Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_Assembler_x86_h
#define jit_x86_Assembler_x86_h
#include <iterator>
#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/x86-shared/Constants-x86-shared.h"
namespace js {
namespace jit {
static constexpr Register eax{X86Encoding::rax};
static constexpr Register ecx{X86Encoding::rcx};
static constexpr Register edx{X86Encoding::rdx};
static constexpr Register ebx{X86Encoding::rbx};
static constexpr Register esp{X86Encoding::rsp};
static constexpr Register ebp{X86Encoding::rbp};
static constexpr Register esi{X86Encoding::rsi};
static constexpr Register edi{X86Encoding::rdi};
static constexpr FloatRegister xmm0 =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static constexpr FloatRegister xmm1 =
FloatRegister(X86Encoding::xmm1, FloatRegisters::Double);
static constexpr FloatRegister xmm2 =
FloatRegister(X86Encoding::xmm2, FloatRegisters::Double);
static constexpr FloatRegister xmm3 =
FloatRegister(X86Encoding::xmm3, FloatRegisters::Double);
static constexpr FloatRegister xmm4 =
FloatRegister(X86Encoding::xmm4, FloatRegisters::Double);
static constexpr FloatRegister xmm5 =
FloatRegister(X86Encoding::xmm5, FloatRegisters::Double);
static constexpr FloatRegister xmm6 =
FloatRegister(X86Encoding::xmm6, FloatRegisters::Double);
static constexpr FloatRegister xmm7 =
FloatRegister(X86Encoding::xmm7, FloatRegisters::Double);
// Vector registers fixed for use with some instructions, e.g. PBLENDVB.
static constexpr FloatRegister vmm0 =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128);
static constexpr Register InvalidReg{X86Encoding::invalid_reg};
static constexpr FloatRegister InvalidFloatReg = FloatRegister();
static constexpr Register JSReturnReg_Type = ecx;
static constexpr Register JSReturnReg_Data = edx;
static constexpr Register StackPointer = esp;
static constexpr Register FramePointer = ebp;
static constexpr Register ReturnReg = eax;
static constexpr FloatRegister ReturnFloat32Reg =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Single);
static constexpr FloatRegister ReturnDoubleReg =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static constexpr FloatRegister ReturnSimd128Reg =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128);
static constexpr FloatRegister ScratchFloat32Reg_ =
FloatRegister(X86Encoding::xmm7, FloatRegisters::Single);
static constexpr FloatRegister ScratchDoubleReg_ =
FloatRegister(X86Encoding::xmm7, FloatRegisters::Double);
static constexpr FloatRegister ScratchSimd128Reg =
FloatRegister(X86Encoding::xmm7, FloatRegisters::Simd128);
// Note, EDX:EAX is the system ABI 64-bit return register, and it is to our
// advantage to keep the SpiderMonkey ABI in sync with the system ABI.
//
// However, using EDX here means that we have to use a register that does not
// have a word or byte part (eg DX/DH/DL) in some other places; notably,
// ABINonArgReturnReg1 is EDI. If this becomes a problem and ReturnReg64 has to
// be something other than EDX:EAX, then jitted code that calls directly to C++
// will need to shuffle the return value from EDX:EAX into ReturnReg64 directly
// after the call. See bug 1730161 for discussion and a patch that does that.
static constexpr Register64 ReturnReg64(edx, eax);
// Avoid ebp, which is the FramePointer, which is unavailable in some modes.
static constexpr Register CallTempReg0 = edi;
static constexpr Register CallTempReg1 = eax;
static constexpr Register CallTempReg2 = ebx;
static constexpr Register CallTempReg3 = ecx;
static constexpr Register CallTempReg4 = esi;
static constexpr Register CallTempReg5 = edx;
// We have no arg regs, so our NonArgRegs are just our CallTempReg*
static constexpr Register CallTempNonArgRegs[] = {edi, eax, ebx, ecx, esi, edx};
static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);
class ABIArgGenerator {
uint32_t stackOffset_;
ABIArg current_;
public:
ABIArgGenerator();
ABIArg next(MIRType argType);
ABIArg& current() { return current_; }
uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
};
// These registers may be volatile or nonvolatile.
static constexpr Register ABINonArgReg0 = eax;
static constexpr Register ABINonArgReg1 = ebx;
static constexpr Register ABINonArgReg2 = ecx;
static constexpr Register ABINonArgReg3 = edx;
// This register may be volatile or nonvolatile. Avoid xmm7 which is the
// ScratchDoubleReg_.
static constexpr FloatRegister ABINonArgDoubleReg =
FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
// These registers may be volatile or nonvolatile.
// Note: these three registers are all guaranteed to be different
static constexpr Register ABINonArgReturnReg0 = ecx;
static constexpr Register ABINonArgReturnReg1 = edi;
static constexpr Register ABINonVolatileReg = ebx;
// This register is guaranteed to be clobberable during the prologue and
// epilogue of an ABI call which must preserve both ABI argument, return
// and non-volatile registers.
static constexpr Register ABINonArgReturnVolatileReg = ecx;
// Instance pointer argument register for WebAssembly functions. This must not
// alias any other register used for passing function arguments or return
// values. Preserved by WebAssembly functions.
static constexpr Register InstanceReg = esi;
// Registers used for asm.js/wasm table calls. These registers must be disjoint
// from the ABI argument registers, InstanceReg and each other.
static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;
// Registers used for ref calls.
static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmCallRefCallScratchReg2 = ABINonArgReg2;
static constexpr Register WasmCallRefReg = ABINonArgReg3;
// Registers used for wasm tail calls operations.
static constexpr Register WasmTailCallInstanceScratchReg = ABINonArgReg1;
static constexpr Register WasmTailCallRAScratchReg = ABINonArgReg2;
static constexpr Register WasmTailCallFPScratchReg = ABINonArgReg3;
// Register used as a scratch along the return path in the fast js -> wasm stub
// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
// It must be a volatile register.
static constexpr Register WasmJitEntryReturnScratch = ebx;
static constexpr Register OsrFrameReg = edx;
static constexpr Register PreBarrierReg = edx;
// Not enough registers for a PC register (R0-R2 use 2 registers each).
static constexpr Register InterpreterPCReg = InvalidReg;
// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
// JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;
// Registers used by RegExpExecTest stub (do not use ReturnReg).
static constexpr Register RegExpExecTestRegExpReg = CallTempReg0;
static constexpr Register RegExpExecTestStringReg = CallTempReg2;
// Registers used by RegExpSearcher stub (do not use ReturnReg).
static constexpr Register RegExpSearcherRegExpReg = CallTempReg0;
static constexpr Register RegExpSearcherStringReg = CallTempReg2;
static constexpr Register RegExpSearcherLastIndexReg = CallTempReg3;
// GCC stack is aligned on 16 bytes. Ion does not maintain this for internal
// calls. wasm code does.
#if defined(__GNUC__) && !defined(__MINGW32__)
static constexpr uint32_t ABIStackAlignment = 16;
#else
static constexpr uint32_t ABIStackAlignment = 4;
#endif
static constexpr uint32_t CodeAlignment = 16;
static constexpr uint32_t JitStackAlignment = 16;
static constexpr uint32_t JitStackValueAlignment =
JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 &&
JitStackValueAlignment >= 1,
"Stack alignment should be a non-zero multiple of sizeof(Value)");
static constexpr uint32_t SimdMemoryAlignment = 16;
static_assert(CodeAlignment % SimdMemoryAlignment == 0,
"Code alignment should be larger than any of the alignments "
"which are used for "
"the constant sections of the code buffer. Thus it should be "
"larger than the "
"alignment for SIMD constants.");
static_assert(JitStackAlignment % SimdMemoryAlignment == 0,
"Stack alignment should be larger than any of the alignments "
"which are used for "
"spilled values. Thus it should be larger than the alignment "
"for SIMD accesses.");
static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment;
static constexpr uint32_t WasmTrapInstructionLength = 2;
// See comments in wasm::GenerateFunctionPrologue. The difference between these
// is the size of the largest callable prologue on the platform. (We could make
// the tail offset 3, but I have opted for 4 as that results in a better-aligned
// branch target.)
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;
struct ImmTag : public Imm32 {
explicit ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {}
};
struct ImmType : public ImmTag {
explicit ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {}
};
static constexpr Scale ScalePointer = TimesFour;
} // namespace jit
} // namespace js
#include "jit/x86-shared/Assembler-x86-shared.h"
namespace js {
namespace jit {
static inline Operand LowWord(const Operand& op) {
switch (op.kind()) {
case Operand::MEM_REG_DISP:
return Operand(LowWord(op.toAddress()));
case Operand::MEM_SCALE:
return Operand(LowWord(op.toBaseIndex()));
default:
MOZ_CRASH("Invalid operand type");
}
}
static inline Operand HighWord(const Operand& op) {
switch (op.kind()) {
case Operand::MEM_REG_DISP:
return Operand(HighWord(op.toAddress()));
case Operand::MEM_SCALE:
return Operand(HighWord(op.toBaseIndex()));
default:
MOZ_CRASH("Invalid operand type");
}
}
// Return operand from a JS -> JS call.
static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type,
JSReturnReg_Data};
class Assembler : public AssemblerX86Shared {
Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;
void addPendingJump(JmpSrc src, ImmPtr target, RelocationKind kind) {
enoughMemory_ &=
jumps_.append(RelativePatch(src.offset(), target.value, kind));
if (kind == RelocationKind::JITCODE) {
jumpRelocations_.writeUnsigned(src.offset());
}
}
public:
using AssemblerX86Shared::call;
using AssemblerX86Shared::cmpl;
using AssemblerX86Shared::j;
using AssemblerX86Shared::jmp;
using AssemblerX86Shared::movl;
using AssemblerX86Shared::pop;
using AssemblerX86Shared::push;
using AssemblerX86Shared::retarget;
using AssemblerX86Shared::vmovsd;
using AssemblerX86Shared::vmovss;
static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
// Copy the assembly code to the given buffer, and perform any pending
// relocations relying on the target address.
void executableCopy(uint8_t* buffer);
void assertNoGCThings() const {
#ifdef DEBUG
MOZ_ASSERT(dataRelocations_.length() == 0);
for (auto& j : jumps_) {
MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
}
#endif
}
// Actual assembly emitting functions.
void push(ImmGCPtr ptr) {
masm.push_i32(int32_t(ptr.value));
writeDataRelocation(ptr);
}
void push(const ImmWord imm) { push(Imm32(imm.value)); }
void push(const ImmPtr imm) { push(ImmWord(uintptr_t(imm.value))); }
void push(FloatRegister src) {
subl(Imm32(sizeof(double)), StackPointer);
vmovsd(src, Address(StackPointer, 0));
}
CodeOffset pushWithPatch(ImmWord word) {
masm.push_i32(int32_t(word.value));
return CodeOffset(masm.currentOffset());
}
void pop(FloatRegister src) {
vmovsd(Address(StackPointer, 0), src);
addl(Imm32(sizeof(double)), StackPointer);
}
CodeOffset movWithPatch(ImmWord word, Register dest) {
movl(Imm32(word.value), dest);
return CodeOffset(masm.currentOffset());
}
CodeOffset movWithPatch(ImmPtr imm, Register dest) {
return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
}
void movl(ImmGCPtr ptr, Register dest) {
masm.movl_i32r(uintptr_t(ptr.value), dest.encoding());
writeDataRelocation(ptr);
}
void movl(ImmGCPtr ptr, const Operand& dest) {
switch (dest.kind()) {
case Operand::REG:
masm.movl_i32r(uintptr_t(ptr.value), dest.reg());
writeDataRelocation(ptr);
break;
case Operand::MEM_REG_DISP:
masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base());
writeDataRelocation(ptr);
break;
case Operand::MEM_SCALE:
masm.movl_i32m(uintptr_t(ptr.value), dest.disp(), dest.base(),
dest.index(), dest.scale());
writeDataRelocation(ptr);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void movl(ImmWord imm, Register dest) {
masm.movl_i32r(imm.value, dest.encoding());
}
void movl(ImmPtr imm, Register dest) {
movl(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(ImmWord imm, Register dest) {
// Use xor for setting registers to zero, as it is specially optimized
// for this purpose on modern hardware. Note that it does clobber FLAGS
// though.
if (imm.value == 0) {
xorl(dest, dest);
} else {
movl(imm, dest);
}
}
void mov(ImmPtr imm, Register dest) {
mov(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(wasm::SymbolicAddress imm, Register dest) {
masm.movl_i32r(-1, dest.encoding());
append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), imm));
}
void mov(const Operand& src, Register dest) { movl(src, dest); }
void mov(Register src, const Operand& dest) { movl(src, dest); }
void mov(Imm32 imm, const Operand& dest) { movl(imm, dest); }
void mov(CodeLabel* label, Register dest) {
// Put a placeholder value in the instruction stream.
masm.movl_i32r(0, dest.encoding());
label->patchAt()->bind(masm.size());
}
void mov(Register src, Register dest) { movl(src, dest); }
void xchg(Register src, Register dest) { xchgl(src, dest); }
void lea(const Operand& src, Register dest) { return leal(src, dest); }
void cmovz32(const Operand& src, Register dest) { return cmovzl(src, dest); }
void cmovzPtr(const Operand& src, Register dest) { return cmovzl(src, dest); }
void fstp32(const Operand& src) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.fstp32_m(src.disp(), src.base());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void faddp() { masm.faddp(); }
void cmpl(ImmWord rhs, Register lhs) {
masm.cmpl_ir(rhs.value, lhs.encoding());
}
void cmpl(ImmPtr rhs, Register lhs) {
cmpl(ImmWord(uintptr_t(rhs.value)), lhs);
}
void cmpl(ImmGCPtr rhs, Register lhs) {
masm.cmpl_i32r(uintptr_t(rhs.value), lhs.encoding());
writeDataRelocation(rhs);
}
void cmpl(Register rhs, Register lhs) {
masm.cmpl_rr(rhs.encoding(), lhs.encoding());
}
void cmpl(ImmGCPtr rhs, const Operand& lhs) {
switch (lhs.kind()) {
case Operand::REG:
masm.cmpl_i32r(uintptr_t(rhs.value), lhs.reg());
writeDataRelocation(rhs);
break;
case Operand::MEM_REG_DISP:
masm.cmpl_i32m(uintptr_t(rhs.value), lhs.disp(), lhs.base());
writeDataRelocation(rhs);
break;
case Operand::MEM_ADDRESS32:
masm.cmpl_i32m(uintptr_t(rhs.value), lhs.address());
writeDataRelocation(rhs);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void cmpl(Register rhs, wasm::SymbolicAddress lhs) {
masm.cmpl_rm_disp32(rhs.encoding(), (void*)-1);
append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), lhs));
}
void cmpl(Imm32 rhs, wasm::SymbolicAddress lhs) {
JmpSrc src = masm.cmpl_im_disp32(rhs.value, (void*)-1);
append(wasm::SymbolicAccess(CodeOffset(src.offset()), lhs));
}
void adcl(Imm32 imm, Register dest) {
masm.adcl_ir(imm.value, dest.encoding());
}
void adcl(Register src, Register dest) {
masm.adcl_rr(src.encoding(), dest.encoding());
}
void adcl(Operand src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.adcl_mr(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_SCALE:
masm.adcl_mr(src.disp(), src.base(), src.index(), src.scale(),
dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void sbbl(Imm32 imm, Register dest) {
masm.sbbl_ir(imm.value, dest.encoding());
}
void sbbl(Register src, Register dest) {
masm.sbbl_rr(src.encoding(), dest.encoding());
}
void sbbl(Operand src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.sbbl_mr(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_SCALE:
masm.sbbl_mr(src.disp(), src.base(), src.index(), src.scale(),
dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void mull(Register multiplier) { masm.mull_r(multiplier.encoding()); }
void shldl(const Imm32 imm, Register src, Register dest) {
masm.shldl_irr(imm.value, src.encoding(), dest.encoding());
}
void shrdl(const Imm32 imm, Register src, Register dest) {
masm.shrdl_irr(imm.value, src.encoding(), dest.encoding());
}
void vhaddpd(FloatRegister rhs, FloatRegister lhsDest) {
MOZ_ASSERT(HasSSE3());
MOZ_ASSERT(rhs.size() == 16);
MOZ_ASSERT(lhsDest.size() == 16);
masm.vhaddpd_rr(rhs.encoding(), lhsDest.encoding(), lhsDest.encoding());
}
void fild(const Operand& src) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.fild_m(src.disp(), src.base());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void jmp(ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) {
JmpSrc src = masm.jmp();
addPendingJump(src, target, reloc);
}
void j(Condition cond, ImmPtr target,
RelocationKind reloc = RelocationKind::HARDCODED) {
JmpSrc src = masm.jCC(static_cast<X86Encoding::Condition>(cond));
addPendingJump(src, target, reloc);
}
void jmp(JitCode* target) {
jmp(ImmPtr(target->raw()), RelocationKind::JITCODE);
}
void j(Condition cond, JitCode* target) {
j(cond, ImmPtr(target->raw()), RelocationKind::JITCODE);
}
void call(JitCode* target) {
JmpSrc src = masm.call();
addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE);
}
void call(ImmWord target) { call(ImmPtr((void*)target.value)); }
void call(ImmPtr target) {
JmpSrc src = masm.call();
addPendingJump(src, target, RelocationKind::HARDCODED);
}
// Emit a CALL or CMP (nop) instruction. ToggleCall can be used to patch
// this instruction.
CodeOffset toggledCall(JitCode* target, bool enabled) {
CodeOffset offset(size());
JmpSrc src = enabled ? masm.call() : masm.cmp_eax();
addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE);
MOZ_ASSERT_IF(!oom(), size() - offset.offset() == ToggledCallSize(nullptr));
return offset;
}
static size_t ToggledCallSize(uint8_t* code) {
// Size of a call instruction.
return 5;
}
// Re-routes pending jumps to an external target, flushing the label in the
// process.
void retarget(Label* label, ImmPtr target, RelocationKind reloc) {
if (label->used()) {
bool more;
X86Encoding::JmpSrc jmp(label->offset());
do {
X86Encoding::JmpSrc next;
more = masm.nextJump(jmp, &next);
addPendingJump(jmp, target, reloc);
jmp = next;
} while (more);
}
label->reset();
}
// Move a 32-bit immediate into a register where the immediate can be
// patched.
CodeOffset movlWithPatch(Imm32 imm, Register dest) {
masm.movl_i32r(imm.value, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Load from *(base + disp32) where disp32 can be patched.
CodeOffset movsblWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movsbl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movsbl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movzblWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movzbl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movzbl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movswlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movswl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movswl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movzwlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movzwl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movzwl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(const Operand& src, Register dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.movl_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.movl_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
void vmovss(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_mr(src.address(), dest.encoding());
break;
case Operand::MEM_SCALE:
masm.vmovss_mr(src.disp(), src.base(), src.index(), src.scale(),
dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset vmovdWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovd_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovd_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovq_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovq_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
void vmovsd(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_mr(src.address(), dest.encoding());
break;
case Operand::MEM_SCALE:
masm.vmovsd_mr(src.disp(), src.base(), src.index(), src.scale(),
dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset vmovupsWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovups_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovups_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(const Operand& src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
switch (src.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovdqu_mr_disp32(src.disp(), src.base(), dest.encoding());
break;
case Operand::MEM_ADDRESS32:
masm.vmovdqu_mr(src.address(), dest.encoding());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
// Store to *(base + disp32) where disp32 can be patched.
CodeOffset movbWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movb_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movb_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movwWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movw_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movw_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(Register src, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.movl_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.movl_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatchLow(Register regLow, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP: {
return movlWithPatch(regLow, LowWord(dest));
}
case Operand::MEM_ADDRESS32: {
Operand low(
PatchedAbsoluteAddress(uint32_t(dest.address()) + INT64LOW_OFFSET));
return movlWithPatch(regLow, low);
}
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset movlWithPatchHigh(Register regHigh, const Operand& dest) {
switch (dest.kind()) {
case Operand::MEM_REG_DISP: {
return movlWithPatch(regHigh, HighWord(dest));
}
case Operand::MEM_ADDRESS32: {
Operand high(PatchedAbsoluteAddress(uint32_t(dest.address()) +
INT64HIGH_OFFSET));
return movlWithPatch(regHigh, high);
}
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset vmovdWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovd_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovd_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovq_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovq_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
void vmovss(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovss_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovss_rm(src.encoding(), dest.address());
break;
case Operand::MEM_SCALE:
masm.vmovss_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
dest.scale());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset vmovsdWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
void vmovsd(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovsd_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovsd_rm(src.encoding(), dest.address());
break;
case Operand::MEM_SCALE:
masm.vmovsd_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
dest.scale());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
CodeOffset vmovupsWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovups_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovups_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(FloatRegister src, const Operand& dest) {
MOZ_ASSERT(HasSSE2());
switch (dest.kind()) {
case Operand::MEM_REG_DISP:
masm.vmovdqu_rm_disp32(src.encoding(), dest.disp(), dest.base());
break;
case Operand::MEM_ADDRESS32:
masm.vmovdqu_rm(src.encoding(), dest.address());
break;
default:
MOZ_CRASH("unexpected operand kind");
}
return CodeOffset(masm.currentOffset());
}
// Load from *(addr + index*scale) where addr can be patched.
CodeOffset movlWithPatch(PatchedAbsoluteAddress addr, Register index,
Scale scale, Register dest) {
masm.movl_mr(addr.addr, index.encoding(), scale, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Load from *src where src can be patched.
CodeOffset movsblWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movsbl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movzblWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movzbl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movswlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movswl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movzwlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movzwl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(PatchedAbsoluteAddress src, Register dest) {
masm.movl_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovss_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovd_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovq_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovsd_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdqaWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqa_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqu_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovapsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovaps_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(PatchedAbsoluteAddress src, FloatRegister dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovups_mr(src.addr, dest.encoding());
return CodeOffset(masm.currentOffset());
}
// Store to *dest where dest can be patched.
CodeOffset movbWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movb_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset movwWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movw_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset movlWithPatch(Register src, PatchedAbsoluteAddress dest) {
masm.movl_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovssWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovss_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovd_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovqWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovq_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovsdWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovsd_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdqaWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqa_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovapsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovaps_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovdquWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovdqu_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
CodeOffset vmovupsWithPatch(FloatRegister src, PatchedAbsoluteAddress dest) {
MOZ_ASSERT(HasSSE2());
masm.vmovups_rm(src.encoding(), dest.addr);
return CodeOffset(masm.currentOffset());
}
};
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
uint32_t usedFloatArgs, Register* out) {
if (usedIntArgs >= NumCallTempNonArgRegs) {
return false;
}
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
} // namespace jit
} // namespace js
#endif /* jit_x86_Assembler_x86_h */