Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "jit/IonAnalysis.h"
#include "jit/MIRGenerator.h"
#include "jit/MIRGraph.h"
#include "jit/RangeAnalysis.h"
#include "jsapi-tests/testJitMinimalFunc.h"
#include "jsapi-tests/tests.h"
using namespace js;
using namespace js::jit;
static bool EquivalentRanges(const Range* a, const Range* b) {
if (a->hasInt32UpperBound() != b->hasInt32UpperBound()) {
return false;
}
if (a->hasInt32LowerBound() != b->hasInt32LowerBound()) {
return false;
}
if (a->hasInt32UpperBound() && (a->upper() != b->upper())) {
return false;
}
if (a->hasInt32LowerBound() && (a->lower() != b->lower())) {
return false;
}
if (a->canHaveFractionalPart() != b->canHaveFractionalPart()) {
return false;
}
if (a->canBeNegativeZero() != b->canBeNegativeZero()) {
return false;
}
if (a->canBeNaN() != b->canBeNaN()) {
return false;
}
if (a->canBeInfiniteOrNaN() != b->canBeInfiniteOrNaN()) {
return false;
}
if (!a->canBeInfiniteOrNaN() && (a->exponent() != b->exponent())) {
return false;
}
return true;
}
BEGIN_TEST(testJitRangeAnalysis_MathSign) {
MinimalAlloc func;
Range* xnan = new (func.alloc) Range();
Range* ninf = Range::NewDoubleSingletonRange(
func.alloc, mozilla::NegativeInfinity<double>());
Range* n1_5 = Range::NewDoubleSingletonRange(func.alloc, -1.5);
Range* n1_0 = Range::NewDoubleSingletonRange(func.alloc, -1);
Range* n0_5 = Range::NewDoubleSingletonRange(func.alloc, -0.5);
Range* n0_0 = Range::NewDoubleSingletonRange(func.alloc, -0.0);
Range* p0_0 = Range::NewDoubleSingletonRange(func.alloc, 0.0);
Range* p0_5 = Range::NewDoubleSingletonRange(func.alloc, 0.5);
Range* p1_0 = Range::NewDoubleSingletonRange(func.alloc, 1.0);
Range* p1_5 = Range::NewDoubleSingletonRange(func.alloc, 1.5);
Range* pinf = Range::NewDoubleSingletonRange(
func.alloc, mozilla::PositiveInfinity<double>());
Range* xnanSign = Range::sign(func.alloc, xnan);
Range* ninfSign = Range::sign(func.alloc, ninf);
Range* n1_5Sign = Range::sign(func.alloc, n1_5);
Range* n1_0Sign = Range::sign(func.alloc, n1_0);
Range* n0_5Sign = Range::sign(func.alloc, n0_5);
Range* n0_0Sign = Range::sign(func.alloc, n0_0);
Range* p0_0Sign = Range::sign(func.alloc, p0_0);
Range* p0_5Sign = Range::sign(func.alloc, p0_5);
Range* p1_0Sign = Range::sign(func.alloc, p1_0);
Range* p1_5Sign = Range::sign(func.alloc, p1_5);
Range* pinfSign = Range::sign(func.alloc, pinf);
CHECK(!xnanSign);
CHECK(EquivalentRanges(ninfSign,
Range::NewInt32SingletonRange(func.alloc, -1)));
CHECK(EquivalentRanges(n1_5Sign,
Range::NewInt32SingletonRange(func.alloc, -1)));
CHECK(EquivalentRanges(n1_0Sign,
Range::NewInt32SingletonRange(func.alloc, -1)));
// This should ideally be just -1, but range analysis can't represent the
// specific fractional range of the constant.
CHECK(EquivalentRanges(n0_5Sign, Range::NewInt32Range(func.alloc, -1, 0)));
CHECK(EquivalentRanges(n0_0Sign,
Range::NewDoubleSingletonRange(func.alloc, -0.0)));
CHECK(!n0_0Sign->canHaveFractionalPart());
CHECK(n0_0Sign->canBeNegativeZero());
CHECK(n0_0Sign->lower() == 0);
CHECK(n0_0Sign->upper() == 0);
CHECK(
EquivalentRanges(p0_0Sign, Range::NewInt32SingletonRange(func.alloc, 0)));
CHECK(!p0_0Sign->canHaveFractionalPart());
CHECK(!p0_0Sign->canBeNegativeZero());
CHECK(p0_0Sign->lower() == 0);
CHECK(p0_0Sign->upper() == 0);
// This should ideally be just 1, but range analysis can't represent the
// specific fractional range of the constant.
CHECK(EquivalentRanges(p0_5Sign, Range::NewInt32Range(func.alloc, 0, 1)));
CHECK(
EquivalentRanges(p1_0Sign, Range::NewInt32SingletonRange(func.alloc, 1)));
CHECK(
EquivalentRanges(p1_5Sign, Range::NewInt32SingletonRange(func.alloc, 1)));
CHECK(
EquivalentRanges(pinfSign, Range::NewInt32SingletonRange(func.alloc, 1)));
return true;
}
END_TEST(testJitRangeAnalysis_MathSign)
BEGIN_TEST(testJitRangeAnalysis_MathSignBeta) {
MinimalFunc func;
MBasicBlock* entry = func.createEntryBlock();
MBasicBlock* thenBlock = func.createBlock(entry);
MBasicBlock* elseBlock = func.createBlock(entry);
MBasicBlock* elseThenBlock = func.createBlock(elseBlock);
MBasicBlock* elseElseBlock = func.createBlock(elseBlock);
// if (p < 0)
MParameter* p = func.createParameter();
entry->add(p);
MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0));
entry->add(c0);
MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0));
entry->add(cm0);
MCompare* cmp =
MCompare::New(func.alloc, p, c0, JSOp::Lt, MCompare::Compare_Double);
entry->add(cmp);
entry->end(MTest::New(func.alloc, cmp, thenBlock, elseBlock));
// {
// return Math.sign(p + -0);
// }
MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
thenBlock->add(thenAdd);
MSign* thenSign = MSign::New(func.alloc, thenAdd, MIRType::Double);
thenBlock->add(thenSign);
MReturn* thenRet = MReturn::New(func.alloc, thenSign);
thenBlock->end(thenRet);
// else
// {
// if (p >= 0)
MCompare* elseCmp =
MCompare::New(func.alloc, p, c0, JSOp::Ge, MCompare::Compare_Double);
elseBlock->add(elseCmp);
elseBlock->end(MTest::New(func.alloc, elseCmp, elseThenBlock, elseElseBlock));
// {
// return Math.sign(p + -0);
// }
MAdd* elseThenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
elseThenBlock->add(elseThenAdd);
MSign* elseThenSign = MSign::New(func.alloc, elseThenAdd, MIRType::Double);
elseThenBlock->add(elseThenSign);
MReturn* elseThenRet = MReturn::New(func.alloc, elseThenSign);
elseThenBlock->end(elseThenRet);
// else
// {
// return Math.sign(p + -0);
// }
// }
MAdd* elseElseAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
elseElseBlock->add(elseElseAdd);
MSign* elseElseSign = MSign::New(func.alloc, elseElseAdd, MIRType::Double);
elseElseBlock->add(elseElseSign);
MReturn* elseElseRet = MReturn::New(func.alloc, elseElseSign);
elseElseBlock->end(elseElseRet);
if (!func.runRangeAnalysis()) {
return false;
}
CHECK(!p->range());
CHECK(EquivalentRanges(c0->range(),
Range::NewDoubleSingletonRange(func.alloc, 0.0)));
CHECK(EquivalentRanges(cm0->range(),
Range::NewDoubleSingletonRange(func.alloc, -0.0)));
// On the (p < 0) side, p is negative and not -0 (surprise!)
CHECK(EquivalentRanges(
thenAdd->range(),
new (func.alloc)
Range(Range::NoInt32LowerBound, 0, Range::IncludesFractionalParts,
Range::ExcludesNegativeZero, Range::IncludesInfinity)));
// Consequently, its Math.sign value is not -0 either.
CHECK(EquivalentRanges(thenSign->range(),
new (func.alloc)
Range(-1, 0, Range::ExcludesFractionalParts,
Range::ExcludesNegativeZero, 0)));
// On the (p >= 0) side, p is not negative and may be -0 (surprise!)
CHECK(EquivalentRanges(
elseThenAdd->range(),
new (func.alloc)
Range(0, Range::NoInt32UpperBound, Range::IncludesFractionalParts,
Range::IncludesNegativeZero, Range::IncludesInfinity)));
// Consequently, its Math.sign value may be -0 too.
CHECK(EquivalentRanges(elseThenSign->range(),
new (func.alloc)
Range(0, 1, Range::ExcludesFractionalParts,
Range::IncludesNegativeZero, 0)));
// Otherwise, p may be NaN.
CHECK(elseElseAdd->range()->isUnknown());
CHECK(!elseElseSign->range());
return true;
}
END_TEST(testJitRangeAnalysis_MathSignBeta)
BEGIN_TEST(testJitRangeAnalysis_StrictCompareBeta) {
MinimalFunc func;
MBasicBlock* entry = func.createEntryBlock();
MBasicBlock* thenBlock = func.createBlock(entry);
MBasicBlock* elseBlock = func.createBlock(entry);
// if (p === 0)
MParameter* p = func.createParameter();
entry->add(p);
MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0));
entry->add(c0);
MCompare* cmp = MCompare::New(func.alloc, p, c0, JSOp::StrictEq,
MCompare::Compare_Double);
entry->add(cmp);
auto* test = MTest::New(func.alloc, cmp, thenBlock, elseBlock);
entry->end(test);
// {
// return p + -0;
// }
MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0));
thenBlock->add(cm0);
MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
thenBlock->add(thenAdd);
MReturn* thenRet = MReturn::New(func.alloc, thenAdd);
thenBlock->end(thenRet);
// else
// {
// return 0;
// }
MReturn* elseRet = MReturn::New(func.alloc, c0);
elseBlock->end(elseRet);
// If range analysis inserts a beta node for p, it will be able to compute
// a meaningful range for p + -0.
auto replaceCompare = [&](auto compareType) {
auto* newCmp =
MCompare::New(func.alloc, p, c0, JSOp::StrictEq, compareType);
entry->insertBefore(cmp, newCmp);
test->replaceOperand(0, newCmp);
cmp = newCmp;
};
// We can't do beta node insertion with StrictEq and a non-numeric
// comparison though.
for (auto compareType :
{MCompare::Compare_Object, MCompare::Compare_String}) {
replaceCompare(compareType);
if (!func.runRangeAnalysis()) {
return false;
}
CHECK(!thenAdd->range() || thenAdd->range()->isUnknown());
ClearDominatorTree(func.graph);
}
// We can do it with a numeric comparison.
replaceCompare(MCompare::Compare_Double);
if (!func.runRangeAnalysis()) {
return false;
}
CHECK(EquivalentRanges(thenAdd->range(),
Range::NewDoubleRange(func.alloc, 0.0, 0.0)));
return true;
}
END_TEST(testJitRangeAnalysis_StrictCompareBeta)
static void deriveShiftRightRange(int32_t lhsLower, int32_t lhsUpper,
int32_t rhsLower, int32_t rhsUpper,
int32_t* min, int32_t* max) {
// This is the reference algorithm and should be verifiable by inspection.
int64_t i, j;
*min = INT32_MAX;
*max = INT32_MIN;
for (i = lhsLower; i <= lhsUpper; i++) {
for (j = rhsLower; j <= rhsUpper; j++) {
int32_t r = int32_t(i) >> (int32_t(j) & 0x1f);
if (r > *max) *max = r;
if (r < *min) *min = r;
}
}
}
static bool checkShiftRightRange(int32_t lhsLow, int32_t lhsHigh,
int32_t lhsInc, int32_t rhsLow,
int32_t rhsHigh, int32_t rhsInc) {
MinimalAlloc func;
int64_t lhsLower, lhsUpper, rhsLower, rhsUpper;
for (lhsLower = lhsLow; lhsLower <= lhsHigh; lhsLower += lhsInc) {
for (lhsUpper = lhsLower; lhsUpper <= lhsHigh; lhsUpper += lhsInc) {
Range* lhsRange = Range::NewInt32Range(func.alloc, lhsLower, lhsUpper);
for (rhsLower = rhsLow; rhsLower <= rhsHigh; rhsLower += rhsInc) {
for (rhsUpper = rhsLower; rhsUpper <= rhsHigh; rhsUpper += rhsInc) {
if (!func.alloc.ensureBallast()) {
return false;
}
Range* rhsRange =
Range::NewInt32Range(func.alloc, rhsLower, rhsUpper);
Range* result = Range::rsh(func.alloc, lhsRange, rhsRange);
int32_t min, max;
deriveShiftRightRange(lhsLower, lhsUpper, rhsLower, rhsUpper, &min,
&max);
if (!result->isInt32() || result->lower() != min ||
result->upper() != max) {
return false;
}
}
}
}
}
return true;
}
BEGIN_TEST(testJitRangeAnalysis_shiftRight) {
CHECK(checkShiftRightRange(-16, 15, 1, 0, 31, 1));
CHECK(checkShiftRightRange(-8, 7, 1, -64, 63, 1));
return true;
}
END_TEST(testJitRangeAnalysis_shiftRight)
BEGIN_TEST(testJitRangeAnalysis_MathCeil) {
MinimalAlloc func;
Range* n0_5 = Range::NewDoubleSingletonRange(func.alloc, -0.5);
Range* n0_5Ceil = Range::ceil(func.alloc, n0_5);
CHECK(n0_5Ceil);
CHECK(n0_5Ceil->canBeNegativeZero());
return true;
}
END_TEST(testJitRangeAnalysis_MathCeil)