Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#ifndef jit_x86_shared_LIR_x86_shared_h
#define jit_x86_shared_LIR_x86_shared_h
namespace js {
namespace jit {
class LDivI : public LBinaryMath<1> {
public:
LIR_HEADER(DivI)
LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
if (mir()->isTruncated()) {
if (mir()->canBeNegativeZero()) {
return mir()->canBeNegativeOverflow()
? "Truncate_NegativeZero_NegativeOverflow"
: "Truncate_NegativeZero";
}
return mir()->canBeNegativeOverflow() ? "Truncate_NegativeOverflow"
: "Truncate";
}
if (mir()->canBeNegativeZero()) {
return mir()->canBeNegativeOverflow() ? "NegativeZero_NegativeOverflow"
: "NegativeZero";
}
return mir()->canBeNegativeOverflow() ? "NegativeOverflow" : nullptr;
}
const LDefinition* remainder() { return getTemp(0); }
MDiv* mir() const { return mir_->toDiv(); }
};
// Signed division by a power-of-two constant.
class LDivPowTwoI : public LBinaryMath<0> {
const int32_t shift_;
const bool negativeDivisor_;
public:
LIR_HEADER(DivPowTwoI)
LDivPowTwoI(const LAllocation& lhs, const LAllocation& lhsCopy, int32_t shift,
bool negativeDivisor)
: LBinaryMath(classOpcode),
shift_(shift),
negativeDivisor_(negativeDivisor) {
setOperand(0, lhs);
setOperand(1, lhsCopy);
}
const LAllocation* numerator() { return getOperand(0); }
const LAllocation* numeratorCopy() { return getOperand(1); }
int32_t shift() const { return shift_; }
bool negativeDivisor() const { return negativeDivisor_; }
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivOrModConstantI : public LInstructionHelper<1, 1, 1> {
const int32_t denominator_;
public:
LIR_HEADER(DivOrModConstantI)
LDivOrModConstantI(const LAllocation& lhs, int32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
int32_t denominator() const { return denominator_; }
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeNegativeDividend();
}
return mir_->toDiv()->canBeNegativeDividend();
}
};
class LModI : public LBinaryMath<1> {
public:
LIR_HEADER(ModI)
LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
const LDefinition* remainder() { return getDef(0); }
MMod* mir() const { return mir_->toMod(); }
};
// This class performs a simple x86 'div', yielding either a quotient or
// remainder depending on whether this instruction is defined to output eax
// (quotient) or edx (remainder).
class LUDivOrMod : public LBinaryMath<1> {
public:
LIR_HEADER(UDivOrMod);
LUDivOrMod(const LAllocation& lhs, const LAllocation& rhs,
const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* remainder() { return getTemp(0); }
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeDivideByZero();
}
return mir_->toDiv()->canBeDivideByZero();
}
bool trapOnError() const {
if (mir_->isMod()) {
return mir_->toMod()->trapOnError();
}
return mir_->toDiv()->trapOnError();
}
wasm::BytecodeOffset bytecodeOffset() const {
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
class LUDivOrModConstant : public LInstructionHelper<1, 1, 1> {
const uint32_t denominator_;
public:
LIR_HEADER(UDivOrModConstant)
LUDivOrModConstant(const LAllocation& lhs, uint32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
uint32_t denominator() const { return denominator_; }
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeNegativeDividend();
}
return mir_->toDiv()->canBeNegativeDividend();
}
bool trapOnError() const {
if (mir_->isMod()) {
return mir_->toMod()->trapOnError();
}
return mir_->toDiv()->trapOnError();
}
wasm::BytecodeOffset bytecodeOffset() const {
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
class LModPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
public:
LIR_HEADER(ModPowTwoI)
LModPowTwoI(const LAllocation& lhs, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
}
int32_t shift() const { return shift_; }
const LDefinition* remainder() { return getDef(0); }
MMod* mir() const { return mir_->toMod(); }
};
// Takes a tableswitch with an integer to decide
class LTableSwitch : public LInstructionHelper<0, 1, 2> {
public:
LIR_HEADER(TableSwitch)
LTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
setTemp(0, inputCopy);
setTemp(1, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
const LAllocation* index() { return getOperand(0); }
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempPointer() { return getTemp(1); }
};
// Takes a tableswitch with a value to decide
class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> {
public:
LIR_HEADER(TableSwitchV)
LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy,
const LDefinition& floatCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setBoxOperand(InputValue, input);
setTemp(0, inputCopy);
setTemp(1, floatCopy);
setTemp(2, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
static const size_t InputValue = 0;
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempFloat() { return getTemp(1); }
const LDefinition* tempPointer() { return getTemp(2); }
};
class LMulI : public LBinaryMath<0, 1> {
public:
LIR_HEADER(MulI)
LMulI(const LAllocation& lhs, const LAllocation& rhs,
const LAllocation& lhsCopy)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setOperand(2, lhsCopy);
}
const char* extraName() const {
return (mir()->mode() == MMul::Integer)
? "Integer"
: (mir()->canBeNegativeZero() ? "CanBeNegativeZero" : nullptr);
}
MMul* mir() const { return mir_->toMul(); }
const LAllocation* lhsCopy() { return this->getOperand(2); }
};
class LInt64ToFloatingPoint : public LInstructionHelper<1, INT64_PIECES, 1> {
public:
LIR_HEADER(Int64ToFloatingPoint);
LInt64ToFloatingPoint(const LInt64Allocation& in, const LDefinition& temp)
: LInstructionHelper(classOpcode) {
setInt64Operand(0, in);
setTemp(0, temp);
}
MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); }
const LDefinition* temp() { return getTemp(0); }
};
} // namespace jit
} // namespace js
#endif /* jit_x86_shared_LIR_x86_shared_h */