of the shift by `shiftMask` (`DigitBits - 1`),
// which makes `DigitBits - 0` zero.
//
// This shifting produces a value which covers 0 < `s` <= (DigitBits - 1)
// cases. `s` == DigitBits never happen as we asserted. Since `sZeroMask`
// clears the value in the case of `s` == 0, `s` == 0 case is also covered.
static_assert(sizeof(intptr_t) == sizeof(Digit),
"unexpected size of BigInt::Digit");
Digit sZeroMask =
static_cast<Digit>((-static_cast<intptr_t>(s)) >> (DigitBits - 1));
static constexpr unsigned shiftMask = DigitBits - 1;
Digit un32 =
(high << s) | ((low >> ((DigitBits - s) & shiftMask)) & sZeroMask);
Digit un10 = low << s;
Digit un1 = un10 >> HalfDigitBits;
Digit un0 = un10 & HalfDigitMask;
Digit q1 = un32 / vn1;
Digit rhat = un32 - q1 * vn1;
while (q1 >= HalfDigitBase || q1 * vn0 > rhat * HalfDigitBase + un1) {
q1--;
rhat += vn1;
if (rhat >= HalfDigitBase) {
break;
}
}
Digit un21 = un32 * HalfDigitBase + un1 - q1 * divisor;
Digit q0 = un21 / vn1;
rhat = un21 - q0 * vn1;
while (q0 >= HalfDigitBase || q0 * vn0 > rhat * HalfDigitBase + un0) {
q0--;
rhat += vn1;
if (rhat >= HalfDigitBase) {
break;
}
}
*remainder = (un21 * HalfDigitBase + un0 - q0 * divisor) >> s;
return q1 * HalfDigitBase + q0;
#endif
}
// Multiplies `source` with `factor` and adds `summand` to the result.
// `result` and `source` may be the same BigInt for inplace modification.
void BigInt::internalMultiplyAdd(const BigInt* source, Digit factor,
Digit summand, unsigned n, BigInt* result) {
MOZ_ASSERT(source->digitLength() >= n);
MOZ_ASSERT(result->digitLength() >= n);
Digit carry = summand;
Digit high = 0;
for (unsigned i = 0; i < n; i++) {
Digit current = source->digit(i);
Digit newCarry = 0;
// Compute this round's multiplication.
Digit newHigh = 0;
current = digitMul(current, factor, &newHigh);
// Add last round's carryovers.
current = digitAdd(current, high, &newCarry);
current = digitAdd(current, carry, &newCarry);
// Store result and prepare for next round.
result->setDigit(i, current);
carry = newCarry;
high = newHigh;
}
if (result->digitLength() > n) {
result->setDigit(n++, carry + high);
// Current callers don't pass in such large results, but let's be robust.
while (n < result->digitLength()) {
result->setDigit(n++, 0);
}
} else {
MOZ_ASSERT(!(carry + high));
}
}
// Multiplies `this` with `factor` and adds `summand` to the result.
void BigInt::inplaceMultiplyAdd(Digit factor, Digit summand) {
internalMultiplyAdd(this, factor, summand, digitLength(), this);
}
// Multiplies `multiplicand` with `multiplier` and adds the result to
// `accumulator`, starting at `accumulatorIndex` for the least-significant
// digit. Callers must ensure that `accumulator`'s digitLength and
// corresponding digit storage is long enough to hold the result.
void BigInt::multiplyAccumulate(const BigInt* multiplicand, Digit multiplier,
BigInt* accumulator,
unsigned accumulatorIndex) {
MOZ_ASSERT(accumulator->digitLength() >
multiplicand->digitLength() + accumulatorIndex);
if (!multiplier) {
return;
}
Digit carry = 0;
Digit high = 0;
for (unsigned i = 0; i < multiplicand->digitLength();
i++, accumulatorIndex++) {
Digit acc = accumulator->digit(accumulatorIndex);
Digit newCarry = 0;
// Add last round's carryovers.
acc = digitAdd(acc, high, &newCarry);
acc = digitAdd(acc, carry, &newCarry);
// Compute this round's multiplication.
Digit multiplicandDigit = multiplicand->digit(i);
Digit low = digitMul(multiplier, multiplicandDigit, &high);
acc = digitAdd(acc, low, &newCarry);
// Store result and prepare for next round.
accumulator->setDigit(accumulatorIndex, acc);
carry = newCarry;
}
while (carry || high) {
MOZ_ASSERT(accumulatorIndex < accumulator->digitLength());
Digit acc = accumulator->digit(accumulatorIndex);
Digit newCarry = 0;
acc = digitAdd(acc, high, &newCarry);
high = 0;
acc = digitAdd(acc, carry, &newCarry);
accumulator->setDigit(accumulatorIndex, acc);
carry = newCarry;
accumulatorIndex++;
}
}
inline int8_t BigInt::absoluteCompare(const BigInt* x, const BigInt* y) {
MOZ_ASSERT(!HasLeadingZeroes(x));
MOZ_ASSERT(!HasLeadingZeroes(y));
// Sanity checks to catch negative zeroes escaping to the wild.
MOZ_ASSERT(!x->isNegative() || !x->isZero());
MOZ_ASSERT(!y->isNegative() || !y->isZero());
int diff = x->digitLength() - y->digitLength();
if (diff) {
return diff < 0 ? -1 : 1;
}
int i = x->digitLength() - 1;
while (i >= 0 && x->digit(i) == y->digit(i)) {
i--;
}
if (i < 0) {
return 0;
}
return x->digit(i) > y->digit(i) ? 1 : -1;
}
BigInt* BigInt::absoluteAdd(JSContext* cx, HandleBigInt x, HandleBigInt y,
bool resultNegative) {
bool swap = x->digitLength() < y->digitLength();
// Ensure `left` has at least as many digits as `right`.
HandleBigInt& left = swap ? y : x;
HandleBigInt& right = swap ? x : y;
if (left->isZero()) {
MOZ_ASSERT(right->isZero());
return left;
}
if (right->isZero()) {
return resultNegative == left->isNegative() ? left : neg(cx, left);
}
// Fast path for the likely-common case of up to a uint64_t of magnitude.
if (left->absFitsInUint64()) {
MOZ_ASSERT(right->absFitsInUint64());
uint64_t lhs = left->uint64FromAbsNonZero();
uint64_t rhs = right->uint64FromAbsNonZero();
uint64_t res = lhs + rhs;
bool overflow = res < lhs;
MOZ_ASSERT(res != 0 || overflow);
size_t resultLength = 1;
if (DigitBits == 32) {
if (overflow) {
resultLength = 3;
} else if (res >> 32) {
resultLength = 2;
}
} else {
if (overflow) {
resultLength = 2;
}
}
BigInt* result = createUninitialized(cx, resultLength, resultNegative);
if (!result) {
return nullptr;
}
result->setDigit(0, res);
if (DigitBits == 32 && resultLength > 1) {
result->setDigit(1, res >> 32);
}
if (overflow) {
constexpr size_t overflowIndex = DigitBits == 32 ? 2 : 1;
result->setDigit(overflowIndex, 1);
}
MOZ_ASSERT(!HasLeadingZeroes(result));
return result;
}
BigInt* result =
createUninitialized(cx, left->digitLength() + 1, resultNegative);
if (!result) {
return nullptr;
}
Digit carry = 0;
unsigned i = 0;
for (; i < right->digitLength(); i++) {
Digit newCarry = 0;
Digit sum = digitAdd(left->digit(i), right->digit(i), &newCarry);
sum = digitAdd(sum, carry, &newCarry);
result->setDigit(i, sum);
carry = newCarry;
}
for (; i < left->digitLength(); i++) {
Digit newCarry = 0;
Digit sum = digitAdd(left->digit(i), carry, &newCarry);
result->setDigit(i, sum);
carry = newCarry;
}
result->setDigit(i, carry);
return destructivelyTrimHighZeroDigits(cx, result);
}
BigInt* BigInt::absoluteSub(JSContext* cx, HandleBigInt x, HandleBigInt y,
bool resultNegative) {
MOZ_ASSERT(x->digitLength() >= y->digitLength());
MOZ_ASSERT(absoluteCompare(x, y) > 0);
MOZ_ASSERT(!x->isZero());
if (y->isZero()) {
return resultNegative == x->isNegative() ? x : neg(cx, x);
}
// Fast path for the likely-common case of up to a uint64_t of magnitude.
if (x->absFitsInUint64()) {
MOZ_ASSERT(y->absFitsInUint64());
uint64_t lhs = x->uint64FromAbsNonZero();
uint64_t rhs = y->uint64FromAbsNonZero();
MOZ_ASSERT(lhs > rhs);
uint64_t res = lhs - rhs;
MOZ_ASSERT(res != 0);
return createFromNonZeroRawUint64(cx, res, resultNegative);
}
BigInt* result = createUninitialized(cx, x->digitLength(), resultNegative);
if (!result) {
return nullptr;
}
Digit borrow = 0;
unsigned i = 0;
for (; i < y->digitLength(); i++) {
Digit newBorrow = 0;
Digit difference = digitSub(x->digit(i), y->digit(i), &newBorrow);
difference = digitSub(difference, borrow, &newBorrow);
result->setDigit(i, difference);
borrow = newBorrow;
}
for (; i < x->digitLength(); i++) {
Digit newBorrow = 0;
Digit difference = digitSub(x->digit(i), borrow, &newBorrow);
result->setDigit(i, difference);
borrow = newBorrow;
}
MOZ_ASSERT(!borrow);
return destructivelyTrimHighZeroDigits(cx, result);
}
// Divides `x` by `divisor`, returning the result in `quotient` and `remainder`.
// Mathematically, the contract is:
//
// quotient = (x - remainder) / divisor, with 0 <= remainder < divisor.
//
// If `quotient` is an empty handle, an appropriately sized BigInt will be
// allocated for it; otherwise the caller must ensure that it is big enough.
// `quotient` can be the same as `x` for an in-place division. `quotient` can
// also be `Nothing()` if the caller is only interested in the remainder.
//
// This function returns false if `quotient` is an empty handle, but allocating
// the quotient failed. Otherwise it returns true, indicating success.
bool BigInt::absoluteDivWithDigitDivisor(
JSContext* cx, HandleBigInt x, Digit divisor,
const Maybe<MutableHandleBigInt>& quotient, Digit* remainder,
bool quotientNegative) {
MOZ_ASSERT(divisor);
MOZ_ASSERT(!x->isZero());
*remainder = 0;
if (divisor == 1) {
if (quotient) {
BigInt* q;
if (x->isNegative() == quotientNegative) {
q = x;
} else {
q = neg(cx, x);
if (!q) {
return false;
}
}
quotient.value().set(q);
}
return true;
}
unsigned length = x->digitLength();
if (quotient) {
if (!quotient.value()) {
BigInt* q = createUninitialized(cx, length, quotientNegative);
if (!q) {
return false;
}
quotient.value().set(q);
}
for (int i = length - 1; i >= 0; i--) {
Digit q = digitDiv(*remainder, x->digit(i), divisor, remainder);
quotient.value()->setDigit(i, q);
}
} else {
for (int i = length - 1; i >= 0; i--) {
digitDiv(*remainder, x->digit(i), divisor, remainder);
}
}
return true;
}
// Adds `summand` onto `this`, starting with `summand`'s 0th digit
// at `this`'s `startIndex`'th digit. Returns the "carry" (0 or 1).
BigInt::Digit BigInt::absoluteInplaceAdd(const BigInt* summand,
unsigned startIndex) {
Digit carry = 0;
unsigned n = summand->digitLength();
MOZ_ASSERT(digitLength() > startIndex,
"must start adding at an in-range digit");
MOZ_ASSERT(digitLength() - startIndex >= n,
"digits being added to must not extend above the digits in "
"this (except for the returned carry digit)");
for (unsigned i = 0; i < n; i++) {
Digit newCarry = 0;
Digit sum = digitAdd(digit(startIndex + i), summand->digit(i), &newCarry);
sum = digitAdd(sum, carry, &newCarry);
setDigit(startIndex + i, sum);
carry = newCarry;
}
return carry;
}
// Subtracts `subtrahend` from this, starting with `subtrahend`'s 0th digit
// at `this`'s `startIndex`-th digit. Returns the "borrow" (0 or 1).
BigInt::Digit BigInt::absoluteInplaceSub(const BigInt* subtrahend,
unsigned startIndex) {
Digit borrow = 0;
unsigned n = subtrahend->digitLength();
MOZ_ASSERT(digitLength() > startIndex,
"must start subtracting from an in-range digit");
MOZ_ASSERT(digitLength() - startIndex >= n,
"digits being subtracted from must not extend above the "
"digits in this (except for the returned borrow digit)");
for (unsigned i = 0; i < n; i++) {
Digit newBorrow = 0;
Digit difference =
digitSub(digit(startIndex + i), subtrahend->digit(i), &newBorrow);
difference = digitSub(difference, borrow, &newBorrow);
setDigit(startIndex + i, difference);
borrow = newBorrow;
}
return borrow;
}
// Returns whether (factor1 * factor2) > (high << kDigitBits) + low.
inline bool BigInt::productGreaterThan(Digit factor1, Digit factor2, Digit high,
Digit low) {
Digit resultHigh;
Digit resultLow = digitMul(factor1, factor2, &resultHigh);
return resultHigh > high || (resultHigh == high && resultLow > low);
}
void BigInt::inplaceRightShiftLowZeroBits(unsigned shift) {
MOZ_ASSERT(shift < DigitBits);
MOZ_ASSERT(!(digit(0) & ((static_cast<Digit>(1) << shift) - 1)),
"should only be shifting away zeroes");
if (!shift) {
return;
}
Digit carry = digit(0) >> shift;
unsigned last = digitLength() - 1;
for (unsigned i = 0; i < last; i++) {
Digit d = digit(i + 1);
setDigit(i, (d << (DigitBits - shift)) | carry);
carry = d >> shift;
}
setDigit(last, carry);
}
// Always copies the input, even when `shift` == 0.
BigInt* BigInt::absoluteLeftShiftAlwaysCopy(JSContext* cx, HandleBigInt x,
unsigned shift,
LeftShiftMode mode) {
MOZ_ASSERT(shift < DigitBits);
MOZ_ASSERT(!x->isZero());
unsigned n = x->digitLength();
unsigned resultLength = mode == LeftShiftMode::AlwaysAddOneDigit ? n + 1 : n;
BigInt* result = createUninitialized(cx, resultLength, x->isNegative());
if (!result) {
return nullptr;
}
if (!shift) {
for (unsigned i = 0; i < n; i++) {
result->setDigit(i, x->digit(i));
}
if (mode == LeftShiftMode::AlwaysAddOneDigit) {
result->setDigit(n, 0);
}
return result;
}
Digit carry = 0;
for (unsigned i = 0; i < n; i++) {
Digit d = x->digit(i);
result->setDigit(i, (d << shift) | carry);
carry = d >> (DigitBits - shift);
}
if (mode == LeftShiftMode::AlwaysAddOneDigit) {
result->setDigit(n, carry);
} else {
MOZ_ASSERT(mode == LeftShiftMode::SameSizeResult);
MOZ_ASSERT(!carry);
}
return result;
}
// Divides `dividend` by `divisor`, returning the result in `quotient` and
// `remainder`. Mathematically, the contract is:
//
// quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor.
//
// Both `quotient` and `remainder` are optional, for callers that are only
// interested in one of them. See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Also see the overview of the algorithm by Jan Marthedal Rasmussen over at
bool BigInt::absoluteDivWithBigIntDivisor(
JSContext* cx, HandleBigInt dividend, HandleBigInt divisor,
const Maybe<MutableHandleBigInt>& quotient,
const Maybe<MutableHandleBigInt>& remainder, bool isNegative) {
MOZ_ASSERT(divisor->digitLength() >= 2);
MOZ_ASSERT(dividend->digitLength() >= divisor->digitLength());
// Any early error return is detectable by checking the quotient and/or
// remainder output values.
MOZ_ASSERT(!quotient || !quotient.value());
MOZ_ASSERT(!remainder || !remainder.value());
// The unusual variable names inside this function are consistent with
// Knuth's book, as well as with Go's implementation of this algorithm.
// Maintaining this consistency is probably more useful than trying to
// come up with more descriptive names for them.
const unsigned n = divisor->digitLength();
const unsigned m = dividend->digitLength() - n;
// The quotient to be computed.
RootedBigInt q(cx);
if (quotient) {
q = createUninitialized(cx, m + 1, isNegative);
if (!q) {
return false;
}
}
// In each iteration, `qhatv` holds `divisor` * `current quotient digit`.
// "v" is the book's name for `divisor`, `qhat` the current quotient digit.
RootedBigInt qhatv(cx, createUninitialized(cx, n + 1, isNegative));
if (!qhatv) {
return false;
}
// D1.
// Left-shift inputs so that the divisor's MSB is set. This is necessary to
// prevent the digit-wise divisions (see digitDiv call below) from
// overflowing (they take a two digits wide input, and return a one digit
// result).
Digit lastDigit = divisor->digit(n - 1);
unsigned shift = DigitLeadingZeroes(lastDigit);
RootedBigInt shiftedDivisor(cx);
if (shift > 0) {
shiftedDivisor = absoluteLeftShiftAlwaysCopy(cx, divisor, shift,
LeftShiftMode::SameSizeResult);
if (!shiftedDivisor) {
return false;
}
} else {
shiftedDivisor = divisor;
}
// Holds the (continuously updated) remaining part of the dividend, which
// eventually becomes the remainder.
RootedBigInt u(cx,
absoluteLeftShiftAlwaysCopy(cx, dividend, shift,
LeftShiftMode::AlwaysAddOneDigit));
if (!u) {
return false;
}
// D2.
// Iterate over the dividend's digit (like the "grade school" algorithm).
// `vn1` is the divisor's most significant digit.
Digit vn1 = shiftedDivisor->digit(n - 1);
for (int j = m; j >= 0; j--) {
// D3.
// Estimate the current iteration's quotient digit (see Knuth for details).
// `qhat` is the current quotient digit.
Digit qhat = std::numeric_limits<Digit>::max();
// `ujn` is the dividend's most significant remaining digit.
Digit ujn = u->digit(j + n);
if (ujn != vn1) {
// `rhat` is the current iteration's remainder.
Digit rhat = 0;
// Estimate the current quotient digit by dividing the most significant
// digits of dividend and divisor. The result will not be too small,
// but could be a bit too large.
qhat = digitDiv(ujn, u->digit(j + n - 1), vn1, &rhat);
// Decrement the quotient estimate as needed by looking at the next
// digit, i.e. by testing whether
// qhat * v_{n-2} > (rhat << DigitBits) + u_{j+n-2}.
Digit vn2 = shiftedDivisor->digit(n - 2);
Digit ujn2 = u->digit(j + n - 2);
while (productGreaterThan(qhat, vn2, rhat, ujn2)) {
qhat--;
Digit prevRhat = rhat;
rhat += vn1;
// v[n-1] >= 0, so this tests for overflow.
if (rhat < prevRhat) {
break;
}
}
}
// D4.
// Multiply the divisor with the current quotient digit, and subtract
// it from the dividend. If there was "borrow", then the quotient digit
// was one too high, so we must correct it and undo one subtraction of
// the (shifted) divisor.
internalMultiplyAdd(shiftedDivisor, qhat, 0, n, qhatv);
Digit c = u->absoluteInplaceSub(qhatv, j);
if (c) {
c = u->absoluteInplaceAdd(shiftedDivisor, j);
u->setDigit(j + n, u->digit(j + n) + c);
qhat--;
}
if (quotient) {
q->setDigit(j, qhat);
}
}
if (quotient) {
BigInt* bi = destructivelyTrimHighZeroDigits(cx, q);
if (!bi) {
return false;
}
quotient.value().set(q);
}
if (remainder) {
u->inplaceRightShiftLowZeroBits(shift);
remainder.value().set(u);
}
return true;
}
// Helper for Absolute{And,AndNot,Or,Xor}.
// Performs the given binary `op` on digit pairs of `x` and `y`; when the
// end of the shorter of the two is reached, `kind` configures how
// remaining digits are handled.
// Example:
// y: [ y2 ][ y1 ][ y0 ]
// x: [ x3 ][ x2 ][ x1 ][ x0 ]
// | | | |
// (Fill) (op) (op) (op)
// | | | |
// v v v v
// result: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ]
template <BigInt::BitwiseOpKind kind, typename BitwiseOp>
inline BigInt* BigInt::absoluteBitwiseOp(JSContext* cx, HandleBigInt x,
HandleBigInt y, BitwiseOp&& op) {
unsigned xLength = x->digitLength();
unsigned yLength = y->digitLength();
unsigned numPairs = std::min(xLength, yLength);
unsigned resultLength;
if (kind == BitwiseOpKind::SymmetricTrim) {
resultLength = numPairs;
} else if (kind == BitwiseOpKind::SymmetricFill) {
resultLength = std::max(xLength, yLength);
} else {
MOZ_ASSERT(kind == BitwiseOpKind::AsymmetricFill);
resultLength = xLength;
}
bool resultNegative = false;
BigInt* result = createUninitialized(cx, resultLength, resultNegative);
if (!result) {
return nullptr;
}
unsigned i = 0;
for (; i < numPairs; i++) {
result->setDigit(i, op(x->digit(i), y->digit(i)));
}
if (kind != BitwiseOpKind::SymmetricTrim) {
BigInt* source = kind == BitwiseOpKind::AsymmetricFill ? x
: xLength == i ? y
: x;
for (; i < resultLength; i++) {
result->setDigit(i, source->digit(i));
}
}
MOZ_ASSERT(i == resultLength);
return destructivelyTrimHighZeroDigits(cx, result);
}
BigInt* BigInt::absoluteAnd(JSContext* cx, HandleBigInt x, HandleBigInt y) {
return absoluteBitwiseOp<BitwiseOpKind::SymmetricTrim>(cx, x, y,
std::bit_and<Digit>());
}
BigInt* BigInt::absoluteOr(JSContext* cx, HandleBigInt x, HandleBigInt y) {
return absoluteBitwiseOp<BitwiseOpKind::SymmetricFill>(cx, x, y,
std::bit_or<Digit>());
}
BigInt* BigInt::absoluteAndNot(JSContext* cx, HandleBigInt x, HandleBigInt y) {
auto digitOperation = [](Digit a, Digit b) { return a & ~b; };
return absoluteBitwiseOp<BitwiseOpKind::AsymmetricFill>(cx, x, y,
digitOperation);
}
BigInt* BigInt::absoluteXor(JSContext* cx, HandleBigInt x, HandleBigInt y) {
return absoluteBitwiseOp<BitwiseOpKind::SymmetricFill>(cx, x, y,
std::bit_xor<Digit>());
}
BigInt* BigInt::absoluteAddOne(JSContext* cx, HandleBigInt x,
bool resultNegative) {
unsigned inputLength = x->digitLength();
// The addition will overflow into a new digit if all existing digits are
// at maximum.
bool willOverflow = true;
for (unsigned i = 0; i < inputLength; i++) {
if (std::numeric_limits<Digit>::max() != x->digit(i)) {
willOverflow = false;
break;
}
}
unsigned resultLength = inputLength + willOverflow;
BigInt* result = createUninitialized(cx, resultLength, resultNegative);
if (!result) {
return nullptr;
}
Digit carry = 1;
for (unsigned i = 0; i < inputLength; i++) {
Digit newCarry = 0;
result->setDigit(i, digitAdd(x->digit(i), carry, &newCarry));
carry = newCarry;
}
if (resultLength > inputLength) {
MOZ_ASSERT(carry == 1);
result->setDigit(inputLength, 1);
} else {
MOZ_ASSERT(!carry);
}
return destructivelyTrimHighZeroDigits(cx, result);
}
BigInt* BigInt::absoluteSubOne(JSContext* cx, HandleBigInt x,
bool resultNegative) {
MOZ_ASSERT(!x->isZero());
unsigned length = x->digitLength();
if (length == 1) {
Digit d = x->digit(0);
if (d == 1) {
// Ignore resultNegative.
return zero(cx);
}
return createFromDigit(cx, d - 1, resultNegative);
}
BigInt* result = createUninitialized(cx, length, resultNegative);
if (!result) {
return nullptr;
}
Digit borrow = 1;
for (unsigned i = 0; i < length; i++) {
Digit newBorrow = 0;
result->setDigit(i, digitSub(x->digit(i), borrow, &newBorrow));
borrow = newBorrow;
}
MOZ_ASSERT(!borrow);
return destructivelyTrimHighZeroDigits(cx, result);
}
BigInt* BigInt::inc(JSContext* cx, HandleBigInt x) {
if (x->isZero()) {
return one(cx);
}
bool isNegative = x->isNegative();
if (isNegative) {
return absoluteSubOne(cx, x, isNegative);
}
return absoluteAddOne(cx, x, isNegative);
}
BigInt* BigInt::dec(JSContext* cx, HandleBigInt x) {
if (x->isZero()) {
return negativeOne(cx);
}
bool isNegative = x->isNegative();
if (isNegative) {
return absoluteAddOne(cx, x, isNegative);
}
return absoluteSubOne(cx, x, isNegative);
}
// Lookup table for the maximum number of bits required per character of a
// base-N string representation of a number. To increase accuracy, the array
// value is the actual value multiplied by 32. To generate this table:
// for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
static constexpr uint8_t maxBitsPerCharTable[] = {
0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8
102, 107, 111, 115, 119, 122, 126, 128, // 9..16
131, 134, 136, 139, 141, 143, 145, 147, // 17..24
149, 151, 153, 154, 156, 158, 159, 160, // 25..32
162, 163, 165, 166, // 33..36
};
static constexpr unsigned bitsPerCharTableShift = 5;
static constexpr size_t bitsPerCharTableMultiplier = 1u
<< bitsPerCharTableShift;
static constexpr char radixDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
static inline uint64_t CeilDiv(uint64_t numerator, uint64_t denominator) {
MOZ_ASSERT(numerator != 0);
return 1 + (numerator - 1) / denominator;
};
// Compute (an overapproximation of) the length of the string representation of
// a BigInt. In base B an X-digit number has maximum value:
//
// B**X - 1
//
// We're trying to find N for an N-digit number in base |radix| full
// representing a |bitLength|-digit number in base 2, so we have:
//
// radix**N - 1 ≥ 2**bitLength - 1
// radix**N ≥ 2**bitLength
// N ≥ log2(2**bitLength) / log2(radix)
// N ≥ bitLength / log2(radix)
//
// so the smallest N is:
//
// N = ⌈bitLength / log2(radix)⌉
//
// We want to avoid floating-point computations and precompute the logarithm, so
// we multiply both sides of the division by |bitsPerCharTableMultiplier|:
//
// N = ⌈(bPCTM * bitLength) / (bPCTM * log2(radix))⌉
//
// and then because |maxBitsPerChar| representing the denominator may have been
// rounded *up* -- which could produce an overall under-computation -- we reduce
// by one to undo any rounding and conservatively compute:
//
// N ≥ ⌈(bPCTM * bitLength) / (maxBitsPerChar - 1)⌉
//
size_t BigInt::calculateMaximumCharactersRequired(HandleBigInt x,
unsigned radix) {
MOZ_ASSERT(!x->isZero());
MOZ_ASSERT(radix >= 2 && radix <= 36);
size_t length = x->digitLength();
Digit lastDigit = x->digit(length - 1);
size_t bitLength = length * DigitBits - DigitLeadingZeroes(lastDigit);
uint8_t maxBitsPerChar = maxBitsPerCharTable[radix];
uint64_t maximumCharactersRequired =
CeilDiv(static_cast<uint64_t>(bitsPerCharTableMultiplier) * bitLength,
maxBitsPerChar - 1);
maximumCharactersRequired += x->isNegative();
return AssertedCast<size_t>(maximumCharactersRequired);
}
template <AllowGC allowGC>
JSLinearString* BigInt::toStringBasePowerOfTwo(JSContext* cx, HandleBigInt x,
unsigned radix) {
MOZ_ASSERT(mozilla::IsPowerOfTwo(radix));
MOZ_ASSERT(radix >= 2 && radix <= 32);
MOZ_ASSERT(!x->isZero());
const unsigned length = x->digitLength();
const bool sign = x->isNegative();
const unsigned bitsPerChar = mozilla::CountTrailingZeroes32(radix);
const unsigned charMask = radix - 1;
// Compute the length of the resulting string: divide the bit length of the
// BigInt by the number of bits representable per character (rounding up).
const Digit msd = x->digit(length - 1);
const size_t bitLength = length * DigitBits - DigitLeadingZeroes(msd);
const size_t charsRequired = CeilDiv(bitLength, bitsPerChar) + sign;
if (charsRequired > JSString::MAX_LENGTH) {
if constexpr (allowGC) {
ReportAllocationOverflow(cx);
}
return nullptr;
}
auto resultChars = cx->make_pod_array<char>(charsRequired);
if (!resultChars) {
if constexpr (!allowGC) {
cx->recoverFromOutOfMemory();
}
return nullptr;
}
Digit digit = 0;
// Keeps track of how many unprocessed bits there are in |digit|.
unsigned availableBits = 0;
size_t pos = charsRequired;
for (unsigned i = 0; i < length - 1; i++) {
Digit newDigit = x->digit(i);
// Take any leftover bits from the last iteration into account.
unsigned current = (digit | (newDigit << availableBits)) & charMask;
MOZ_ASSERT(pos);
resultChars[--pos] = radixDigits[current];
unsigned consumedBits = bitsPerChar - availableBits;
digit = newDigit >> consumedBits;
availableBits = DigitBits - consumedBits;
while (availableBits >= bitsPerChar) {
MOZ_ASSERT(pos);
resultChars[--pos] = radixDigits[digit & charMask];
digit >>= bitsPerChar;
availableBits -= bitsPerChar;
}
}
// Write out the character containing the lowest-order bit of |msd|.
//
// This character may include leftover bits from the Digit below |msd|. For
// example, if |x === 2n**64n| and |radix == 32|: the preceding loop writes
// twelve zeroes for low-order bits 0-59 in |x->digit(0)| (and |x->digit(1)|
// on 32-bit); then the highest 4 bits of of |x->digit(0)| (or |x->digit(1)|
// on 32-bit) and bit 0 of |x->digit(1)| (|x->digit(2)| on 32-bit) will
// comprise the |current == 0b1'0000| computed below for the high-order 'g'
// character.
unsigned current = (digit | (msd << availableBits)) & charMask;
MOZ_ASSERT(pos);
resultChars[--pos] = radixDigits[current];
// Write out remaining characters represented by |msd|. (There may be none,
// as in the example above.)
digit = msd >> (bitsPerChar - availableBits);
while (digit != 0) {
MOZ_ASSERT(pos);
resultChars[--pos] = radixDigits[digit & charMask];
digit >>= bitsPerChar;
}
if (sign) {
MOZ_ASSERT(pos);
resultChars[--pos] = '-';
}
MOZ_ASSERT(pos == 0);
return NewStringCopyN<allowGC>(cx, resultChars.get(), charsRequired);
}
template <AllowGC allowGC>
JSLinearString* BigInt::toStringSingleDigitBaseTen(JSContext* cx, Digit digit,
bool isNegative) {
if (digit <= Digit(INT32_MAX)) {
int32_t val = AssertedCast<int32_t>(digit);
return Int32ToString<allowGC>(cx, isNegative ? -val : val);
}
MOZ_ASSERT(digit != 0, "zero case should have been handled in toString");
constexpr size_t maxLength = 1 + (std::numeric_limits<Digit>::digits10 + 1);
static_assert(maxLength == 11 || maxLength == 21,
"unexpected decimal string length");
char resultChars[maxLength];
size_t writePos = maxLength;
while (digit != 0) {
MOZ_ASSERT(writePos > 0);
resultChars[--writePos] = radixDigits[digit % 10];
digit /= 10;
}
MOZ_ASSERT(writePos < maxLength);
MOZ_ASSERT(resultChars[writePos] != '0');
if (isNegative) {
MOZ_ASSERT(writePos > 0);
resultChars[--writePos] = '-';
}
MOZ_ASSERT(writePos < maxLength);
return NewStringCopyN<allowGC>(cx, resultChars + writePos,
maxLength - writePos);
}
static constexpr BigInt::Digit MaxPowerInDigit(uint8_t radix) {
BigInt::Digit result = 1;
while (result < BigInt::Digit(-1) / radix) {
result *= radix;
}
return result;
}
static constexpr uint8_t MaxExponentInDigit(uint8_t radix) {
uint8_t exp = 0;
BigInt::Digit result = 1;
while (result < BigInt::Digit(-1) / radix) {
result *= radix;
exp += 1;
}
return exp;
}
struct RadixInfo {
BigInt::Digit maxPowerInDigit;
uint8_t maxExponentInDigit;
constexpr RadixInfo(BigInt::Digit maxPower, uint8_t maxExponent)
: maxPowerInDigit(maxPower), maxExponentInDigit(maxExponent) {}
explicit constexpr RadixInfo(uint8_t radix)
: RadixInfo(MaxPowerInDigit(radix), MaxExponentInDigit(radix)) {}
};
static constexpr const RadixInfo toStringInfo[37] = {
{0, 0}, {0, 0}, RadixInfo(2), RadixInfo(3), RadixInfo(4),
RadixInfo(5), RadixInfo(6), RadixInfo(7), RadixInfo(8), RadixInfo(9),
RadixInfo(10), RadixInfo(11), RadixInfo(12), RadixInfo(13), RadixInfo(14),
RadixInfo(15), RadixInfo(16), RadixInfo(17), RadixInfo(18), RadixInfo(19),
RadixInfo(20), RadixInfo(21), RadixInfo(22), RadixInfo(23), RadixInfo(24),
RadixInfo(25), RadixInfo(26), RadixInfo(27), RadixInfo(28), RadixInfo(29),
RadixInfo(30), RadixInfo(31), RadixInfo(32), RadixInfo(33), RadixInfo(34),
RadixInfo(35), RadixInfo(36),
};
JSLinearString* BigInt::toStringGeneric(JSContext* cx, HandleBigInt x,
unsigned radix) {
MOZ_ASSERT(radix >= 2 && radix <= 36);
MOZ_ASSERT(!x->isZero());
size_t maximumCharactersRequired =
calculateMaximumCharactersRequired(x, radix);
if (maximumCharactersRequired > JSString::MAX_LENGTH) {
ReportAllocationOverflow(cx);
return nullptr;
}
UniqueChars resultString(js_pod_malloc<char>(maximumCharactersRequired));
if (!resultString) {
ReportOutOfMemory(cx);
return nullptr;
}
size_t writePos = maximumCharactersRequired;
unsigned length = x->digitLength();
Digit lastDigit;
if (length == 1) {
lastDigit = x->digit(0);
} else {
unsigned chunkChars = toStringInfo[radix].maxExponentInDigit;
Digit chunkDivisor = toStringInfo[radix].maxPowerInDigit;
unsigned nonZeroDigit = length - 1;
MOZ_ASSERT(x->digit(nonZeroDigit) != 0);
// `rest` holds the part of the BigInt that we haven't looked at yet.
// Not to be confused with "remainder"!
RootedBigInt rest(cx);
// In the first round, divide the input, allocating a new BigInt for
// the result == rest; from then on divide the rest in-place.
//
// FIXME: absoluteDivWithDigitDivisor doesn't
// destructivelyTrimHighZeroDigits for in-place divisions, leading to
// worse constant factors. See
RootedBigInt dividend(cx, x);
do {
Digit chunk;
if (!absoluteDivWithDigitDivisor(cx, dividend, chunkDivisor, Some(&rest),
&chunk, dividend->isNegative())) {
return nullptr;
}
dividend = rest;
for (unsigned i = 0; i < chunkChars; i++) {
MOZ_ASSERT(writePos > 0);
resultString[--writePos] = radixDigits[chunk % radix];
chunk /= radix;
}
MOZ_ASSERT(!chunk);
if (!rest->digit(nonZeroDigit)) {
nonZeroDigit--;
}
MOZ_ASSERT(rest->digit(nonZeroDigit) != 0,
"division by a single digit can't remove more than one "
"digit from a number");
} while (nonZeroDigit > 0);
lastDigit = rest->digit(0);
}
do {
MOZ_ASSERT(writePos > 0);
resultString[--writePos] = radixDigits[lastDigit % radix];
lastDigit /= radix;
} while (lastDigit > 0);
MOZ_ASSERT(writePos < maximumCharactersRequired);
MOZ_ASSERT(maximumCharactersRequired - writePos <=
static_cast<size_t>(maximumCharactersRequired));
// Remove leading zeroes.
while (writePos + 1 < maximumCharactersRequired &&
resultString[writePos] == '0') {
writePos++;
}
if (x->isNegative()) {
MOZ_ASSERT(writePos > 0);
resultString[--writePos] = '-';
}
MOZ_ASSERT(writePos < maximumCharactersRequired);
// Would be better to somehow adopt resultString directly.
return NewStringCopyN<CanGC>(cx, resultString.get() + writePos,
maximumCharactersRequired - writePos);
}
static void FreeDigits(JSContext* cx, BigInt* bi, BigInt::Digit* digits,
size_t nbytes) {
if (bi->isTenured()) {
MOZ_ASSERT(!cx->nursery().isInside(digits));
js_free(digits);
} else {
cx->nursery().freeBuffer(digits, nbytes);
}
}
BigInt* BigInt::destructivelyTrimHighZeroDigits(JSContext* cx, BigInt* x) {
if (x->isZero()) {
MOZ_ASSERT(!x->isNegative());
return x;
}
MOZ_ASSERT(x->digitLength());
int nonZeroIndex = x->digitLength() - 1;
while (nonZeroIndex >= 0 && x->digit(nonZeroIndex) == 0) {
nonZeroIndex--;
}
if (nonZeroIndex < 0) {
return zero(cx);
}
if (nonZeroIndex == static_cast<int>(x->digitLength() - 1)) {
return x;
}
unsigned newLength = nonZeroIndex + 1;
if (newLength > InlineDigitsLength) {
MOZ_ASSERT(x->hasHeapDigits());
size_t oldLength = x->digitLength();
Digit* newdigits = js::ReallocateCellBuffer<Digit>(
cx, x, x->heapDigits_, oldLength, newLength, js::MallocArena);
if (!newdigits) {
return nullptr;
}
x->heapDigits_ = newdigits;
RemoveCellMemory(x, oldLength * sizeof(Digit), js::MemoryUse::BigIntDigits);
AddCellMemory(x, newLength * sizeof(Digit), js::MemoryUse::BigIntDigits);
} else {
if (x->hasHeapDigits()) {
Digit digits[InlineDigitsLength];
std::copy_n(x->heapDigits_, InlineDigitsLength, digits);
size_t nbytes = x->digitLength() * sizeof(Digit);
FreeDigits(cx, x, x->heapDigits_, nbytes);
RemoveCellMemory(x, nbytes, js::MemoryUse::BigIntDigits);
std::copy_n(digits, InlineDigitsLength, x->inlineDigits_);
}
}
x->setLengthAndFlags(newLength, x->isNegative() ? SignBit : 0);
return x;
}
// The maximum value `radix**charCount - 1` must be represented as a max number
// `2**(N * DigitBits) - 1` for `N` digits, so
//
// 2**(N * DigitBits) - 1 ≥ radix**charcount - 1
// 2**(N * DigitBits) ≥ radix**charcount
// N * DigitBits ≥ log2(radix**charcount)
// N * DigitBits ≥ charcount * log2(radix)
// N ≥ ⌈charcount * log2(radix) / DigitBits⌉ (conservatively)
//
// or in the code's terms (all numbers promoted to exact mathematical values),
//
// N ≥ ⌈charcount * bitsPerChar / (DigitBits * bitsPerCharTableMultiplier)⌉
//
// Note that `N` is computed even more conservatively here because `bitsPerChar`
// is rounded up.
bool BigInt::calculateMaximumDigitsRequired(JSContext* cx, uint8_t radix,
size_t charcount, size_t* result) {
MOZ_ASSERT(2 <= radix && radix <= 36);
uint8_t bitsPerChar = maxBitsPerCharTable[radix];
MOZ_ASSERT(charcount > 0);
MOZ_ASSERT(charcount <= std::numeric_limits<uint64_t>::max() / bitsPerChar);
static_assert(
MaxDigitLength < std::numeric_limits<size_t>::max(),
"can't safely cast calculateMaximumDigitsRequired result to size_t");
uint64_t n = CeilDiv(static_cast<uint64_t>(charcount) * bitsPerChar,
DigitBits * bitsPerCharTableMultiplier);
if (n > MaxDigitLength) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
return false;
}
*result = n;
return true;
}
template <typename CharT>
BigInt* BigInt::parseLiteralDigits(JSContext* cx,
const Range<const CharT> chars,
unsigned radix, bool isNegative,
bool* haveParseError, gc::Heap heap) {
static_assert(
std::is_same_v<CharT, JS::Latin1Char> || std::is_same_v<CharT, char16_t>,
"only the bare minimum character types are supported, to avoid "
"excessively instantiating this template");
MOZ_ASSERT(chars.length());
RangedPtr<const CharT> start = chars.begin();
RangedPtr<const CharT> end = chars.end();
// Skipping leading zeroes.
while (start[0] == '0') {
start++;
if (start == end) {
return zero(cx, heap);
}
}
unsigned limit0 = '0' + std::min(radix, 10u);
unsigned limita = 'a' + (radix - 10);
unsigned limitA = 'A' + (radix - 10);
size_t length;
if (!calculateMaximumDigitsRequired(cx, radix, end - start, &length)) {
return nullptr;
}
BigInt* result = createUninitialized(cx, length, isNegative, heap);
if (!result) {
return nullptr;
}
result->initializeDigitsToZero();
for (; start < end; start++) {
uint32_t digit;
CharT c = *start;
if (c >= '0' && c < limit0) {
digit = c - '0';
} else if (c >= 'a' && c < limita) {
digit = c - 'a' + 10;
} else if (c >= 'A' && c < limitA) {
digit = c - 'A' + 10;
} else {
*haveParseError = true;
return nullptr;
}
result->inplaceMultiplyAdd(static_cast<Digit>(radix),
static_cast<Digit>(digit));
}
return destructivelyTrimHighZeroDigits(cx, result);
}
// BigInt proposal section 7.2
template <typename CharT>
BigInt* BigInt::parseLiteral(JSContext* cx, const Range<const CharT> chars,
bool* haveParseError, js::gc::Heap heap) {
RangedPtr<const CharT> start = chars.begin();
const RangedPtr<const CharT> end = chars.end();
bool isNegative = false;
MOZ_ASSERT(chars.length());
if (end - start > 2 && start[0] == '0') {
if (start[1] == 'b' || start[1] == 'B') {
// StringNumericLiteral ::: BinaryIntegerLiteral
return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 2,
isNegative, haveParseError, heap);
}
if (start[1] == 'x' || start[1] == 'X') {
// StringNumericLiteral ::: HexIntegerLiteral
return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 16,
isNegative, haveParseError, heap);
}
if (start[1] == 'o' || start[1] == 'O') {
// StringNumericLiteral ::: OctalIntegerLiteral
return parseLiteralDigits(cx, Range<const CharT>(start + 2, end), 8,
isNegative, haveParseError, heap);
}
}
return parseLiteralDigits(cx, Range<const CharT>(start, end), 10, isNegative,
haveParseError, heap);
}
BigInt* BigInt::createFromDouble(JSContext* cx, double d) {
MOZ_ASSERT(IsInteger(d), "Only integer-valued doubles can convert to BigInt");
if (d == 0) {
return zero(cx);
}
int exponent = mozilla::ExponentComponent(d);
MOZ_ASSERT(exponent >= 0);
int length = exponent / DigitBits + 1;
BigInt* result = createUninitialized(cx, length, d < 0);
if (!result) {
return nullptr;
}
// We construct a BigInt from the double `d` by shifting its mantissa
// according to its exponent and mapping the bit pattern onto digits.
//
// <----------- bitlength = exponent + 1 ----------->
// <----- 52 ------> <------ trailing zeroes ------>
// mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
// digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
// <--> <------>
// msdTopBits DigitBits
//
using Double = mozilla::FloatingPoint<double>;
uint64_t mantissa =
mozilla::BitwiseCast<uint64_t>(d) & Double::kSignificandBits;
// Add implicit high bit.
mantissa |= 1ull << Double::kSignificandWidth;
const int mantissaTopBit = Double::kSignificandWidth; // 0-indexed.
// 0-indexed position of `d`'s most significant bit within the `msd`.
int msdTopBit = exponent % DigitBits;
// Next digit under construction.
Digit digit;
// First, build the MSD by shifting the mantissa appropriately.
if (msdTopBit < mantissaTopBit) {
int remainingMantissaBits = mantissaTopBit - msdTopBit;
digit = mantissa >> remainingMantissaBits;
mantissa = mantissa << (64 - remainingMantissaBits);
} else {
MOZ_ASSERT(msdTopBit >= mantissaTopBit);
digit = mantissa << (msdTopBit - mantissaTopBit);
mantissa = 0;
}
MOZ_ASSERT(digit != 0, "most significant digit should not be zero");
result->setDigit(--length, digit);
// Fill in digits containing mantissa contributions.
while (mantissa) {
MOZ_ASSERT(length > 0,
"double bits were all non-fractional, so there must be "
"digits present to hold them");
if (DigitBits == 64) {
result->setDigit(--length, mantissa);
break;
}
MOZ_ASSERT(DigitBits == 32);
Digit current = mantissa >> 32;
mantissa = mantissa << 32;
result->setDigit(--length, current);
}
// Fill in low-order zeroes.
for (int i = length - 1; i >= 0; i--) {
result->setDigit(i, 0);
}
return result;
}
BigInt* BigInt::createFromUint64(JSContext* cx, uint64_t n, gc::Heap heap) {
if (n == 0) {
return zero(cx, heap);
}
const bool isNegative = false;
if (DigitBits == 32) {
Digit low = n;
Digit high = n >> 32;
size_t length = high ? 2 : 1;
BigInt* res = createUninitialized(cx, length, isNegative, heap);
if (!res) {
return nullptr;
}
res->setDigit(0, low);
if (high) {
res->setDigit(1, high);
}
return res;
}
return createFromDigit(cx, n, isNegative, heap);
}
BigInt* BigInt::createFromInt64(JSContext* cx, int64_t n, gc::Heap heap) {
BigInt* res = createFromUint64(cx, Abs(n), heap);
if (!res) {
return nullptr;
}
if (n < 0) {
res->setHeaderFlagBit(SignBit);
}
MOZ_ASSERT(res->isNegative() == (n < 0));
return res;
}
BigInt* BigInt::createFromIntPtr(JSContext* cx, intptr_t n) {
static_assert(sizeof(intptr_t) == sizeof(BigInt::Digit));
if (n == 0) {
return BigInt::zero(cx);
}
return BigInt::createFromDigit(cx, BigInt::Digit(Abs(n)), n < 0);
}
// BigInt proposal section 5.1.2
BigInt* js::NumberToBigInt(JSContext* cx, double d) {
// Step 1 is an assertion checked by the caller.
// Step 2.
if (!IsInteger(d)) {
ToCStringBuf cbuf;
const char* str = NumberToCString(&cbuf, d);
MOZ_ASSERT(str);
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_NONINTEGER_NUMBER_TO_BIGINT, str);
return nullptr;
}
// Step 3.
return BigInt::createFromDouble(cx, d);
}
BigInt* BigInt::copy(JSContext* cx, HandleBigInt x, gc::Heap heap) {
if (x->isZero()) {
return zero(cx, heap);
}
BigInt* result =
createUninitialized(cx, x->digitLength(), x->isNegative(), heap);
if (!result) {
return nullptr;
}
for (size_t i = 0; i < x->digitLength(); i++) {
result->setDigit(i, x->digit(i));
}
return result;
}
// BigInt proposal section 1.1.7
BigInt* BigInt::add(JSContext* cx, HandleBigInt x, HandleBigInt y) {
bool xNegative = x->isNegative();
// x + y == x + y
// -x + -y == -(x + y)
if (xNegative == y->isNegative()) {
return absoluteAdd(cx, x, y, xNegative);
}
// x + -y == x - y == -(y - x)
// -x + y == y - x == -(x - y)
int8_t compare = absoluteCompare(x, y);
if (compare == 0) {
return zero(cx);
}
if (compare > 0) {
return absoluteSub(cx, x, y, xNegative);
}
return absoluteSub(cx, y, x, !xNegative);
}
// BigInt proposal section 1.1.8
BigInt* BigInt::sub(JSContext* cx, HandleBigInt x, HandleBigInt y) {
bool xNegative = x->isNegative();
if (xNegative != y->isNegative()) {
// x - (-y) == x + y
// (-x) - y == -(x + y)
return absoluteAdd(cx, x, y, xNegative);
}
// x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
int8_t compare = absoluteCompare(x, y);
if (compare == 0) {
return zero(cx);
}
if (compare > 0) {
return absoluteSub(cx, x, y, xNegative);
}
return absoluteSub(cx, y, x, !xNegative);
}
// BigInt proposal section 1.1.4
BigInt* BigInt::mul(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero()) {
return x;
}
if (y->isZero()) {
return y;
}
bool resultNegative = x->isNegative() != y->isNegative();
// Fast path for the likely-common case of up to a uint64_t of magnitude.
if (x->absFitsInUint64() && y->absFitsInUint64()) {
uint64_t lhs = x->uint64FromAbsNonZero();
uint64_t rhs = y->uint64FromAbsNonZero();
uint64_t res;
if (js::SafeMul(lhs, rhs, &res)) {
MOZ_ASSERT(res != 0);
return createFromNonZeroRawUint64(cx, res, resultNegative);
}
}
unsigned resultLength = x->digitLength() + y->digitLength();
BigInt* result = createUninitialized(cx, resultLength, resultNegative);
if (!result) {
return nullptr;
}
result->initializeDigitsToZero();
for (size_t i = 0; i < x->digitLength(); i++) {
multiplyAccumulate(y, x->digit(i), result, i);
}
return destructivelyTrimHighZeroDigits(cx, result);
}
// BigInt proposal section 1.1.5
BigInt* BigInt::div(JSContext* cx, HandleBigInt x, HandleBigInt y) {
// 1. If y is 0n, throw a RangeError exception.
if (y->isZero()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_DIVISION_BY_ZERO);
return nullptr;
}
// 2. Let quotient be the mathematical value of x divided by y.
// 3. Return a BigInt representing quotient rounded towards 0 to the next
// integral value.
if (x->isZero()) {
return x;
}
if (absoluteCompare(x, y) < 0) {
return zero(cx);
}
RootedBigInt quotient(cx);
bool resultNegative = x->isNegative() != y->isNegative();
if (y->digitLength() == 1) {
Digit divisor = y->digit(0);
if (divisor == 1) {
return resultNegative == x->isNegative() ? x : neg(cx, x);
}
Digit remainder;
if (!absoluteDivWithDigitDivisor(cx, x, divisor, Some(&quotient),
&remainder, resultNegative)) {
return nullptr;
}
} else {
if (!absoluteDivWithBigIntDivisor(cx, x, y, Some(&quotient), Nothing(),
resultNegative)) {
return nullptr;
}
}
return destructivelyTrimHighZeroDigits(cx, quotient);
}
// BigInt proposal section 1.1.6
BigInt* BigInt::mod(JSContext* cx, HandleBigInt x, HandleBigInt y) {
// 1. If y is 0n, throw a RangeError exception.
if (y->isZero()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_DIVISION_BY_ZERO);
return nullptr;
}
// 2. If x is 0n, return x.
if (x->isZero()) {
return x;
}
// 3. Let r be the BigInt defined by the mathematical relation r = x - (y ×
// q) where q is a BigInt that is negative only if x/y is negative and
// positive only if x/y is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical
// quotient of x and y.
if (absoluteCompare(x, y) < 0) {
return x;
}
if (y->digitLength() == 1) {
Digit divisor = y->digit(0);
if (divisor == 1) {
return zero(cx);
}
Digit remainderDigit;
bool unusedQuotientNegative = false;
if (!absoluteDivWithDigitDivisor(cx, x, divisor, Nothing(), &remainderDigit,
unusedQuotientNegative)) {
MOZ_CRASH("BigInt div by digit failed unexpectedly");
}
if (!remainderDigit) {
return zero(cx);
}
return createFromDigit(cx, remainderDigit, x->isNegative());
} else {
RootedBigInt remainder(cx);
if (!absoluteDivWithBigIntDivisor(cx, x, y, Nothing(), Some(&remainder),
x->isNegative())) {
return nullptr;
}
MOZ_ASSERT(remainder);
return destructivelyTrimHighZeroDigits(cx, remainder);
}
}
bool BigInt::divmod(JSContext* cx, Handle<BigInt*> x, Handle<BigInt*> y,
MutableHandle<BigInt*> quotient,
MutableHandle<BigInt*> remainder) {
// 1. If y is 0n, throw a RangeError exception.
if (y->isZero()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_DIVISION_BY_ZERO);
return false;
}
// 2. If x is 0n, quotient and remainder are zero, too.
if (x->isZero()) {
quotient.set(x);
remainder.set(x);
return true;
}
// 3. Let r be the BigInt defined by the mathematical relation r = x - (y ×
// q) where q is a BigInt that is negative only if x/y is negative and
// positive only if x/y is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical
// quotient of x and y.
if (absoluteCompare(x, y) < 0) {
auto* zero = BigInt::zero(cx);
if (!zero) {
return false;
}
quotient.set(zero);
remainder.set(x);
return true;
}
bool resultNegative = x->isNegative() != y->isNegative();
if (y->digitLength() == 1) {
Digit divisor = y->digit(0);
if (divisor == 1) {
quotient.set(resultNegative == x->isNegative() ? x : neg(cx, x));
if (!quotient) {
return false;
}
remainder.set(BigInt::zero(cx));
if (!remainder) {
return false;
}
} else {
Rooted<BigInt*> quot(cx);
Digit remainderDigit;
if (!absoluteDivWithDigitDivisor(cx, x, divisor, Some(&quot),
&remainderDigit, resultNegative)) {
return false;
}
quotient.set(destructivelyTrimHighZeroDigits(cx, quot));
if (!quotient) {
return false;
}
if (!remainderDigit) {
remainder.set(zero(cx));
} else {
remainder.set(createFromDigit(cx, remainderDigit, x->isNegative()));
}
if (!remainder) {
return false;
}
}
} else {
RootedBigInt quot(cx);
RootedBigInt rem(cx);
if (!absoluteDivWithBigIntDivisor(cx, x, y, Some(&quot), Some(&rem),
resultNegative)) {
return false;
}
quotient.set(destructivelyTrimHighZeroDigits(cx, quot));
if (!quotient) {
return false;
}
remainder.set(destructivelyTrimHighZeroDigits(cx, rem));
if (!remainder) {
return false;
}
}
MOZ_ASSERT(quotient && remainder,
"quotient and remainder are computed on return");
MOZ_ASSERT(!quotient->isZero(), "zero quotient is handled earlier");
MOZ_ASSERT(quotient->isNegative() == resultNegative,
"quotient has the correct sign");
MOZ_ASSERT(
remainder->isZero() || (x->isNegative() == remainder->isNegative()),
"remainder has the correct sign");
return true;
}
// BigInt proposal section 1.1.3
BigInt* BigInt::pow(JSContext* cx, HandleBigInt x, HandleBigInt y) {
// 1. If exponent is < 0, throw a RangeError exception.
if (y->isNegative()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_NEGATIVE_EXPONENT);
return nullptr;
}
// 2. If base is 0n and exponent is 0n, return 1n.
if (y->isZero()) {
return one(cx);
}
if (x->isZero()) {
return x;
}
// 3. Return a BigInt representing the mathematical value of base raised
// to the power exponent.
if (x->digitLength() == 1 && x->digit(0) == 1) {
// (-1) ** even_number == 1.
if (x->isNegative() && (y->digit(0) & 1) == 0) {
return neg(cx, x);
}
// (-1) ** odd_number == -1; 1 ** anything == 1.
return x;
}
// For all bases >= 2, very large exponents would lead to unrepresentable
// results.
static_assert(MaxBitLength < std::numeric_limits<Digit>::max(),
"unexpectedly large MaxBitLength");
if (y->digitLength() > 1) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
return nullptr;
}
Digit exponent = y->digit(0);
if (exponent == 1) {
return x;
}
if (exponent >= MaxBitLength) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
return nullptr;
}
static_assert(
MaxBitLength <= static_cast<unsigned>(std::numeric_limits<int>::max()),
"unexpectedly large MaxBitLength");
int n = static_cast<int>(exponent);
bool isOddPower = n & 1;
if (x->digitLength() == 1 && mozilla::IsPowerOfTwo(x->digit(0))) {
// Fast path for (2^m)^n.
// Result is negative for odd powers.
bool resultNegative = x->isNegative() && isOddPower;
unsigned m = mozilla::FloorLog2(x->digit(0));
MOZ_ASSERT(m < DigitBits);
static_assert(MaxBitLength * DigitBits > MaxBitLength,
"n * m can't overflow");
n *= int(m);
int length = 1 + (n / DigitBits);
BigInt* result = createUninitialized(cx, length, resultNegative);
if (!result) {
return nullptr;
}
result->initializeDigitsToZero();
result->setDigit(length - 1, static_cast<Digit>(1) << (n % DigitBits));
return result;
}
RootedBigInt runningSquare(cx, x);
RootedBigInt result(cx, isOddPower ? x : nullptr);
n /= 2;
// Fast path for the likely-common case of up to a uint64_t of magnitude.
if (x->absFitsInUint64()) {
bool resultNegative = x->isNegative() && isOddPower;
uint64_t runningSquareInt = x->uint64FromAbsNonZero();
uint64_t resultInt = isOddPower ? runningSquareInt : 1;
while (true) {
uint64_t runningSquareStart = runningSquareInt;
uint64_t r;
if (!js::SafeMul(runningSquareInt, runningSquareInt, &r)) {
break;
}
runningSquareInt = r;
if (n & 1) {
if (!js::SafeMul(resultInt, runningSquareInt, &r)) {
// Recover |runningSquare| before we restart the loop.
runningSquareInt = runningSquareStart;
break;
}
resultInt = r;
}
n /= 2;
if (n == 0) {
return createFromNonZeroRawUint64(cx, resultInt, resultNegative);
}
}
runningSquare = createFromNonZeroRawUint64(cx, runningSquareInt, false);
if (!runningSquare) {
return nullptr;
}
result = createFromNonZeroRawUint64(cx, resultInt, resultNegative);
if (!result) {
return nullptr;
}
}
// This implicitly sets the result's sign correctly.
while (true) {
runningSquare = mul(cx, runningSquare, runningSquare);
if (!runningSquare) {
return nullptr;
}
if (n & 1) {
if (!result) {
result = runningSquare;
} else {
result = mul(cx, result, runningSquare);
if (!result) {
return nullptr;
}
}
}
n /= 2;
if (n == 0) {
return result;
}
}
}
bool BigInt::powIntPtr(intptr_t x, intptr_t y, intptr_t* result) {
if (y < 0) {
return false;
}
uintptr_t n = uintptr_t(y);
// x^y where x == 1 returns 1 for any y.
if (x == 1) {
*result = 1;
return true;
}
// x^y where x == -1 returns 1 for even y, and -1 for odd y.
if (x == -1) {
*result = (y & 1) ? -1 : 1;
return true;
}
using CheckedIntPtr = mozilla::CheckedInt<intptr_t>;
CheckedIntPtr runningSquare = x;
CheckedIntPtr res = 1;
while (true) {
if ((n & 1) != 0) {
res *= runningSquare;
if (!res.isValid()) {
return false;
}
}
n >>= 1;
if (n == 0) {
*result = res.value();
return true;
}
runningSquare *= runningSquare;
if (!runningSquare.isValid()) {
return false;
}
}
}
BigInt* BigInt::lshByAbsolute(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero() || y->isZero()) {
return x;
}
if (y->digitLength() > 1 || y->digit(0) > MaxBitLength) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
if (js::SupportDifferentialTesting()) {
fprintf(stderr, "ReportOutOfMemory called\n");
}
return nullptr;
}
Digit shift = y->digit(0);
int digitShift = static_cast<int>(shift / DigitBits);
int bitsShift = static_cast<int>(shift % DigitBits);
int length = x->digitLength();
bool grow = bitsShift && (x->digit(length - 1) >> (DigitBits - bitsShift));
int resultLength = length + digitShift + grow;
BigInt* result = createUninitialized(cx, resultLength, x->isNegative());
if (!result) {
return nullptr;
}
int i = 0;
for (; i < digitShift; i++) {
result->setDigit(i, 0);
}
if (bitsShift == 0) {
for (int j = 0; i < resultLength; i++, j++) {
result->setDigit(i, x->digit(j));
}
} else {
Digit carry = 0;
for (int j = 0; j < length; i++, j++) {
Digit d = x->digit(j);
result->setDigit(i, (d << bitsShift) | carry);
carry = d >> (DigitBits - bitsShift);
}
if (grow) {
result->setDigit(i, carry);
} else {
MOZ_ASSERT(!carry);
}
}
return result;
}
BigInt* BigInt::rshByMaximum(JSContext* cx, bool isNegative) {
return isNegative ? negativeOne(cx) : zero(cx);
}
BigInt* BigInt::rshByAbsolute(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero() || y->isZero()) {
return x;
}
if (y->digitLength() > 1 || y->digit(0) >= MaxBitLength) {
return rshByMaximum(cx, x->isNegative());
}
Digit shift = y->digit(0);
int length = x->digitLength();
int digitShift = static_cast<int>(shift / DigitBits);
int bitsShift = static_cast<int>(shift % DigitBits);
int resultLength = length - digitShift;
if (resultLength <= 0) {
return rshByMaximum(cx, x->isNegative());
}
// For negative numbers, round down if any bit was shifted out (so that e.g.
// -5n >> 1n == -3n and not -2n). Check now whether this will happen and
// whether it can cause overflow into a new digit. If we allocate the result
// large enough up front, it avoids having to do a second allocation later.
bool mustRoundDown = false;
if (x->isNegative()) {
const Digit mask = (static_cast<Digit>(1) << bitsShift) - 1;
if ((x->digit(digitShift) & mask)) {
mustRoundDown = true;
} else {
for (int i = 0; i < digitShift; i++) {
if (x->digit(i)) {
mustRoundDown = true;
break;
}
}
}
}
// If bits_shift is non-zero, it frees up bits, preventing overflow.
if (mustRoundDown && bitsShift == 0) {
// Overflow cannot happen if the most significant digit has unset bits.
Digit msd = x->digit(length - 1);
bool roundingCanOverflow = msd == std::numeric_limits<Digit>::max();
if (roundingCanOverflow) {
resultLength++;
}
}
MOZ_ASSERT(resultLength <= length);
RootedBigInt result(cx,
createUninitialized(cx, resultLength, x->isNegative()));
if (!result) {
return nullptr;
}
if (!bitsShift) {
// If roundingCanOverflow, manually initialize the overflow digit.
result->setDigit(resultLength - 1, 0);
for (int i = digitShift; i < length; i++) {
result->setDigit(i - digitShift, x->digit(i));
}
} else {
Digit carry = x->digit(digitShift) >> bitsShift;
int last = length - digitShift - 1;
for (int i = 0; i < last; i++) {
Digit d = x->digit(i + digitShift + 1);
result->setDigit(i, (d << (DigitBits - bitsShift)) | carry);
carry = d >> bitsShift;
}
result->setDigit(last, carry);
}
if (mustRoundDown) {
MOZ_ASSERT(x->isNegative());
// Since the result is negative, rounding down means adding one to
// its absolute value. This cannot overflow. TODO: modify the result in
// place.
return absoluteAddOne(cx, result, x->isNegative());
}
return destructivelyTrimHighZeroDigits(cx, result);
}
// BigInt proposal section 1.1.9. BigInt::leftShift ( x, y )
BigInt* BigInt::lsh(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (y->isNegative()) {
return rshByAbsolute(cx, x, y);
}
return lshByAbsolute(cx, x, y);
}
// BigInt proposal section 1.1.10. BigInt::signedRightShift ( x, y )
BigInt* BigInt::rsh(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (y->isNegative()) {
return lshByAbsolute(cx, x, y);
}
return rshByAbsolute(cx, x, y);
}
// BigInt proposal section 1.1.17. BigInt::bitwiseAND ( x, y )
BigInt* BigInt::bitAnd(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero()) {
return x;
}
if (y->isZero()) {
return y;
}
if (!x->isNegative() && !y->isNegative()) {
return absoluteAnd(cx, x, y);
}
if (x->isNegative() && y->isNegative()) {
// (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1))
// == -(((x-1) | (y-1)) + 1)
RootedBigInt x1(cx, absoluteSubOne(cx, x));
if (!x1) {
return nullptr;
}
RootedBigInt y1(cx, absoluteSubOne(cx, y));
if (!y1) {
return nullptr;
}
RootedBigInt result(cx, absoluteOr(cx, x1, y1));
if (!result) {
return nullptr;
}
bool resultNegative = true;
return absoluteAddOne(cx, result, resultNegative);
}
MOZ_ASSERT(x->isNegative() != y->isNegative());
HandleBigInt& pos = x->isNegative() ? y : x;
HandleBigInt& neg = x->isNegative() ? x : y;
RootedBigInt neg1(cx, absoluteSubOne(cx, neg));
if (!neg1) {
return nullptr;
}
// x & (-y) == x & ~(y-1) == x & ~(y-1)
return absoluteAndNot(cx, pos, neg1);
}
// BigInt proposal section 1.1.18. BigInt::bitwiseXOR ( x, y )
BigInt* BigInt::bitXor(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero()) {
return y;
}
if (y->isZero()) {
return x;
}
if (!x->isNegative() && !y->isNegative()) {
return absoluteXor(cx, x, y);
}
if (x->isNegative() && y->isNegative()) {
// (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1)
RootedBigInt x1(cx, absoluteSubOne(cx, x));
if (!x1) {
return nullptr;
}
RootedBigInt y1(cx, absoluteSubOne(cx, y));
if (!y1) {
return nullptr;
}
return absoluteXor(cx, x1, y1);
}
MOZ_ASSERT(x->isNegative() != y->isNegative());
HandleBigInt& pos = x->isNegative() ? y : x;
HandleBigInt& neg = x->isNegative() ? x : y;
// x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1)
RootedBigInt result(cx, absoluteSubOne(cx, neg));
if (!result) {
return nullptr;
}
result = absoluteXor(cx, result, pos);
if (!result) {
return nullptr;
}
bool resultNegative = true;
return absoluteAddOne(cx, result, resultNegative);
}
// BigInt proposal section 1.1.19. BigInt::bitwiseOR ( x, y )
BigInt* BigInt::bitOr(JSContext* cx, HandleBigInt x, HandleBigInt y) {
if (x->isZero()) {
return y;
}
if (y->isZero()) {
return x;
}
bool resultNegative = x->isNegative() || y->isNegative();
if (!resultNegative) {
return absoluteOr(cx, x, y);
}
if (x->isNegative() && y->isNegative()) {
// (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1))
// == -(((x-1) & (y-1)) + 1)
RootedBigInt result(cx, absoluteSubOne(cx, x));
if (!result) {
return nullptr;
}
RootedBigInt y1(cx, absoluteSubOne(cx, y));
if (!y1) {
return nullptr;
}
result = absoluteAnd(cx, result, y1);
if (!result) {
return nullptr;
}
return absoluteAddOne(cx, result, resultNegative);
}
MOZ_ASSERT(x->isNegative() != y->isNegative());
HandleBigInt& pos = x->isNegative() ? y : x;
HandleBigInt& neg = x->isNegative() ? x : y;
// x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1)
RootedBigInt result(cx, absoluteSubOne(cx, neg));
if (!result) {
return nullptr;
}
result = absoluteAndNot(cx, result, pos);
if (!result) {
return nullptr;
}
return absoluteAddOne(cx, result, resultNegative);
}
// BigInt proposal section 1.1.2. BigInt::bitwiseNOT ( x )
BigInt* BigInt::bitNot(JSContext* cx, HandleBigInt x) {
if (x->isNegative()) {
// ~(-x) == ~(~(x-1)) == x-1
return absoluteSubOne(cx, x);
} else {
// ~x == -x-1 == -(x+1)
bool resultNegative = true;
return absoluteAddOne(cx, x, resultNegative);
}
}
int64_t BigInt::toInt64(const BigInt* x) { return WrapToSigned(toUint64(x)); }
uint64_t BigInt::toUint64(const BigInt* x) {
if (x->isZero()) {
return 0;
}
uint64_t digit = x->uint64FromAbsNonZero();
// Return the two's complement if x is negative.
if (x->isNegative()) {
return ~(digit - 1);
}
return digit;
}
bool BigInt::isInt32(const BigInt* x, int32_t* result) {
MOZ_MAKE_MEM_UNDEFINED(result, sizeof(*result));
int64_t r;
if (!BigInt::isInt64(x, &r)) {
return false;
}
if (std::numeric_limits<int32_t>::min() <= r &&
r <= std::numeric_limits<int32_t>::max()) {
*result = AssertedCast<int32_t>(r);
return true;
}
return false;
}
bool BigInt::isInt64(const BigInt* x, int64_t* result) {
MOZ_MAKE_MEM_UNDEFINED(result, sizeof(*result));
if (!x->absFitsInUint64()) {
return false;
}
if (x->isZero()) {
*result = 0;
return true;
}
uint64_t magnitude = x->uint64FromAbsNonZero();
if (x->isNegative()) {
constexpr uint64_t Int64MinMagnitude = uint64_t(1) << 63;
if (magnitude <= Int64MinMagnitude) {
*result = magnitude == Int64MinMagnitude
? std::numeric_limits<int64_t>::min()
: -AssertedCast<int64_t>(magnitude);
return true;
}
} else {
if (magnitude <=
static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) {
*result = AssertedCast<int64_t>(magnitude);
return true;
}
}
return false;
}
bool BigInt::isUint64(const BigInt* x, uint64_t* result) {
MOZ_MAKE_MEM_UNDEFINED(result, sizeof(*result));
if (!x->absFitsInUint64() || x->isNegative()) {
return false;
}
if (x->isZero()) {
*result = 0;
return true;
}
*result = x->uint64FromAbsNonZero();
return true;
}
bool BigInt::isIntPtr(const BigInt* x, intptr_t* result) {
MOZ_MAKE_MEM_UNDEFINED(result, sizeof(*result));
static_assert(sizeof(intptr_t) == sizeof(BigInt::Digit));
if (x->digitLength() > 1) {
return false;
}
if (x->isZero()) {
*result = 0;
return true;
}
uintptr_t magnitude = x->digit(0);
if (x->isNegative()) {
constexpr uintptr_t IntPtrMinMagnitude = uintptr_t(1) << (DigitBits - 1);
if (magnitude <= IntPtrMinMagnitude) {
*result = magnitude == IntPtrMinMagnitude
? std::numeric_limits<intptr_t>::min()
: -AssertedCast<intptr_t>(magnitude);
return true;
}
} else {
if (magnitude <=
static_cast<uintptr_t>(std::numeric_limits<intptr_t>::max())) {
*result = AssertedCast<intptr_t>(magnitude);
return true;
}
}
return false;
}
bool BigInt::isNumber(const BigInt* x, double* result) {
MOZ_MAKE_MEM_UNDEFINED(result, sizeof(*result));
if (!x->absFitsInUint64()) {
return false;
}
if (x->isZero()) {
*result = 0;
return true;
}
uint64_t magnitude = x->uint64FromAbsNonZero();
if (magnitude < uint64_t(DOUBLE_INTEGRAL_PRECISION_LIMIT)) {
*result = x->isNegative() ? -double(magnitude) : double(magnitude);
return true;
}
return false;
}
// Compute `2**bits - (x & (2**bits - 1))`. Used when treating BigInt values as
// arbitrary-precision two's complement signed integers.
BigInt* BigInt::truncateAndSubFromPowerOfTwo(JSContext* cx, HandleBigInt x,
uint64_t bits,
bool resultNegative) {
MOZ_ASSERT(bits != 0);
MOZ_ASSERT(!x->isZero());
if (bits > MaxBitLength) {
ReportOversizedAllocation(cx, JSMSG_BIGINT_TOO_LARGE);
return nullptr;
}
size_t resultLength = CeilDiv(bits, DigitBits);
BigInt* result = createUninitialized(cx, resultLength, resultNegative);
if (!result) {
return nullptr;
}
// Process all digits except the MSD.
size_t xLength = x->digitLength();
Digit borrow = 0;
// Take digits from `x` until its length is exhausted.
for (size_t i = 0; i < std::min(resultLength - 1, xLength); i++) {
Digit newBorrow = 0;
Digit difference = digitSub(0, x->digit(i), &newBorrow);
difference = digitSub(difference, borrow, &newBorrow);
result->setDigit(i, difference);
borrow = newBorrow;
}
// Then simulate leading zeroes in `x` as needed.
for (size_t i = xLength; i < resultLength - 1; i++) {
Digit newBorrow = 0;
Digit difference = digitSub(0, borrow, &newBorrow);
result->setDigit(i, difference);
borrow = newBorrow;
}
// The MSD might contain extra bits that we don't want.
Digit xMSD = resultLength <= xLength ? x->digit(resultLength - 1) : 0;
Digit resultMSD;
if (bits % DigitBits == 0) {
Digit newBorrow = 0;
resultMSD = digitSub(0, xMSD, &newBorrow);
resultMSD = digitSub(resultMSD, borrow, &newBorrow);
} else {
size_t drop = DigitBits - (bits % DigitBits);
xMSD = (xMSD << drop) >> drop;
Digit minuendMSD = Digit(1) << (DigitBits - drop);
Digit newBorrow = 0;
resultMSD = digitSub(minuendMSD, xMSD, &newBorrow);
resultMSD = digitSub(resultMSD, borrow, &newBorrow);
MOZ_ASSERT(newBorrow == 0, "result < 2^bits");
// If all subtracted bits were zero, we have to get rid of the
// materialized minuendMSD again.
resultMSD &= (minuendMSD - 1);
}
result->setDigit(resultLength - 1, resultMSD);
return destructivelyTrimHighZeroDigits(cx, result);
}
BigInt* BigInt::asUintN(JSContext* cx, HandleBigInt x, uint64_t bits) {
if (x->isZero()) {
return x;
}
if (bits == 0) {
return zero(cx);
}
// When truncating a negative number, simulate two's complement.
if (x->isNegative()) {
bool resultNegative = false;
return truncateAndSubFromPowerOfTwo(cx, x, bits, resultNegative);
}
if (bits <= 64) {
uint64_t u64 = toUint64(x);
uint64_t mask = uint64_t(-1) >> (64 - bits);
uint64_t n = u64 & mask;
if (u64 == n && x->absFitsInUint64()) {
return x;
}
return createFromUint64(cx, n);
}
if (bits >= MaxBitLength) {
return x;
}
Digit msd = x->digit(x->digitLength() - 1);
size_t msdBits = DigitBits - DigitLeadingZeroes(msd);
size_t bitLength = msdBits + (x->digitLength() - 1) * DigitBits;
if (bits >= bitLength) {
return x;
}
size_t length = CeilDiv(bits, DigitBits);
MOZ_ASSERT(length >= 2, "single-digit cases should be handled above");
MOZ_ASSERT(length <= x->digitLength());
// Eagerly trim high zero digits.
const size_t highDigitBits = ((bits - 1) % DigitBits) + 1;
const Digit highDigitMask = Digit(-1) >> (DigitBits - highDigitBits);
Digit mask = highDigitMask;
while (length > 0) {
if (x->digit(length - 1) & mask) {
break;
}
mask = Digit(-1);
length--;
}
const bool isNegative = false;
BigInt* res = createUninitialized(cx, length, isNegative);
if (res == nullptr) {
return nullptr;
}
while (length-- > 0) {
res->setDigit(length, x->digit(length) & mask);
mask = Digit(-1);
}
MOZ_ASSERT_IF(length == 0, res->isZero());
return res;
}
BigInt* BigInt::asIntN(JSContext* cx, HandleBigInt x, uint64_t bits) {
if (x->isZero()) {
return x;
}
if (bits == 0) {
return zero(cx);
}
if (bits == 64) {
int64_t n = toInt64(x);
if (((n < 0) == x->isNegative()) && x->absFitsInUint64()) {
return x;
}
return createFromInt64(cx, n);
}
if (bits > MaxBitLength) {
return x;
}
Digit msd = x->digit(x->digitLength() - 1);
size_t msdBits = DigitBits - DigitLeadingZeroes(msd);
size_t bitLength = msdBits + (x->digitLength() - 1) * DigitBits;
if (bits > bitLength) {
return x;
}
Digit signBit = Digit(1) << ((bits - 1) % DigitBits);
if (bits == bitLength && msd < signBit) {
return x;
}
// All the cases above were the trivial cases: truncating zero, or to zero
// bits, or to more bits than are in `x` (so we return `x` directly), or we
// already have the 64-bit fast path. If we get here, follow the textbook
// algorithm from the specification.
// BigInt.asIntN step 3: Let `mod` be `x` modulo `2**bits`.
RootedBigInt mod(cx, asUintN(cx, x, bits));
if (!mod) {
return nullptr;
}
// Step 4: If `mod >= 2**(bits - 1)`, return `mod - 2**bits`; otherwise,
// return `mod`.
if (mod->digitLength() == CeilDiv(bits, DigitBits)) {
MOZ_ASSERT(!mod->isZero(),
"nonzero bits implies nonzero digit length which implies "
"nonzero overall");
if ((mod->digit(mod->digitLength() - 1) & signBit) != 0) {
bool resultNegative = true;
return truncateAndSubFromPowerOfTwo(cx, mod, bits, resultNegative);
}
}
return mod;
}
static bool ValidBigIntOperands(JSContext* cx, HandleValue lhs,
HandleValue rhs) {
MOZ_ASSERT(lhs.isBigInt() || rhs.isBigInt());
if (!lhs.isBigInt() || !rhs.isBigInt()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_TO_NUMBER);
return false;
}
return true;
}
bool BigInt::addValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::add(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::subValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::sub(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::mulValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::mul(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::divValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::div(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::modValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::mod(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::powValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::pow(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::negValue(JSContext* cx, HandleValue operand,
MutableHandleValue res) {
MOZ_ASSERT(operand.isBigInt());
RootedBigInt operandBigInt(cx, operand.toBigInt());
BigInt* resBigInt = BigInt::neg(cx, operandBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::incValue(JSContext* cx, HandleValue operand,
MutableHandleValue res) {
MOZ_ASSERT(operand.isBigInt());
RootedBigInt operandBigInt(cx, operand.toBigInt());
BigInt* resBigInt = BigInt::inc(cx, operandBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::decValue(JSContext* cx, HandleValue operand,
MutableHandleValue res) {
MOZ_ASSERT(operand.isBigInt());
RootedBigInt operandBigInt(cx, operand.toBigInt());
BigInt* resBigInt = BigInt::dec(cx, operandBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::lshValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::lsh(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::rshValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::rsh(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::bitAndValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::bitAnd(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::bitXorValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::bitXor(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::bitOrValue(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res) {
if (!ValidBigIntOperands(cx, lhs, rhs)) {
return false;
}
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
BigInt* resBigInt = BigInt::bitOr(cx, lhsBigInt, rhsBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
bool BigInt::bitNotValue(JSContext* cx, HandleValue operand,
MutableHandleValue res) {
MOZ_ASSERT(operand.isBigInt());
RootedBigInt operandBigInt(cx, operand.toBigInt());
BigInt* resBigInt = BigInt::bitNot(cx, operandBigInt);
if (!resBigInt) {
return false;
}
res.setBigInt(resBigInt);
return true;
}
// BigInt proposal section 7.3
BigInt* js::ToBigInt(JSContext* cx, HandleValue val) {
RootedValue v(cx, val);
// Step 1.
if (!ToPrimitive(cx, JSTYPE_NUMBER, &v)) {
return nullptr;
}
// Step 2.
if (v.isBigInt()) {
return v.toBigInt();
}
if (v.isBoolean()) {
return v.toBoolean() ? BigInt::one(cx) : BigInt::zero(cx);
}
if (v.isString()) {
RootedString str(cx, v.toString());
BigInt* bi;
JS_TRY_VAR_OR_RETURN_NULL(cx, bi, StringToBigInt(cx, str));
if (!bi) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_INVALID_SYNTAX);
return nullptr;
}
return bi;
}
ReportValueError(cx, JSMSG_CANT_CONVERT_TO, JSDVG_IGNORE_STACK, v, nullptr,
"BigInt");
return nullptr;
}
JS::Result<int64_t> js::ToBigInt64(JSContext* cx, HandleValue v) {
BigInt* bi = js::ToBigInt(cx, v);
if (!bi) {
return cx->alreadyReportedError();
}
return BigInt::toInt64(bi);
}
JS::Result<uint64_t> js::ToBigUint64(JSContext* cx, HandleValue v) {
BigInt* bi = js::ToBigInt(cx, v);
if (!bi) {
return cx->alreadyReportedError();
}
return BigInt::toUint64(bi);
}
double BigInt::numberValue(const BigInt* x) {
if (x->isZero()) {
return 0.0;
}
using Double = mozilla::FloatingPoint<double>;
constexpr uint8_t ExponentShift = Double::kExponentShift;
constexpr uint8_t SignificandWidth = Double::kSignificandWidth;
constexpr unsigned ExponentBias = Double::kExponentBias;
constexpr uint8_t SignShift = Double::kExponentWidth + SignificandWidth;
MOZ_ASSERT(x->digitLength() > 0);
// Fast path for the likely-common case of up to a uint64_t of magnitude not
// exceeding integral precision in IEEE-754. (Note that we *depend* on this
// optimization being performed further down.)
if (x->absFitsInUint64()) {
uint64_t magnitude = x->uint64FromAbsNonZero();
const uint64_t MaxIntegralPrecisionDouble = uint64_t(1)
<< (SignificandWidth + 1);
if (magnitude <= MaxIntegralPrecisionDouble) {
return x->isNegative() ? -double(magnitude) : +double(magnitude);
}
}
size_t length = x->digitLength();
Digit msd = x->digit(length - 1);
uint8_t msdLeadingZeroes = DigitLeadingZeroes(msd);
// `2**ExponentBias` is the largest power of two in a finite IEEE-754
// double. If this bigint has a greater power of two, it'll round to
// infinity.
uint64_t exponent = length * DigitBits - msdLeadingZeroes - 1;
if (exponent > ExponentBias) {
return x->isNegative() ? mozilla::NegativeInfinity<double>()
: mozilla::PositiveInfinity<double>();
}
// Otherwise munge the most significant bits of the number into proper
// position in an IEEE-754 double and go to town.
// Omit the most significant bit: the IEEE-754 format includes this bit
// implicitly for all double-precision integers.
const uint8_t msdIgnoredBits = msdLeadingZeroes + 1;
const uint8_t msdIncludedBits = DigitBits - msdIgnoredBits;
// We compute the final mantissa of the result, shifted upward to the top of
// the `uint64_t` space -- plus an extra bit to detect potential rounding.
constexpr uint8_t BitsNeededForShiftedMantissa = SignificandWidth + 1;
// Shift `msd`'s contributed bits upward to remove high-order zeroes and the
// highest set bit (which is implicit in IEEE-754 integral values so must be
// removed) and to add low-order zeroes. (Lower-order garbage bits are
// discarded when `shiftedMantissa` is converted to a real mantissa.)
uint64_t shiftedMantissa =
msdIncludedBits == 0 ? 0 : uint64_t(msd) << (64 - msdIncludedBits);
// If the extra bit is set, correctly rounding the result may require
// examining all lower-order bits. Also compute 1) the index of the Digit
// storing the extra bit, and 2) whether bits beneath the extra bit in that
// Digit are nonzero so we can round if needed.
size_t digitContainingExtraBit;
Digit bitsBeneathExtraBitInDigitContainingExtraBit;
// Add shifted bits to `shiftedMantissa` until we have a complete mantissa and
// an extra bit.
if (msdIncludedBits >= BitsNeededForShiftedMantissa) {
// DigitBits=64 (necessarily for msdIncludedBits ≥ SignificandWidth+1;
// | C++ compiler range analysis ought eliminate this
// | check on 32-bit)
// _________|__________
// / |
// msdIncludedBits
// ________|________
// / |
// [001···················|
// \_/\_____________/\__|
// | | |
// msdIgnoredBits | bits below the extra bit (may be no bits)
// BitsNeededForShiftedMantissa=SignificandWidth+1
digitContainingExtraBit = length - 1;
const uint8_t countOfBitsInDigitBelowExtraBit =
DigitBits - BitsNeededForShiftedMantissa - msdIgnoredBits;
bitsBeneathExtraBitInDigitContainingExtraBit =
msd & ((Digit(1) << countOfBitsInDigitBelowExtraBit) - 1);
} else {
MOZ_ASSERT(length >= 2,
"single-Digit numbers with this few bits should have been "
"handled by the fast-path above");
Digit second = x->digit(length - 2);
if (DigitBits == 64) {
shiftedMantissa |= second >> msdIncludedBits;
digitContainingExtraBit = length - 2;
// msdIncludedBits + DigitBits
// ________|_________
// / |
// DigitBits=64
// msdIncludedBits |
// __|___ _____|___
// / \ / |
// [001········|···········|
// \_/\_____________/\___|
// | | |
// msdIgnoredBits | bits below the extra bit (always more than one)
// |
// BitsNeededForShiftedMantissa=SignificandWidth+1
const uint8_t countOfBitsInSecondDigitBelowExtraBit =
(msdIncludedBits + DigitBits) - BitsNeededForShiftedMantissa;
bitsBeneathExtraBitInDigitContainingExtraBit =
second << (DigitBits - countOfBitsInSecondDigitBelowExtraBit);
} else {
shiftedMantissa |= uint64_t(second) << msdIgnoredBits;
if (msdIncludedBits + DigitBits >= BitsNeededForShiftedMantissa) {
digitContainingExtraBit = length - 2;
// msdIncludedBits + DigitBits
// ______|________
// / |
// DigitBits=32
// msdIncludedBits |
// _|_ _____|___
// / \ / |
// [001·····|···········|
// \___________/\__|
// | |
// | bits below the extra bit (may be no bits)
// BitsNeededForShiftedMantissa=SignificandWidth+1
const uint8_t countOfBitsInSecondDigitBelowExtraBit =
(msdIncludedBits + DigitBits) - BitsNeededForShiftedMantissa;
bitsBeneathExtraBitInDigitContainingExtraBit =
second & ((Digit(1) << countOfBitsInSecondDigitBelowExtraBit) - 1);
} else {
MOZ_ASSERT(length >= 3,
"we must have at least three digits here, because "
"`msdIncludedBits + 32 < BitsNeededForShiftedMantissa` "
"guarantees `x < 2**53` -- and therefore the "
"MaxIntegralPrecisionDouble optimization above will have "
"handled two-digit cases");
Digit third = x->digit(length - 3);
shiftedMantissa |= uint64_t(third) >> msdIncludedBits;
digitContainingExtraBit = length - 3;
// msdIncludedBits + DigitBits + DigitBits
// ____________|______________
// / |
// DigitBits=32
// msdIncludedBits | DigitBits=32
// _|_ _____|___ ____|____
// / \ / \ / |
// [001·····|···········|···········|
// \____________________/\_____|
// | |
// | bits below the extra bit
// BitsNeededForShiftedMantissa=SignificandWidth+1
static_assert(2 * DigitBits > BitsNeededForShiftedMantissa,
"two 32-bit digits should more than fill a mantissa");
const uint8_t countOfBitsInThirdDigitBelowExtraBit =
msdIncludedBits + 2 * DigitBits - BitsNeededForShiftedMantissa;
// Shift out the mantissa bits and the extra bit.
bitsBeneathExtraBitInDigitContainingExtraBit =
third << (DigitBits - countOfBitsInThirdDigitBelowExtraBit);
}
}
}
constexpr uint64_t LeastSignificantBit = uint64_t(1)
<< (64 - SignificandWidth);
constexpr uint64_t ExtraBit = LeastSignificantBit >> 1;
// The extra bit must be set for rounding to change the mantissa.
if ((shiftedMantissa & ExtraBit) != 0) {
bool shouldRoundUp;
if (shiftedMantissa & LeastSignificantBit) {
// If the lowest mantissa bit is set, it doesn't matter what lower bits
// are: nearest-even rounds up regardless.
shouldRoundUp = true;
} else {
// If the lowest mantissa bit is unset, *all* lower bits are relevant.
// All-zero bits below the extra bit situates `x` halfway between two
// values, and the nearest *even* value lies downward. But if any bit
// below the extra bit is set, `x` is closer to the rounded-up value.
shouldRoundUp = bitsBeneathExtraBitInDigitContainingExtraBit != 0;
if (!shouldRoundUp) {
while (digitContainingExtraBit-- > 0) {
if (x->digit(digitContainingExtraBit) != 0) {
shouldRoundUp = true;
break;
}
}
}
}
if (shouldRoundUp) {
// Add one to the significand bits. If they overflow, the exponent must
// also be increased. If *that* overflows, return the correct infinity.
uint64_t before = shiftedMantissa;
shiftedMantissa += ExtraBit;
if (shiftedMantissa < before) {
exponent++;
if (exponent > ExponentBias) {
return x->isNegative() ? NegativeInfinity<double>()
: PositiveInfinity<double>();
}
}
}
}
uint64_t significandBits = shiftedMantissa >> (64 - SignificandWidth);
uint64_t signBit = uint64_t(x->isNegative() ? 1 : 0) << SignShift;
uint64_t exponentBits = (exponent + ExponentBias) << ExponentShift;
return mozilla::BitwiseCast<double>(signBit | exponentBits | significandBits);
}
int8_t BigInt::compare(const BigInt* x, const BigInt* y) {
// Sanity checks to catch negative zeroes escaping to the wild.
MOZ_ASSERT(!x->isNegative() || !x->isZero());
MOZ_ASSERT(!y->isNegative() || !y->isZero());
bool xSign = x->isNegative();
if (xSign != y->isNegative()) {
return xSign ? -1 : 1;
}
if (xSign) {
std::swap(x, y);
}
return absoluteCompare(x, y);
}
bool BigInt::equal(const BigInt* lhs, const BigInt* rhs) {
if (lhs == rhs) {
return true;
}
if (lhs->digitLength() != rhs->digitLength()) {
return false;
}
if (lhs->isNegative() != rhs->isNegative()) {
return false;
}
for (size_t i = 0; i < lhs->digitLength(); i++) {
if (lhs->digit(i) != rhs->digit(i)) {
return false;
}
}
return true;
}
int8_t BigInt::compare(const BigInt* x, double y) {
MOZ_ASSERT(!std::isnan(y));
constexpr int LessThan = -1, Equal = 0, GreaterThan = 1;
// ±Infinity exceeds a finite bigint value.
if (!std::isfinite(y)) {
return y > 0 ? LessThan : GreaterThan;
}
// Handle `x === 0n` and `y == 0` special cases.
if (x->isZero()) {
if (y == 0) {
// -0 and +0 are treated identically.
return Equal;
}
return y > 0 ? LessThan : GreaterThan;
}
const bool xNegative = x->isNegative();
if (y == 0) {
return xNegative ? LessThan : GreaterThan;
}
// Nonzero `x` and `y` with different signs are trivially compared.
const bool yNegative = y < 0;
if (xNegative != yNegative) {
return xNegative ? LessThan : GreaterThan;
}
// `x` and `y` are same-signed. Determine which has greater magnitude,
// then combine that with the signedness just computed to reach a result.
const int exponent = mozilla::ExponentComponent(y);
if (exponent < 0) {
// `y` is a nonzero fraction of magnitude less than 1.
return xNegative ? LessThan : GreaterThan;
}
size_t xLength = x->digitLength();
MOZ_ASSERT(xLength > 0);
Digit xMSD = x->digit(xLength - 1);
const int shift = DigitLeadingZeroes(xMSD);
int xBitLength = xLength * DigitBits - shift;
// Differing bit-length makes for a simple comparison.
int yBitLength = exponent + 1;
if (xBitLength < yBitLength) {
return xNegative ? GreaterThan : LessThan;
}
if (xBitLength > yBitLength) {
return xNegative ? LessThan : GreaterThan;
}
// Compare the high 64 bits of both numbers. (Lower-order bits not present
// in either number are zeroed.) Either that distinguishes `x` and `y`, or
// `x` and `y` differ only if a subsequent nonzero bit in `x` means `x` has
// larger magnitude.
using Double = mozilla::FloatingPoint<double>;
constexpr uint8_t SignificandWidth = Double::kSignificandWidth;
constexpr uint64_t SignificandBits = Double::kSignificandBits;
const uint64_t doubleBits = mozilla::BitwiseCast<uint64_t>(y);
const uint64_t significandBits = doubleBits & SignificandBits;
// Readd the implicit-one bit when constructing `y`'s high 64 bits.
const uint64_t yHigh64Bits =
((uint64_t(1) << SignificandWidth) | significandBits)
<< (64 - SignificandWidth - 1);
// Cons up `x`'s high 64 bits, backfilling zeroes for binary fractions of 1
// if `x` doesn't have 64 bits.
uint8_t xBitsFilled = DigitBits - shift;
uint64_t xHigh64Bits = uint64_t(xMSD) << (64 - xBitsFilled);
// At this point we no longer need to look at the most significant digit.
xLength--;
// The high 64 bits from `x` will probably not align to a digit boundary.
// `xHasNonZeroLeftoverBits` will be set to true if any remaining
// least-significant bit from the digit holding xHigh64Bits's
// least-significant bit is nonzero.
bool xHasNonZeroLeftoverBits = false;
if (xBitsFilled < std::min(xBitLength, 64)) {
MOZ_ASSERT(xLength >= 1,
"If there are more bits to fill, there should be "
"more digits to fill them from");
Digit second = x->digit(--xLength);
if (DigitBits == 32) {
xBitsFilled += 32;
xHigh64Bits |= uint64_t(second) << (64 - xBitsFilled);
if (xBitsFilled < 64 && xLength >= 1) {
Digit third = x->digit(--xLength);
const uint8_t neededBits = 64 - xBitsFilled;
xHigh64Bits |= uint64_t(third) >> (DigitBits - neededBits);
xHasNonZeroLeftoverBits = (third << neededBits) != 0;
}
} else {
const uint8_t neededBits = 64 - xBitsFilled;
xHigh64Bits |= uint64_t(second) >> (DigitBits - neededBits);
xHasNonZeroLeftoverBits = (second << neededBits) != 0;
}
}
// If high bits are unequal, the larger one has greater magnitude.
if (yHigh64Bits > xHigh64Bits) {
return xNegative ? GreaterThan : LessThan;
}
if (xHigh64Bits > yHigh64Bits) {
return xNegative ? LessThan : GreaterThan;
}
// Otherwise the top 64 bits of both are equal. If the values differ, a
// lower-order bit in `x` is nonzero and `x` has greater magnitude than
// `y`; otherwise `x == y`.
if (xHasNonZeroLeftoverBits) {
return xNegative ? LessThan : GreaterThan;
}
while (xLength != 0) {
if (x->digit(--xLength) != 0) {
return xNegative ? LessThan : GreaterThan;
}
}
return Equal;
}
bool BigInt::equal(const BigInt* lhs, double rhs) {
if (std::isnan(rhs)) {
return false;
}
return compare(lhs, rhs) == 0;
}
JS::Result<bool> BigInt::equal(JSContext* cx, Handle<BigInt*> lhs,
HandleString rhs) {
BigInt* rhsBigInt;
MOZ_TRY_VAR(rhsBigInt, StringToBigInt(cx, rhs));
if (!rhsBigInt) {
return false;
}
return equal(lhs, rhsBigInt);
}
// BigInt proposal section 3.2.5
JS::Result<bool> BigInt::looselyEqual(JSContext* cx, HandleBigInt lhs,
HandleValue rhs) {
// Step 1.
if (rhs.isBigInt()) {
return equal(lhs, rhs.toBigInt());
}
// Steps 2-5 (not applicable).
// Steps 6-7.
if (rhs.isString()) {
RootedString rhsString(cx, rhs.toString());
return equal(cx, lhs, rhsString);
}
// Steps 8-9 (not applicable).
// Steps 10-11.
if (rhs.isObject()) {
RootedValue rhsPrimitive(cx, rhs);
if (!ToPrimitive(cx, &rhsPrimitive)) {
return cx->alreadyReportedError();
}
return looselyEqual(cx, lhs, rhsPrimitive);
}
// Step 12.
if (rhs.isNumber()) {
return equal(lhs, rhs.toNumber());
}
// Step 13.
return false;
}
// BigInt proposal section 1.1.12. BigInt::lessThan ( x, y )
bool BigInt::lessThan(const BigInt* x, const BigInt* y) {
return compare(x, y) < 0;
}
Maybe<bool> BigInt::lessThan(const BigInt* lhs, double rhs) {
if (std::isnan(rhs)) {
return Maybe<bool>(Nothing());
}
return Some(compare(lhs, rhs) < 0);
}
Maybe<bool> BigInt::lessThan(double lhs, const BigInt* rhs) {
if (std::isnan(lhs)) {
return Maybe<bool>(Nothing());
}
return Some(-compare(rhs, lhs) < 0);
}
bool BigInt::lessThan(JSContext* cx, HandleBigInt lhs, HandleString rhs,
Maybe<bool>& res) {
BigInt* rhsBigInt;
JS_TRY_VAR_OR_RETURN_FALSE(cx, rhsBigInt, StringToBigInt(cx, rhs));
if (!rhsBigInt) {
res = Nothing();
return true;
}
res = Some(lessThan(lhs, rhsBigInt));
return true;
}
bool BigInt::lessThan(JSContext* cx, HandleString lhs, HandleBigInt rhs,
Maybe<bool>& res) {
BigInt* lhsBigInt;
JS_TRY_VAR_OR_RETURN_FALSE(cx, lhsBigInt, StringToBigInt(cx, lhs));
if (!lhsBigInt) {
res = Nothing();
return true;
}
res = Some(lessThan(lhsBigInt, rhs));
return true;
}
bool BigInt::lessThan(JSContext* cx, HandleValue lhs, HandleValue rhs,
Maybe<bool>& res) {
if (lhs.isBigInt()) {
if (rhs.isString()) {
RootedBigInt lhsBigInt(cx, lhs.toBigInt());
RootedString rhsString(cx, rhs.toString());
return lessThan(cx, lhsBigInt, rhsString, res);
}
if (rhs.isNumber()) {
res = lessThan(lhs.toBigInt(), rhs.toNumber());
return true;
}
MOZ_ASSERT(rhs.isBigInt());
res = Some(lessThan(lhs.toBigInt(), rhs.toBigInt()));
return true;
}
MOZ_ASSERT(rhs.isBigInt());
if (lhs.isString()) {
RootedString lhsString(cx, lhs.toString());
RootedBigInt rhsBigInt(cx, rhs.toBigInt());
return lessThan(cx, lhsString, rhsBigInt, res);
}
MOZ_ASSERT(lhs.isNumber());
res = lessThan(lhs.toNumber(), rhs.toBigInt());
return true;
}
template <js::AllowGC allowGC>
JSLinearString* BigInt::toString(JSContext* cx, HandleBigInt x, uint8_t radix) {
MOZ_ASSERT(2 <= radix && radix <= 36);
if (x->isZero()) {
return cx->staticStrings().getInt(0);
}
if (mozilla::IsPowerOfTwo(radix)) {
return toStringBasePowerOfTwo<allowGC>(cx, x, radix);
}
if (radix == 10 && x->digitLength() == 1) {
return toStringSingleDigitBaseTen<allowGC>(cx, x->digit(0),
x->isNegative());
}
// Punt on doing generic toString without GC.
if (!allowGC) {
return nullptr;
}
return toStringGeneric(cx, x, radix);
}
template JSLinearString* BigInt::toString<js::CanGC>(JSContext* cx,
HandleBigInt x,
uint8_t radix);
template JSLinearString* BigInt::toString<js::NoGC>(JSContext* cx,
HandleBigInt x,
uint8_t radix);
template <typename CharT>
static inline BigInt* ParseStringBigIntLiteral(JSContext* cx,
Range<const CharT> range,
bool* haveParseError) {
auto start = range.begin();
auto end = range.end();
while (start < end && unicode::IsSpace(start[0])) {
start++;
}
while (start < end && unicode::IsSpace(end[-1])) {
end--;
}
if (start == end) {
return BigInt::zero(cx);
}
// StringNumericLiteral ::: StrDecimalLiteral, but without Infinity, decimal
// points, or exponents. Note that the raw '+' or '-' cases fall through
// because the string is too short, and eventually signal a parse error.
if (end - start > 1) {
if (start[0] == '+') {
bool isNegative = false;
start++;
return BigInt::parseLiteralDigits(cx, Range<const CharT>(start, end), 10,
isNegative, haveParseError);
}
if (start[0] == '-') {
bool isNegative = true;
start++;
return BigInt::parseLiteralDigits(cx, Range<const CharT>(start, end), 10,
isNegative, haveParseError);
}
}
return BigInt::parseLiteral(cx, Range<const CharT>(start, end),
haveParseError);
}
// Called from BigInt constructor.
JS::Result<BigInt*> js::StringToBigInt(JSContext* cx, HandleString str) {
JSLinearString* linear = str->ensureLinear(cx);
if (!linear) {
return cx->alreadyReportedOOM();
}
AutoStableStringChars chars(cx);
if (!chars.init(cx, str)) {
return cx->alreadyReportedOOM();
}
BigInt* res;
bool parseError = false;
if (chars.isLatin1()) {
res = ParseStringBigIntLiteral(cx, chars.latin1Range(), &parseError);
} else {
res = ParseStringBigIntLiteral(cx, chars.twoByteRange(), &parseError);
}
// A nullptr result can indicate either a parse error or generic error.
if (!res && !parseError) {
return cx->alreadyReportedError();
}
return res;
}
// Called from parser with already trimmed and validated token.
BigInt* js::ParseBigIntLiteral(JSContext* cx,
const Range<const char16_t>& chars) {
// This function is only called from the frontend when parsing BigInts. Parsed
// BigInts are stored in the script's data vector and therefore need to be
// allocated in the tenured heap.
constexpr gc::Heap heap = gc::Heap::Tenured;
bool parseError = false;
BigInt* res = BigInt::parseLiteral(cx, chars, &parseError, heap);
if (!res) {
return nullptr;
}
MOZ_ASSERT(res->isTenured());
MOZ_RELEASE_ASSERT(!parseError);
return res;
}
mozilla::Maybe<int64_t> js::ParseBigInt64Literal(
mozilla::Range<const char16_t> chars) {
size_t length = chars.length();
MOZ_ASSERT(length > 0);
int32_t radix = 10;
if (length > 2 && chars[0] == '0') {
if (chars[1] == 'b' || chars[1] == 'B') {
// StringNumericLiteral ::: BinaryIntegerLiteral
radix = 2;
} else if (chars[1] == 'x' || chars[1] == 'X') {
// StringNumericLiteral ::: HexIntegerLiteral
radix = 16;
} else if (chars[1] == 'o' || chars[1] == 'O') {
// StringNumericLiteral ::: OctalIntegerLiteral
radix = 8;
}
}
auto start = chars.begin();
const auto end = chars.end();
// Skip over prefix.
if (radix != 10) {
start += 2;
}
// Skipping leading zeroes.
while (*start == '0') {
start++;
if (start == end) {
return mozilla::Some(0);
}
}
mozilla::CheckedInt<int64_t> r = 0;
while (start < end) {
char16_t c = *start++;
MOZ_ASSERT(mozilla::IsAsciiAlphanumeric(c));
int32_t digit = mozilla::AsciiAlphanumericToNumber(c);
MOZ_ASSERT(digit < radix);
r *= radix;
r += digit;
if (!r.isValid()) {
return mozilla::Nothing();
}
}
return mozilla::Some(r.value());
}
template <js::AllowGC allowGC>
JSAtom* js::BigIntToAtom(JSContext* cx, HandleBigInt bi) {
JSString* str = BigInt::toString<allowGC>(cx, bi, 10);
if (!str) {
return nullptr;
}
JSAtom* atom = AtomizeString(cx, str);
if (!atom) {
if constexpr (!allowGC) {
// NOTE: AtomizeString can call ReportAllocationOverflow other than
// ReportOutOfMemory, but ReportAllocationOverflow cannot happen
// because the length is guarded by BigInt::toString.
cx->recoverFromOutOfMemory();
}
return nullptr;
}
return atom;
}
template JSAtom* js::BigIntToAtom<js::CanGC>(JSContext* cx, HandleBigInt bi);
template JSAtom* js::BigIntToAtom<js::NoGC>(JSContext* cx, HandleBigInt bi);
#if defined(DEBUG) || defined(JS_JITSPEW)
void BigInt::dump() const {
js::Fprinter out(stderr);
dump(out);
}
void BigInt::dump(js::GenericPrinter& out) const {
js::JSONPrinter json(out);
dump(json);
out.put("\n");
}
void BigInt::dump(js::JSONPrinter& json) const {
json.beginObject();
dumpFields(json);
json.endObject();
}
void BigInt::dumpFields(js::JSONPrinter& json) const {
json.formatProperty("address", "(JS::BigInt*)0x%p", this);
json.property("digitLength", digitLength());
js::GenericPrinter& out = json.beginStringProperty("value");
dumpLiteral(out);
json.endStringProperty();
}
void BigInt::dumpStringContent(js::GenericPrinter& out) const {
dumpLiteral(out);
out.printf(" @ (JS::BigInt*)0x%p", this);
}
void BigInt::dumpLiteral(js::GenericPrinter& out) const {
if (isNegative()) {
out.putChar('-');
}
if (digitLength() == 0) {
out.put("0");
} else if (digitLength() == 1) {
uint64_t d = digit(0);
out.printf("%" PRIu64, d);
} else {
out.put("0x");
for (size_t i = 0; i < digitLength(); i++) {
uint64_t d = digit(digitLength() - i - 1);
if (sizeof(Digit) == 4) {
out.printf("%.8" PRIX32, uint32_t(d));
} else {
out.printf("%.16" PRIX64, d);
}
}
}
out.putChar('n');
}
#endif
JS::ubi::Node::Size JS::ubi::Concrete<BigInt>::size(
mozilla::MallocSizeOf mallocSizeOf) const {
BigInt& bi = get();
size_t size = sizeof(JS::BigInt);
if (IsInsideNursery(&bi)) {
size += Nursery::nurseryCellHeaderSize();
size += bi.sizeOfExcludingThisInNursery(mallocSizeOf);
} else {
size += bi.sizeOfExcludingThis(mallocSizeOf);
}
return size;
}
// Public API
BigInt* JS::NumberToBigInt(JSContext* cx, double num) {
return js::NumberToBigInt(cx, num);
}
template <typename CharT>
static inline BigInt* StringToBigIntHelper(JSContext* cx,
const Range<const CharT>& chars) {
bool parseError = false;
BigInt* bi = ParseStringBigIntLiteral(cx, chars, &parseError);
if (!bi) {
if (parseError) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_INVALID_SYNTAX);
}
return nullptr;
}
MOZ_RELEASE_ASSERT(!parseError);
return bi;
}
BigInt* JS::StringToBigInt(JSContext* cx,
const Range<const Latin1Char>& chars) {
return StringToBigIntHelper(cx, chars);
}
BigInt* JS::StringToBigInt(JSContext* cx, const Range<const char16_t>& chars) {
return StringToBigIntHelper(cx, chars);
}
static inline BigInt* SimpleStringToBigIntHelper(
JSContext* cx, mozilla::Span<const Latin1Char> chars, uint8_t radix,
bool* haveParseError) {
if (chars.Length() > 1) {
if (chars[0] == '+') {
return BigInt::parseLiteralDigits(
cx, Range<const Latin1Char>{chars.From(1)}, radix,
/* isNegative = */ false, haveParseError);
}
if (chars[0] == '-') {
return BigInt::parseLiteralDigits(
cx, Range<const Latin1Char>{chars.From(1)}, radix,
/* isNegative = */ true, haveParseError);
}
}
return BigInt::parseLiteralDigits(cx, Range<const Latin1Char>{chars}, radix,
/* isNegative = */ false, haveParseError);
}
BigInt* JS::SimpleStringToBigInt(JSContext* cx, mozilla::Span<const char> chars,
uint8_t radix) {
if (chars.empty()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_INVALID_SYNTAX);
return nullptr;
}
if (radix < 2 || radix > 36) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_RADIX);
return nullptr;
}
mozilla::Span<const Latin1Char> latin1{
reinterpret_cast<const Latin1Char*>(chars.data()), chars.size()};
bool haveParseError = false;
BigInt* bi = SimpleStringToBigIntHelper(cx, latin1, radix, &haveParseError);
if (!bi) {
if (haveParseError) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BIGINT_INVALID_SYNTAX);
}
return nullptr;
}
MOZ_RELEASE_ASSERT(!haveParseError);
return bi;
}
BigInt* JS::ToBigInt(JSContext* cx, HandleValue val) {
return js::ToBigInt(cx, val);
}
int64_t JS::ToBigInt64(const JS::BigInt* bi) { return BigInt::toInt64(bi); }
uint64_t JS::ToBigUint64(const JS::BigInt* bi) { return BigInt::toUint64(bi); }
double JS::BigIntToNumber(const JS::BigInt* bi) {
return BigInt::numberValue(bi);
}
bool JS::BigIntIsNegative(const BigInt* bi) {
return !bi->isZero() && bi->isNegative();
}
bool JS::BigIntFitsNumber(const BigInt* bi, double* out) {
return bi->isNumber(bi, out);
}
JSString* JS::BigIntToString(JSContext* cx, Handle<BigInt*> bi, uint8_t radix) {
if (radix < 2 || radix > 36) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_RADIX);
return nullptr;
}
return BigInt::toString<CanGC>(cx, bi, radix);
}
// Semi-public template details
BigInt* JS::detail::BigIntFromInt64(JSContext* cx, int64_t num) {
return BigInt::createFromInt64(cx, num);
}
BigInt* JS::detail::BigIntFromUint64(JSContext* cx, uint64_t num) {
return BigInt::createFromUint64(cx, num);
}
BigInt* JS::detail::BigIntFromBool(JSContext* cx, bool b) {
return b ? BigInt::one(cx) : BigInt::zero(cx);
}
bool JS::detail::BigIntIsInt64(const BigInt* bi, int64_t* result) {
return BigInt::isInt64(bi, result);
}
bool JS::detail::BigIntIsUint64(const BigInt* bi, uint64_t* result) {
return BigInt::isUint64(bi, result);
}