Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "jit/x86/Lowering-x86.h"
#include "jit/Lowering.h"
#include "jit/MIR-wasm.h"
#include "jit/MIR.h"
#include "jit/x86/Assembler-x86.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1,
Register reg2, bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) {
return useFixed(mir, eax);
}
LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) {
return useFixedAtStart(mir, eax);
}
LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useFixed(mir, eax);
}
LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); }
void LIRGenerator::visitBox(MBox* box) {
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
LDefinition spectreTemp =
JitOptions.spectreValueMasking ? temp() : LDefinition::BogusTemp();
defineBox(new (alloc()) LBoxFloatingPoint(useRegisterAtStart(inner),
tempCopy(inner, 0), spectreTemp,
inner->type()),
box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
return;
}
LBox* lir = new (alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* inner = unbox->getOperand(0);
// An unbox on x86 reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType::Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir =
new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox* lir = new (alloc()) LUnbox;
bool reusePayloadReg = !JitOptions.spectreValueMasking ||
unbox->type() == MIRType::Int32 ||
unbox->type() == MIRType::Boolean;
if (reusePayloadReg) {
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::ANY));
} else {
lir->setOperand(0, usePayload(inner, LUse::REGISTER));
lir->setOperand(1, useType(inner, LUse::ANY));
}
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
if (reusePayloadReg) {
defineReuseInput(lir, unbox, 0);
} else {
define(lir, unbox);
}
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(
inputPosition,
LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition,
LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) {
LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
uint32_t lowVreg = getVirtualRegister();
phi->setVirtualRegister(lowVreg);
uint32_t highVreg = getVirtualRegister();
MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
annotate(high);
annotate(low);
}
void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
low->setOperand(inputPosition,
LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
high->setOperand(
inputPosition,
LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
}
void LIRGeneratorX86::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
MDefinition* input) {
ins->setInt64Operand(0, useInt64RegisterAtStart(input));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorX86::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs, MDefinition* rhs) {
bool needsTemp = true;
if (rhs->isConstant()) {
int64_t constant = rhs->toConstant()->toInt64();
int32_t shift = mozilla::FloorLog2(constant);
// See special cases in CodeGeneratorX86Shared::visitMulI64.
if (constant >= -1 && constant <= 2) {
needsTemp = false;
}
if (constant > 0 && int64_t(1) << shift == constant) {
needsTemp = false;
}
}
// MulI64 on x86 needs output to be in edx, eax;
ins->setInt64Operand(
0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
if (needsTemp) {
ins->setTemp(0, temp());
}
defineInt64Fixed(ins, mir,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LInt64Allocation oldval =
useInt64FixedAtStart(ins->oldval(), Register64(edx, eax));
LInt64Allocation newval =
useInt64Fixed(ins->newval(), Register64(ecx, ebx));
auto* lir = new (alloc())
LCompareExchangeTypedArrayElement64(elements, index, oldval, newval);
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LInt64Allocation value = useInt64Fixed(ins->value(), Register64(ecx, ebx));
auto* lir = new (alloc())
LAtomicExchangeTypedArrayElement64(elements, index, value);
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/true);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LInt64Allocation value = useInt64Fixed(ins->value(), Register64(ecx, ebx));
// Case 1: the result of the operation is not used.
if (ins->isForEffect()) {
LInt64Definition temp = tempInt64Fixed(Register64(edx, eax));
auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
elements, index, value, temp);
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
auto* lir =
new (alloc()) LAtomicTypedArrayElementBinop64(elements, index, value);
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true);
}
void LIRGeneratorX86::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->storageType());
auto* lir = new (alloc())
LAtomicLoad64(elements, index, tempInt64Fixed(Register64(ecx, ebx)));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
void LIRGeneratorX86::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->writeType());
LInt64Allocation value = useInt64Fixed(ins->value(), Register64(ecx, ebx));
LInt64Definition temp = tempInt64Fixed(Register64(edx, eax));
add(new (alloc()) LAtomicStore64(elements, index, value, temp), ins);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir = new (alloc())
LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir = new (alloc())
LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
// If the base is a constant, and it is zero or its offset is zero, then
// code generation will fold the values into the access. Allocate the
// pointer to a register only if that can't happen.
static bool OptimizableConstantAccess(MDefinition* base,
const wasm::MemoryAccessDesc& access) {
MOZ_ASSERT(base->isConstant());
MOZ_ASSERT(base->type() == MIRType::Int32);
if (!(base->toConstant()->isInt32(0) || access.offset32() == 0)) {
return false;
}
if (access.type() == Scalar::Int64) {
// For int64 accesses on 32-bit systems we will need to add another offset
// of 4 to access the high part of the value; make sure this does not
// overflow the value.
int32_t v;
if (base->toConstant()->isInt32(0)) {
v = access.offset32();
} else {
v = base->toConstant()->toInt32();
}
return v <= int32_t(INT32_MAX - INT64HIGH_OFFSET);
}
return true;
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc())
LWasmAtomicLoadI64(useRegister(memoryBase), useRegister(base),
tempFixed(ecx), tempFixed(ebx));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
LAllocation baseAlloc;
if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
baseAlloc = ins->type() == MIRType::Int64 ? useRegister(base)
: useRegisterAtStart(base);
}
if (ins->type() != MIRType::Int64) {
auto* lir =
new (alloc()) LWasmLoad(baseAlloc, useRegisterAtStart(memoryBase));
define(lir, ins);
return;
}
// "AtStart" register usage does not work for the 64-bit case because we
// clobber two registers for the result and may need two registers for a
// scaled address; we can't guarantee non-interference.
auto* lir = new (alloc()) LWasmLoadI64(baseAlloc, useRegister(memoryBase));
Scalar::Type accessType = ins->access().type();
if (accessType == Scalar::Int8 || accessType == Scalar::Int16 ||
accessType == Scalar::Int32) {
// We use cdq to sign-extend the result and cdq demands these registers.
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
defineInt64(lir, ins);
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc())
LWasmAtomicStoreI64(useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)),
tempFixed(edx), tempFixed(eax));
add(lir, ins);
return;
}
LAllocation baseAlloc;
if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
baseAlloc = useRegisterAtStart(base);
}
LAllocation valueAlloc;
switch (ins->access().type()) {
case Scalar::Int8:
case Scalar::Uint8:
// See comment for LIRGeneratorX86::useByteOpRegister.
valueAlloc = useFixed(ins->value(), eax);
break;
case Scalar::Int16:
case Scalar::Uint16:
case Scalar::Int32:
case Scalar::Uint32:
case Scalar::Float32:
case Scalar::Float64:
// For now, don't allow constant values. The immediate operand affects
// instruction layout which affects patching.
valueAlloc = useRegisterAtStart(ins->value());
break;
case Scalar::Simd128:
#ifdef ENABLE_WASM_SIMD
valueAlloc = useRegisterAtStart(ins->value());
break;
#else
MOZ_CRASH("unexpected array type");
#endif
case Scalar::Int64: {
LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value());
auto* lir = new (alloc())
LWasmStoreI64(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
add(lir, ins);
return;
}
case Scalar::Uint8Clamped:
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::Float16:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
auto* lir = new (alloc())
LWasmStore(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
add(lir, ins);
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmCompareExchangeI64(
useRegisterAtStart(memoryBase), useRegisterAtStart(base),
useInt64FixedAtStart(ins->oldValue(), Register64(edx, eax)),
useInt64FixedAtStart(ins->newValue(), Register64(ecx, ebx)));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
bool byteArray = byteSize(ins->access().type()) == 1;
// Register allocation:
//
// The output may not be used, but eax will be clobbered regardless
// so pin the output to eax.
//
// oldval must be in a register.
//
// newval must be in a register. If the source is a byte array
// then newval must be a register that has a byte size: this must
// be ebx, ecx, or edx (eax is taken).
//
// Bug #1077036 describes some optimization opportunities.
const LAllocation oldval = useRegister(ins->oldValue());
const LAllocation newval =
byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue());
LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(
useRegister(base), oldval, newval, useRegister(memoryBase));
lir->setAddrTemp(temp());
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
MDefinition* base = ins->base();
auto* lir = new (alloc()) LWasmAtomicExchangeI64(
useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
const LAllocation base = useRegister(ins->base());
const LAllocation value = useRegister(ins->value());
LWasmAtomicExchangeHeap* lir = new (alloc())
LWasmAtomicExchangeHeap(base, value, useRegister(memoryBase));
lir->setAddrTemp(temp());
if (byteSize(ins->access().type()) == 1) {
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
} else {
define(lir, ins);
}
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc())
LWasmAtomicBinopI64(useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)),
ins->access(), ins->operation());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
bool byteArray = byteSize(ins->access().type()) == 1;
// Case 1: the result of the operation is not used.
//
// We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
// LOCK OR, or LOCK XOR. These can all take an immediate.
if (!ins->hasUses()) {
LAllocation value;
if (byteArray && !ins->value()->isConstant()) {
value = useFixed(ins->value(), ebx);
} else {
value = useRegisterOrConstant(ins->value());
}
LWasmAtomicBinopHeapForEffect* lir =
new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), value,
LDefinition::BogusTemp(),
useRegister(memoryBase));
lir->setAddrTemp(temp());
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
//
// For ADD and SUB we'll use XADD:
//
// movl value, output
// lock xaddl output, mem
//
// For the 8-bit variants XADD needs a byte register for the
// output only, we can still set up with movl; just pin the output
// to eax (or ebx / ecx / edx).
//
// For AND/OR/XOR we need to use a CMPXCHG loop:
//
// movl *mem, eax
// L: mov eax, temp
// andl value, temp
// lock cmpxchg temp, mem ; reads eax also
// jnz L
// ; result in eax
//
// Note the placement of L, cmpxchg will update eax with *mem if
// *mem does not have the expected value, so reloading it at the
// top of the loop would be redundant.
//
// We want to fix eax as the output. We also need a temp for
// the intermediate value.
//
// For the 8-bit variants the temp must have a byte register.
//
// There are optimization opportunities:
// - better 8-bit register allocation and instruction selection, Bug
// #1077036.
bool bitOp =
!(ins->operation() == AtomicOp::Add || ins->operation() == AtomicOp::Sub);
LDefinition tempDef = LDefinition::BogusTemp();
LAllocation value;
if (byteArray) {
value = useFixed(ins->value(), ebx);
if (bitOp) {
tempDef = tempFixed(ecx);
}
} else if (bitOp || ins->value()->isConstant()) {
value = useRegisterOrConstant(ins->value());
if (bitOp) {
tempDef = temp();
}
} else {
value = useRegisterAtStart(ins->value());
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(base), value, tempDef,
LDefinition::BogusTemp(), useRegister(memoryBase));
lir->setAddrTemp(temp());
if (byteArray || bitOp) {
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
} else if (ins->value()->isConstant()) {
define(lir, ins);
} else {
defineReuseInput(lir, ins, LWasmAtomicBinopHeap::valueOp);
}
}
void LIRGeneratorX86::lowerDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
MOZ_ASSERT(div->lhs()->type() == div->rhs()->type());
MOZ_ASSERT(IsNumberType(div->type()));
MOZ_ASSERT(div->type() == MIRType::Int64);
if (div->isUnsigned()) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
useFixedAtStart(div->instance(), InstanceReg));
defineReturn(lir, div);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
useFixedAtStart(div->instance(), InstanceReg));
defineReturn(lir, div);
}
void LIRGeneratorX86::lowerModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
MDefinition* lhs = mod->lhs();
MDefinition* rhs = mod->rhs();
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(IsNumberType(mod->type()));
MOZ_ASSERT(mod->type() == MIRType::Int64);
MOZ_ASSERT(mod->type() == MIRType::Int64);
if (mod->isUnsigned()) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
useInt64FixedAtStart(rhs, Register64(ecx, edx)),
useFixedAtStart(mod->instance(), InstanceReg));
defineReturn(lir, mod);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
useInt64FixedAtStart(rhs, Register64(ecx, edx)),
useFixedAtStart(mod->instance(), InstanceReg));
defineReturn(lir, mod);
}
void LIRGeneratorX86::lowerUDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
}
void LIRGeneratorX86::lowerUModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerBigIntPtrDiv(MBigIntPtrDiv* ins) {
auto* lir = new (alloc())
LBigIntPtrDiv(useRegister(ins->lhs()), useRegister(ins->rhs()),
tempFixed(edx), LDefinition::BogusTemp());
assignSnapshot(lir, ins->bailoutKind());
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
}
void LIRGeneratorX86::lowerBigIntPtrMod(MBigIntPtrMod* ins) {
auto* lir = new (alloc())
LBigIntPtrMod(useRegister(ins->lhs()), useRegister(ins->rhs()),
tempFixed(eax), LDefinition::BogusTemp());
if (ins->canBeDivideByZero()) {
assignSnapshot(lir, ins->bailoutKind());
}
defineFixed(lir, ins, LAllocation(AnyRegister(edx)));
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
// Due to lack of registers on x86, we reuse the string register as
// temporary. As a result we only need two temporary registers and take a
// bogus temporary as fifth argument.
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), LDefinition::BogusTemp(),
tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
LDefinition temp = tempDouble();
defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins);
}
void LIRGeneratorX86::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Int64);
MOZ_ASSERT(IsFloatingPointType(ins->type()));
LDefinition maybeTemp =
(ins->isUnsigned() &&
((ins->type() == MIRType::Double && AssemblerX86Shared::HasSSE3()) ||
ins->type() == MIRType::Float32))
? temp()
: LDefinition::BogusTemp();
define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp),
ins);
}
void LIRGeneratorX86::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
if (ins->isUnsigned()) {
defineInt64(new (alloc())
LExtendInt32ToInt64(useRegisterAtStart(ins->input())),
ins);
} else {
LExtendInt32ToInt64* lir =
new (alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
// Here we'll end up using cdq which requires input and output in (edx,eax).
LSignExtendInt64* lir = new (alloc()) LSignExtendInt64(
useInt64FixedAtStart(ins->input(), Register64(edx, eax)));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
// On x86 we specialize the only cases where compare is {U,}Int32 and select
// is {U,}Int32.
bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect(
MCompare::CompareType compTy, MIRType insTy) {
return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 ||
compTy == MCompare::Compare_UInt32);
}
void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins,
MDefinition* lhs,
MDefinition* rhs,
MCompare::CompareType compTy,
JSOp jsop) {
MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
auto* lir = new (alloc()) LWasmCompareAndSelect(
useRegister(lhs), useAny(rhs), compTy, jsop,
useRegisterAtStart(ins->trueExpr()), useAny(ins->falseExpr()));
defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex);
}