Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright 2021 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef JS_SIMULATOR_RISCV64
# include "jit/riscv64/Simulator-riscv64.h"
# include "mozilla/Casting.h"
# include "mozilla/FloatingPoint.h"
# include "mozilla/IntegerPrintfMacros.h"
# include "mozilla/Likely.h"
# include "mozilla/MathAlgorithms.h"
# include <float.h>
# include <iostream>
# include <limits>
# include "jit/AtomicOperations.h"
# include "jit/riscv64/Assembler-riscv64.h"
# include "js/Conversions.h"
# include "js/UniquePtr.h"
# include "js/Utility.h"
# include "threading/LockGuard.h"
# include "vm/JSContext.h"
# include "vm/Runtime.h"
# include "wasm/WasmInstance.h"
# include "wasm/WasmSignalHandlers.h"
# define I8(v) static_cast<int8_t>(v)
# define I16(v) static_cast<int16_t>(v)
# define U16(v) static_cast<uint16_t>(v)
# define I32(v) static_cast<int32_t>(v)
# define U32(v) static_cast<uint32_t>(v)
# define I64(v) static_cast<int64_t>(v)
# define U64(v) static_cast<uint64_t>(v)
# define I128(v) static_cast<__int128_t>(v)
# define U128(v) static_cast<__uint128_t>(v)
# define REGIx_FORMAT PRIx64
# define REGId_FORMAT PRId64
# define I32_CHECK(v) \
({ \
MOZ_ASSERT(I64(I32(v)) == I64(v)); \
I32((v)); \
})
namespace js {
namespace jit {
bool Simulator::FLAG_trace_sim = false;
bool Simulator::FLAG_debug_sim = false;
bool Simulator::FLAG_riscv_trap_to_simulator_debugger = false;
bool Simulator::FLAG_riscv_print_watchpoint = false;
static void UNIMPLEMENTED() {
printf("UNIMPLEMENTED instruction.\n");
MOZ_CRASH();
}
static void UNREACHABLE() {
printf("UNREACHABLE instruction.\n");
MOZ_CRASH();
}
# define UNSUPPORTED() \
std::cout << "Unrecognized instruction [@pc=0x" << std::hex \
<< registers_[pc] << "]: 0x" << instr_.InstructionBits() \
<< std::endl; \
printf("Unsupported instruction.\n"); \
MOZ_CRASH();
static char* ReadLine(const char* prompt) {
UniqueChars result;
char lineBuf[256];
int offset = 0;
bool keepGoing = true;
fprintf(stdout, "%s", prompt);
fflush(stdout);
while (keepGoing) {
if (fgets(lineBuf, sizeof(lineBuf), stdin) == nullptr) {
// fgets got an error. Just give up.
return nullptr;
}
int len = strlen(lineBuf);
if (len > 0 && lineBuf[len - 1] == '\n') {
// Since we read a new line we are done reading the line. This
// will exit the loop after copying this buffer into the result.
keepGoing = false;
}
if (!result) {
// Allocate the initial result and make room for the terminating '\0'
result.reset(js_pod_malloc<char>(len + 1));
if (!result) {
return nullptr;
}
} else {
// Allocate a new result with enough room for the new addition.
int new_len = offset + len + 1;
char* new_result = js_pod_malloc<char>(new_len);
if (!new_result) {
return nullptr;
}
// Copy the existing input into the new array and set the new
// array as the result.
memcpy(new_result, result.get(), offset * sizeof(char));
result.reset(new_result);
}
// Copy the newly read line into the result.
memcpy(result.get() + offset, lineBuf, len * sizeof(char));
offset += len;
}
MOZ_ASSERT(result);
result[offset] = '\0';
return result.release();
}
// -----------------------------------------------------------------------------
// Riscv assembly various constants.
// C/C++ argument slots size.
const int kCArgSlotCount = 0;
const int kCArgsSlotsSize = kCArgSlotCount * sizeof(uintptr_t);
const int kBranchReturnOffset = 2 * kInstrSize;
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* validityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* cachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
// Protects the icache() and redirection() properties of the
// Simulator.
class AutoLockSimulatorCache : public LockGuard<Mutex> {
using Base = LockGuard<Mutex>;
public:
explicit AutoLockSimulatorCache()
: Base(SimulatorProcess::singleton_->cacheLock_) {}
};
mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
SimulatorProcess::ICacheCheckingDisableCount(
1); // Checking is disabled by default.
SimulatorProcess* SimulatorProcess::singleton_ = nullptr;
int64_t Simulator::StopSimAt = -1;
static bool IsFlag(const char* found, const char* flag) {
return strlen(found) == strlen(flag) && strcmp(found, flag) == 0;
}
Simulator* Simulator::Create() {
auto sim = MakeUnique<Simulator>();
if (!sim) {
return nullptr;
}
if (!sim->init()) {
return nullptr;
}
int64_t stopAt;
char* stopAtStr = getenv("RISCV_SIM_STOP_AT");
if (stopAtStr && sscanf(stopAtStr, "%" PRIi64, &stopAt) == 1) {
fprintf(stderr, "\nStopping simulation at icount %" PRIi64 "\n", stopAt);
Simulator::StopSimAt = stopAt;
}
char* str = getenv("RISCV_TRACE_SIM");
if (str != nullptr && IsFlag(str, "true")) {
FLAG_trace_sim = true;
}
return sim.release();
}
void Simulator::Destroy(Simulator* sim) { js_delete(sim); }
# if JS_CODEGEN_RISCV64
void Simulator::TraceRegWr(int64_t value, TraceType t) {
if (FLAG_trace_sim) {
union {
int64_t fmt_int64;
int32_t fmt_int32[2];
float fmt_float[2];
double fmt_double;
} v;
v.fmt_int64 = value;
switch (t) {
case WORD:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int32:%" PRId32
" uint32:%" PRIu32,
v.fmt_int64, icount_, v.fmt_int32[0], v.fmt_int32[0]);
break;
case DWORD:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int64:%" REGId_FORMAT
" uint64:%" PRIu64,
value, icount_, value, value);
break;
case FLOAT:
SNPrintF(trace_buf_, "%016" REGIx_FORMAT " (%" PRId64 ") flt:%e",
v.fmt_int64, icount_, v.fmt_float[0]);
break;
case DOUBLE:
SNPrintF(trace_buf_, "%016" REGIx_FORMAT " (%" PRId64 ") dbl:%e",
v.fmt_int64, icount_, v.fmt_double);
break;
default:
UNREACHABLE();
}
}
}
# elif JS_CODEGEN_RISCV32
template <typename T>
void Simulator::TraceRegWr(T value, TraceType t) {
if (::v8::internal::FLAG_trace_sim) {
union {
int32_t fmt_int32;
float fmt_float;
double fmt_double;
} v;
if (t != DOUBLE) {
v.fmt_int32 = value;
} else {
DCHECK_EQ(sizeof(T), 8);
v.fmt_double = value;
}
switch (t) {
case WORD:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int32:%" REGId_FORMAT
" uint32:%" PRIu32,
v.fmt_int32, icount_, v.fmt_int32, v.fmt_int32);
break;
case FLOAT:
SNPrintF(trace_buf_, "%016" REGIx_FORMAT " (%" PRId64 ") flt:%e",
v.fmt_int32, icount_, v.fmt_float);
break;
case DOUBLE:
SNPrintF(trace_buf_, "%016" PRIx64 " (%" PRId64 ") dbl:%e",
static_cast<int64_t>(v.fmt_double), icount_, v.fmt_double);
break;
default:
UNREACHABLE();
}
}
}
# endif
// The RiscvDebugger class is used by the simulator while debugging simulated
// code.
class RiscvDebugger {
public:
explicit RiscvDebugger(Simulator* sim) : sim_(sim) {}
void Debug();
// Print all registers with a nice formatting.
void PrintRegs(char name_prefix, int start_index, int end_index);
void printAllRegs();
void printAllRegsIncludingFPU();
static const Instr kNopInstr = 0x0;
private:
Simulator* sim_;
int64_t GetRegisterValue(int regnum);
int64_t GetFPURegisterValue(int regnum);
float GetFPURegisterValueFloat(int regnum);
double GetFPURegisterValueDouble(int regnum);
# ifdef CAN_USE_RVV_INSTRUCTIONS
__int128_t GetVRegisterValue(int regnum);
# endif
bool GetValue(const char* desc, int64_t* value);
};
int64_t RiscvDebugger::GetRegisterValue(int regnum) {
if (regnum == Simulator::Register::kNumSimuRegisters) {
return sim_->get_pc();
} else {
return sim_->getRegister(regnum);
}
}
int64_t RiscvDebugger::GetFPURegisterValue(int regnum) {
if (regnum == Simulator::FPURegister::kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->getFpuRegister(regnum);
}
}
float RiscvDebugger::GetFPURegisterValueFloat(int regnum) {
if (regnum == Simulator::FPURegister::kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->getFpuRegisterFloat(regnum);
}
}
double RiscvDebugger::GetFPURegisterValueDouble(int regnum) {
if (regnum == Simulator::FPURegister::kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->getFpuRegisterDouble(regnum);
}
}
# ifdef CAN_USE_RVV_INSTRUCTIONS
__int128_t RiscvDebugger::GetVRegisterValue(int regnum) {
if (regnum == kNumVRegisters) {
return sim_->get_pc();
} else {
return sim_->get_vregister(regnum);
}
}
# endif
bool RiscvDebugger::GetValue(const char* desc, int64_t* value) {
int regnum = Registers::FromName(desc);
int fpuregnum = FloatRegisters::FromName(desc);
if (regnum != Registers::invalid_reg) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != FloatRegisters::invalid_reg) {
*value = GetFPURegisterValue(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return sscanf(desc + 2, "%" SCNx64, reinterpret_cast<int64_t*>(value)) == 1;
} else {
return sscanf(desc, "%" SCNu64, reinterpret_cast<int64_t*>(value)) == 1;
}
}
# define REG_INFO(name) \
name, GetRegisterValue(Registers::FromName(name)), \
GetRegisterValue(Registers::FromName(name))
void RiscvDebugger::PrintRegs(char name_prefix, int start_index,
int end_index) {
EmbeddedVector<char, 10> name1, name2;
MOZ_ASSERT(name_prefix == 'a' || name_prefix == 't' || name_prefix == 's');
MOZ_ASSERT(start_index >= 0 && end_index <= 99);
int num_registers = (end_index - start_index) + 1;
for (int i = 0; i < num_registers / 2; i++) {
SNPrintF(name1, "%c%d", name_prefix, start_index + 2 * i);
SNPrintF(name2, "%c%d", name_prefix, start_index + 2 * i + 1);
printf("%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
" \t%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT " \n",
REG_INFO(name1.start()), REG_INFO(name2.start()));
}
if (num_registers % 2 == 1) {
SNPrintF(name1, "%c%d", name_prefix, end_index);
printf("%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT " \n",
REG_INFO(name1.start()));
}
}
void RiscvDebugger::printAllRegs() {
printf("\n");
// ra, sp, gp
printf("%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
"\t%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
"\t%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT "\n",
REG_INFO("ra"), REG_INFO("sp"), REG_INFO("gp"));
// tp, fp, pc
printf("%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
"\t%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
"\t%3s: 0x%016" REGIx_FORMAT " %14" REGId_FORMAT "\n",
REG_INFO("tp"), REG_INFO("fp"), REG_INFO("pc"));
// print register a0, .., a7
PrintRegs('a', 0, 7);
// print registers s1, ..., s11
PrintRegs('s', 1, 11);
// print registers t0, ..., t6
PrintRegs('t', 0, 6);
}
# undef REG_INFO
void RiscvDebugger::printAllRegsIncludingFPU() {
# define FPU_REG_INFO(n) \
FloatRegisters::GetName(n), GetFPURegisterValue(n), \
GetFPURegisterValueDouble(n)
printAllRegs();
printf("\n\n");
// f0, f1, f2, ... f31.
MOZ_ASSERT(kNumFPURegisters % 2 == 0);
for (int i = 0; i < kNumFPURegisters; i += 2)
printf("%3s: 0x%016" PRIx64 " %16.4e \t%3s: 0x%016" PRIx64 " %16.4e\n",
FPU_REG_INFO(i), FPU_REG_INFO(i + 1));
# undef FPU_REG_INFO
}
void RiscvDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
# define COMMAND_SIZE 63
# define ARG_SIZE 255
# define STR(a) #a
# define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
printf(" 0x%016" REGIx_FORMAT " %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
char* last_input = sim_->lastDebuggerInput();
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->setLastDebuggerInput(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = sscanf(
line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
SimInstruction* instr =
reinterpret_cast<SimInstruction*>(sim_->get_pc());
if (!(instr->IsTrap()) ||
instr->InstructionBits() == rtCallRedirInstr) {
sim_->icount_++;
sim_->InstructionDecode(
reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
printf("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
int64_t value;
int64_t fvalue;
double dvalue;
if (strcmp(arg1, "all") == 0) {
printAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
printAllRegsIncludingFPU();
} else {
int regnum = Registers::FromName(arg1);
int fpuregnum = FloatRegisters::FromName(arg1);
# ifdef CAN_USE_RVV_INSTRUCTIONS
int vregnum = VRegisters::FromName(arg1);
# endif
if (regnum != Registers::invalid_reg) {
value = GetRegisterValue(regnum);
printf("%s: 0x%08" REGIx_FORMAT " %" REGId_FORMAT " \n", arg1,
value, value);
} else if (fpuregnum != FloatRegisters::invalid_reg) {
fvalue = GetFPURegisterValue(fpuregnum);
dvalue = GetFPURegisterValueDouble(fpuregnum);
printf("%3s: 0x%016" PRIx64 " %16.4e\n",
FloatRegisters::GetName(fpuregnum), fvalue, dvalue);
# ifdef CAN_USE_RVV_INSTRUCTIONS
} else if (vregnum != kInvalidVRegister) {
__int128_t v = GetVRegisterValue(vregnum);
printf("\t%s:0x%016" REGIx_FORMAT "%016" REGIx_FORMAT "\n",
VRegisters::GetName(vregnum), (uint64_t)(v >> 64),
(uint64_t)v);
# endif
} else {
printf("%s unrecognized\n", arg1);
}
}
} else {
if (argc == 3) {
if (strcmp(arg2, "single") == 0) {
int64_t value;
float fvalue;
int fpuregnum = FloatRegisters::FromName(arg1);
if (fpuregnum != FloatRegisters::invalid_reg) {
value = GetFPURegisterValue(fpuregnum);
value &= 0xFFFFFFFFUL;
fvalue = GetFPURegisterValueFloat(fpuregnum);
printf("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue);
} else {
printf("%s unrecognized\n", arg1);
}
} else {
printf("print <fpu register> single\n");
}
} else {
printf("print <register> or print <fpu register> single\n");
}
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
UNIMPLEMENTED();
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int64_t* cur = nullptr;
int64_t* end = nullptr;
int next_arg = 1;
if (argc < 2) {
printf("Need to specify <address> to memhex command\n");
continue;
}
int64_t value;
if (!GetValue(arg1, &value)) {
printf("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int64_t*>(value);
next_arg++;
int64_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
printf(" 0x%012" PRIxPTR " : 0x%016" REGIx_FORMAT
" %14" REGId_FORMAT " ",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
printf("\n");
cur++;
}
} else if ((strcmp(cmd, "watch") == 0)) {
if (argc < 2) {
printf("Need to specify <address> to mem command\n");
continue;
}
int64_t value;
if (!GetValue(arg1, &value)) {
printf("%s unrecognized\n", arg1);
continue;
}
sim_->watch_address_ = reinterpret_cast<int64_t*>(value);
sim_->watch_value_ = *(sim_->watch_address_);
} else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
EmbeddedVector<char, 256> buffer;
byte* cur = nullptr;
byte* end = nullptr;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * kInstrSize);
} else if (argc == 2) {
auto regnum = Registers::FromName(arg1);
if (regnum != Registers::invalid_reg || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
sreg_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * kInstrSize);
}
} else {
// The argument is the number of instructions.
sreg_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * kInstrSize);
}
}
} else {
sreg_t value1;
sreg_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
printf(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
buffer.start());
cur += kInstrSize;
}
} else if (strcmp(cmd, "trace") == 0) {
Simulator::FLAG_trace_sim = true;
Simulator::FLAG_riscv_print_watchpoint = true;
} else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0 ||
strcmp(cmd, "tbreak") == 0) {
bool is_tbreak = strcmp(cmd, "tbreak") == 0;
if (argc == 2) {
int64_t value;
if (GetValue(arg1, &value)) {
sim_->SetBreakpoint(reinterpret_cast<SimInstruction*>(value),
is_tbreak);
} else {
printf("%s unrecognized\n", arg1);
}
} else {
sim_->ListBreakpoints();
printf("Use `break <address>` to set or disable a breakpoint\n");
printf(
"Use `tbreak <address>` to set or disable a temporary "
"breakpoint\n");
}
} else if (strcmp(cmd, "flags") == 0) {
printf("No flags on RISC-V !\n");
} else if (strcmp(cmd, "stop") == 0) {
int64_t value;
if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
printf("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->printStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->printStopInfo(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->enableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->enableStop(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->disableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->disableStop(value);
} else {
printf("Unrecognized argument.\n");
}
}
} else {
printf("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
UNIMPLEMENTED();
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
printf("cont (alias 'c')\n");
printf(" Continue execution\n");
printf("stepi (alias 'si')\n");
printf(" Step one instruction\n");
printf("print (alias 'p')\n");
printf(" print <register>\n");
printf(" Print register content\n");
printf(" Use register name 'all' to print all GPRs\n");
printf(" Use register name 'allf' to print all GPRs and FPRs\n");
printf("printobject (alias 'po')\n");
printf(" printobject <register>\n");
printf(" Print an object from a register\n");
printf("stack\n");
printf(" stack [<words>]\n");
printf(" Dump stack content, default dump 10 words)\n");
printf("mem\n");
printf(" mem <address> [<words>]\n");
printf(" Dump memory content, default dump 10 words)\n");
printf("watch\n");
printf(" watch <address> \n");
printf(" watch memory content.)\n");
printf("flags\n");
printf(" print flags\n");
printf("disasm (alias 'di')\n");
printf(" disasm [<instructions>]\n");
printf(" disasm [<address/register>] (e.g., disasm pc) \n");
printf(" disasm [[<address/register>] <instructions>]\n");
printf(" Disassemble code, default is 10 instructions\n");
printf(" from pc\n");
printf("gdb \n");
printf(" Return to gdb if the simulator was started with gdb\n");
printf("break (alias 'b')\n");
printf(" break : list all breakpoints\n");
printf(" break <address> : set / enable / disable a breakpoint.\n");
printf("tbreak\n");
printf(" tbreak : list all breakpoints\n");
printf(
" tbreak <address> : set / enable / disable a temporary "
"breakpoint.\n");
printf(" Set a breakpoint enabled only for one stop. \n");
printf("stop feature:\n");
printf(" Description:\n");
printf(" Stops are debug instructions inserted by\n");
printf(" the Assembler::stop() function.\n");
printf(" When hitting a stop, the Simulator will\n");
printf(" stop and give control to the Debugger.\n");
printf(" All stop codes are watched:\n");
printf(" - They can be enabled / disabled: the Simulator\n");
printf(" will / won't stop when hitting them.\n");
printf(" - The Simulator keeps track of how many times they \n");
printf(" are met. (See the info command.) Going over a\n");
printf(" disabled stop still increases its counter. \n");
printf(" Commands:\n");
printf(" stop info all/<code> : print infos about number <code>\n");
printf(" or all stop(s).\n");
printf(" stop enable/disable all/<code> : enables / disables\n");
printf(" all or number <code> stop(s)\n");
} else {
printf("Unknown command: %s\n", cmd);
}
}
}
# undef COMMAND_SIZE
# undef ARG_SIZE
# undef STR
# undef XSTR
}
void Simulator::SetBreakpoint(SimInstruction* location, bool is_tbreak) {
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if (breakpoints_.at(i).location == location) {
if (breakpoints_.at(i).is_tbreak != is_tbreak) {
printf("Change breakpoint at %p to %s breakpoint\n",
reinterpret_cast<void*>(location),
is_tbreak ? "temporary" : "regular");
breakpoints_.at(i).is_tbreak = is_tbreak;
return;
}
printf("Existing breakpoint at %p was %s\n",
reinterpret_cast<void*>(location),
breakpoints_.at(i).enabled ? "disabled" : "enabled");
breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
return;
}
}
Breakpoint new_breakpoint = {location, true, is_tbreak};
breakpoints_.push_back(new_breakpoint);
printf("Set a %sbreakpoint at %p\n", is_tbreak ? "temporary " : "",
reinterpret_cast<void*>(location));
}
void Simulator::ListBreakpoints() {
printf("Breakpoints:\n");
for (unsigned i = 0; i < breakpoints_.size(); i++) {
printf("%p : %s %s\n",
reinterpret_cast<void*>(breakpoints_.at(i).location),
breakpoints_.at(i).enabled ? "enabled" : "disabled",
breakpoints_.at(i).is_tbreak ? ": temporary" : "");
}
}
void Simulator::CheckBreakpoints() {
bool hit_a_breakpoint = false;
bool is_tbreak = false;
SimInstruction* pc_ = reinterpret_cast<SimInstruction*>(get_pc());
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if ((breakpoints_.at(i).location == pc_) && breakpoints_.at(i).enabled) {
hit_a_breakpoint = true;
if (breakpoints_.at(i).is_tbreak) {
// Disable a temporary breakpoint.
is_tbreak = true;
breakpoints_.at(i).enabled = false;
}
break;
}
}
if (hit_a_breakpoint) {
printf("Hit %sa breakpoint at %p.\n", is_tbreak ? "and disabled " : "",
reinterpret_cast<void*>(pc_));
RiscvDebugger dbg(this);
dbg.Debug();
}
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::setLastDebuggerInput(char* input) {
js_free(lastDebuggerInput_);
lastDebuggerInput_ = input;
}
static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache,
void* page) {
SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page);
if (p) {
return p->value();
}
AutoEnterOOMUnsafeRegion oomUnsafe;
CachePage* new_page = js_new<CachePage>();
if (!new_page || !i_cache.add(p, page, new_page)) {
oomUnsafe.crash("Simulator CachePage");
}
return new_page;
}
// Flush from start up to and not including start + size.
static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache,
intptr_t start, int size) {
MOZ_ASSERT(size <= CachePage::kPageSize);
MOZ_ASSERT(AllOnOnePage(start, size - 1));
MOZ_ASSERT((start & CachePage::kLineMask) == 0);
MOZ_ASSERT((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(i_cache, page);
char* valid_bytemap = cache_page->validityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePageLocked(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
MOZ_ASSERT((start & CachePage::kPageMask) == 0);
offset = 0;
}
if (size != 0) {
FlushOnePageLocked(i_cache, start, size);
}
}
/* static */
void SimulatorProcess::checkICacheLocked(SimInstruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(icache(), page);
char* cache_valid_byte = cache_page->validityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
int cmpret = memcmp(reinterpret_cast<void*>(instr),
cache_page->cachedData(offset), kInstrSize);
MOZ_ASSERT(cmpret == 0);
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) {
return U32(reinterpret_cast<uintptr_t>(l)) >> 2;
}
bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) {
MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0);
MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0);
return k == l;
}
/* static */
void SimulatorProcess::FlushICache(void* start_addr, size_t size) {
if (!ICacheCheckingDisableCount) {
AutoLockSimulatorCache als;
js::jit::FlushICacheLocked(icache(), start_addr, size);
}
}
Simulator::Simulator() {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
// Note, allocation and anything that depends on allocated memory is
// deferred until init(), in order to handle OOM properly.
stack_ = nullptr;
stackLimit_ = 0;
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = nullptr;
break_instr_ = 0;
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < Simulator::Register::kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < Simulator::FPURegister::kNumFPURegisters; i++) {
FPUregisters_[i] = 0;
}
FCSR_ = 0;
LLBit_ = false;
LLAddr_ = 0;
lastLLValue_ = 0;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
for (int i = 0; i < kNumExceptions; i++) {
exceptions[i] = 0;
}
lastDebuggerInput_ = nullptr;
}
bool Simulator::init() {
// Allocate 2MB for the stack. Note that we will only use 1MB, see below.
static const size_t stackSize = 2 * 1024 * 1024;
stack_ = js_pod_malloc<char>(stackSize);
if (!stack_) {
return false;
}
// Leave a safety margin of 1MB to prevent overrunning the stack when
// pushing values (total stack size is 2MB).
stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int64_t>(stack_) + stackSize - 64;
return true;
}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
friend class SimulatorProcess;
// sim's lock must already be held.
Redirection(void* nativeFunction, ABIFunctionType type)
: nativeFunction_(nativeFunction),
swiInstruction_(rtCallRedirInstr),
type_(type),
next_(nullptr) {
next_ = SimulatorProcess::redirection();
if (!SimulatorProcess::ICacheCheckingDisableCount) {
FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(),
kInstrSize);
}
SimulatorProcess::setRedirection(this);
}
public:
void* addressOfSwiInstruction() { return &swiInstruction_; }
void* nativeFunction() const { return nativeFunction_; }
ABIFunctionType type() const { return type_; }
static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
AutoLockSimulatorCache als;
Redirection* current = SimulatorProcess::redirection();
for (; current != nullptr; current = current->next_) {
if (current->nativeFunction_ == nativeFunction) {
MOZ_ASSERT(current->type() == type);
return current;
}
}
// Note: we can't use js_new here because the constructor is private.
AutoEnterOOMUnsafeRegion oomUnsafe;
Redirection* redir = js_pod_malloc<Redirection>(1);
if (!redir) {
oomUnsafe.crash("Simulator redirection");
}
new (redir) Redirection(nativeFunction, type);
return redir;
}
static Redirection* FromSwiInstruction(Instruction* swiInstruction) {
uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction);
uint8_t* addrOfRedirection =
addrOfSwi - offsetof(Redirection, swiInstruction_);
return reinterpret_cast<Redirection*>(addrOfRedirection);
}
private:
void* nativeFunction_;
uint32_t swiInstruction_;
ABIFunctionType type_;
Redirection* next_;
};
Simulator::~Simulator() { js_free(stack_); }
SimulatorProcess::SimulatorProcess()
: cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) {
if (getenv("MIPS_SIM_ICACHE_CHECKS")) {
ICacheCheckingDisableCount = 0;
}
}
SimulatorProcess::~SimulatorProcess() {
Redirection* r = redirection_;
while (r) {
Redirection* next = r->next_;
js_delete(r);
r = next;
}
}
/* static */
void* Simulator::RedirectNativeFunction(void* nativeFunction,
ABIFunctionType type) {
Redirection* redirection = Redirection::Get(nativeFunction, type);
return redirection->addressOfSwiInstruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::Current() {
JSContext* cx = TlsContext.get();
MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime()));
return cx->simulator();
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::setRegister(int reg, int64_t value) {
MOZ_ASSERT((reg >= 0) && (reg < Simulator::Register::kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::setFpuRegister(int fpureg, int64_t value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
void Simulator::setFpuRegisterLo(int fpureg, int32_t value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::setFpuRegisterHi(int fpureg, int32_t value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1) = value;
}
void Simulator::setFpuRegisterFloat(int fpureg, float value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*mozilla::BitwiseCast<int64_t*>(&FPUregisters_[fpureg]) = box_float(value);
}
void Simulator::setFpuRegisterFloat(int fpureg, Float32 value) {
MOZ_ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
Float64 t = Float64::FromBits(box_float(value.get_bits()));
memcpy(&FPUregisters_[fpureg], &t, 8);
}
void Simulator::setFpuRegisterDouble(int fpureg, double value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::setFpuRegisterDouble(int fpureg, Float64 value) {
MOZ_ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
memcpy(&FPUregisters_[fpureg], &value, 8);
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int64_t Simulator::getRegister(int reg) const {
MOZ_ASSERT((reg >= 0) && (reg < Simulator::Register::kNumSimuRegisters));
if (reg == 0) {
return 0;
}
return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0);
}
int64_t Simulator::getFpuRegister(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return FPUregisters_[fpureg];
}
int32_t Simulator::getFpuRegisterLo(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]);
}
int32_t Simulator::getFpuRegisterHi(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1);
}
float Simulator::getFpuRegisterFloat(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]);
}
Float32 Simulator::getFpuRegisterFloat32(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
if (!is_boxed_float(FPUregisters_[fpureg])) {
return Float32::FromBits(0x7ffc0000);
}
return Float32::FromBits(
*bit_cast<uint32_t*>(const_cast<int64_t*>(&FPUregisters_[fpureg])));
}
double Simulator::getFpuRegisterDouble(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]);
}
Float64 Simulator::getFpuRegisterFloat64(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
return Float64::FromBits(FPUregisters_[fpureg]);
}
void Simulator::setCallResultDouble(double result) {
setFpuRegisterDouble(fa0, result);
}
void Simulator::setCallResultFloat(float result) {
setFpuRegisterFloat(fa0, result);
}
void Simulator::setCallResult(int64_t res) { setRegister(a0, res); }
void Simulator::setCallResult(__int128_t res) {
setRegister(a0, I64(res));
setRegister(a1, I64(res >> 64));
}
// Raw access to the PC register.
void Simulator::set_pc(int64_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int64_t Simulator::get_pc() const { return registers_[pc]; }
JS::ProfilingFrameIterator::RegisterState Simulator::registerState() {
wasm::RegisterState state;
state.pc = (void*)get_pc();
state.fp = (void*)getRegister(fp);
state.sp = (void*)getRegister(sp);
state.lr = (void*)getRegister(ra);
return state;
}
void Simulator::HandleWasmTrap() {
uint8_t* newPC;
if (wasm::HandleIllegalInstruction(registerState(), &newPC)) {
set_pc(int64_t(newPC));
return;
}
}
// TODO(plind): consider making icount_ printing a flag option.
template <typename T>
void Simulator::TraceMemRd(sreg_t addr, T value, sreg_t reg_value) {
if (FLAG_trace_sim) {
if (std::is_integral<T>::value) {
switch (sizeof(T)) {
case 1:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int8:%" PRId8
" uint8:%" PRIu8 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int8_t>(value),
static_cast<uint8_t>(value), addr);
break;
case 2:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int16:%" PRId16
" uint16:%" PRIu16 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int16_t>(value),
static_cast<uint16_t>(value), addr);
break;
case 4:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int32:%" PRId32
" uint32:%" PRIu32 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int32_t>(value),
static_cast<uint32_t>(value), addr);
break;
case 8:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int64:%" PRId64
" uint64:%" PRIu64 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int64_t>(value),
static_cast<uint64_t>(value), addr);
break;
default:
UNREACHABLE();
}
} else if (std::is_same<float, T>::value) {
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64
") flt:%e <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<float>(value), addr);
} else if (std::is_same<double, T>::value) {
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64
") dbl:%e <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<double>(value), addr);
} else {
UNREACHABLE();
}
}
}
void Simulator::TraceMemRdFloat(sreg_t addr, Float32 value, int64_t reg_value) {
if (FLAG_trace_sim) {
SNPrintF(trace_buf_,
"%016" PRIx64 " (%" PRId64
") flt:%e <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<float>(value.get_scalar()), addr);
}
}
void Simulator::TraceMemRdDouble(sreg_t addr, double value, int64_t reg_value) {
if (FLAG_trace_sim) {
SNPrintF(trace_buf_,
"%016" PRIx64 " (%" PRId64
") dbl:%e <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<double>(value), addr);
}
}
void Simulator::TraceMemRdDouble(sreg_t addr, Float64 value,
int64_t reg_value) {
if (FLAG_trace_sim) {
SNPrintF(trace_buf_,
"%016" PRIx64 " (%" PRId64
") dbl:%e <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<double>(value.get_scalar()), addr);
}
}
template <typename T>
void Simulator::TraceMemWr(sreg_t addr, T value) {
if (FLAG_trace_sim) {
switch (sizeof(T)) {
case 1:
SNPrintF(trace_buf_,
" (%" PRIu64 ") int8:%" PRId8
" uint8:%" PRIu8 " --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<int8_t>(value),
static_cast<uint8_t>(value), addr);
break;
case 2:
SNPrintF(trace_buf_,
" (%" PRIu64 ") int16:%" PRId16
" uint16:%" PRIu16 " --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<int16_t>(value),
static_cast<uint16_t>(value), addr);
break;
case 4:
if (std::is_integral<T>::value) {
SNPrintF(trace_buf_,
" (%" PRIu64 ") int32:%" PRId32
" uint32:%" PRIu32 " --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<int32_t>(value),
static_cast<uint32_t>(value), addr);
} else {
SNPrintF(trace_buf_,
" (%" PRIu64
") flt:%e --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<float>(value), addr);
}
break;
case 8:
if (std::is_integral<T>::value) {
SNPrintF(trace_buf_,
" (%" PRIu64 ") int64:%" PRId64
" uint64:%" PRIu64 " --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<int64_t>(value),
static_cast<uint64_t>(value), addr);
} else {
SNPrintF(trace_buf_,
" (%" PRIu64
") dbl:%e --> [addr: %" REGIx_FORMAT "]",
icount_, static_cast<double>(value), addr);
}
break;
default:
UNREACHABLE();
}
}
}
void Simulator::TraceMemWrDouble(sreg_t addr, double value) {
if (FLAG_trace_sim) {
SNPrintF(trace_buf_,
" (%" PRIu64
") dbl:%e --> [addr: %" REGIx_FORMAT "]",
icount_, value, addr);
}
}
template <typename T>
void Simulator::TraceLr(sreg_t addr, T value, sreg_t reg_value) {
if (FLAG_trace_sim) {
if (std::is_integral<T>::value) {
switch (sizeof(T)) {
case 4:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int32:%" PRId32
" uint32:%" PRIu32 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int32_t>(value),
static_cast<uint32_t>(value), addr);
break;
case 8:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRId64 ") int64:%" PRId64
" uint64:%" PRIu64 " <-- [addr: %" REGIx_FORMAT "]",
reg_value, icount_, static_cast<int64_t>(value),
static_cast<uint64_t>(value), addr);
break;
default:
UNREACHABLE();
}
} else {
UNREACHABLE();
}
}
}
template <typename T>
void Simulator::TraceSc(sreg_t addr, T value) {
if (FLAG_trace_sim) {
switch (sizeof(T)) {
case 4:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRIu64 ") int32:%" PRId32
" uint32:%" PRIu32 " --> [addr: %" REGIx_FORMAT "]",
getRegister(rd_reg()), icount_, static_cast<int32_t>(value),
static_cast<uint32_t>(value), addr);
break;
case 8:
SNPrintF(trace_buf_,
"%016" REGIx_FORMAT " (%" PRIu64 ") int64:%" PRId64
" uint64:%" PRIu64 " --> [addr: %" REGIx_FORMAT "]",
getRegister(rd_reg()), icount_, static_cast<int64_t>(value),
static_cast<uint64_t>(value), addr);
break;
default:
UNREACHABLE();
}
}
}
// TODO(RISCV): check whether the specific board supports unaligned load/store
// (determined by EEI). For now, we assume the board does not support unaligned
// load/store (e.g., trapping)
template <typename T>
T Simulator::ReadMem(sreg_t addr, Instruction* instr) {
if (handleWasmSegFault(addr, sizeof(T))) {
return -1;
}
if (addr >= 0 && addr < 0x400) {
// This has to be a nullptr-dereference, drop into debugger.
printf("Memory read from bad address: 0x%08" REGIx_FORMAT
" , pc=0x%08" PRIxPTR " \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
T* ptr = reinterpret_cast<T*>(addr);
T value = *ptr;
return value;
}
template <typename T>
void Simulator::WriteMem(sreg_t addr, T value, Instruction* instr) {
if (handleWasmSegFault(addr, sizeof(T))) {
value = -1;
return;
}
if (addr >= 0 && addr < 0x400) {
// This has to be a nullptr-dereference, drop into debugger.
printf("Memory write to bad address: 0x%08" REGIx_FORMAT
" , pc=0x%08" PRIxPTR " \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
T* ptr = reinterpret_cast<T*>(addr);
if (!std::is_same<double, T>::value) {
TraceMemWr(addr, value);
} else {
TraceMemWrDouble(addr, value);
}
*ptr = value;
}
template <>
void Simulator::WriteMem(sreg_t addr, Float32 value, Instruction* instr) {
if (handleWasmSegFault(addr, 4)) {
value = Float32(-1.0f);
return;
}
if (addr >= 0 && addr < 0x400) {
// This has to be a nullptr-dereference, drop into debugger.
printf("Memory write to bad address: 0x%08" REGIx_FORMAT
" , pc=0x%08" PRIxPTR " \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
float* ptr = reinterpret_cast<float*>(addr);
TraceMemWr(addr, value.get_scalar());
memcpy(ptr, &value, 4);
}
template <>
void Simulator::WriteMem(sreg_t addr, Float64 value, Instruction* instr) {
if (handleWasmSegFault(addr, 8)) {
value = Float64(-1.0);
return;
}
if (addr >= 0 && addr < 0x400) {
// This has to be a nullptr-dereference, drop into debugger.
printf("Memory write to bad address: 0x%08" REGIx_FORMAT
" , pc=0x%08" PRIxPTR " \n",
addr, reinterpret_cast<intptr_t>(instr));
DieOrDebug();
}
double* ptr = reinterpret_cast<double*>(addr);
TraceMemWrDouble(addr, value.get_scalar());
memcpy(ptr, &value, 8);
}
uintptr_t Simulator::stackLimit() const { return stackLimit_; }
uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; }
bool Simulator::overRecursed(uintptr_t newsp) const {
if (newsp == 0) {
newsp = getRegister(sp);
}
return newsp <= stackLimit();
}
bool Simulator::overRecursedWithExtra(uint32_t extra) const {
uintptr_t newsp = getRegister(sp) - extra;
return newsp <= stackLimit();
}
// Unsupported instructions use format to print an error and stop execution.
void Simulator::format(SimInstruction* instr, const char* format) {
printf("Simulator found unsupported instruction:\n 0x%016lx: %s\n",
reinterpret_cast<intptr_t>(instr), format);
MOZ_CRASH();
}
// Note: With the code below we assume that all runtime calls return a 64 bits
// result. If they don't, the v1 result register contains a bogus value, which
// is fine because it is caller-saved.
typedef int64_t (*Prototype_General0)();
typedef int64_t (*Prototype_General1)(int64_t arg0);
typedef int64_t (*Prototype_General2)(int64_t arg0, int64_t arg1);
typedef int64_t (*Prototype_General3)(int64_t arg0, int64_t arg1, int64_t arg2);
typedef int64_t (*Prototype_General4)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3);
typedef int64_t (*Prototype_General5)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3, int64_t arg4);
typedef int64_t (*Prototype_General6)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3, int64_t arg4, int64_t arg5);
typedef int64_t (*Prototype_General7)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3, int64_t arg4, int64_t arg5,
int64_t arg6);
typedef int64_t (*Prototype_General8)(int64_t arg0, int64_t arg1, int64_t arg2,
int64_t arg3, int64_t arg4, int64_t arg5,
int64_t arg6, int64_t arg7);
typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int64_t arg0,
int64_t arg1,
int64_t arg2,
int64_t arg3);
typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int64_t arg0,
int64_t arg1,
int64_t arg2,
int64_t arg3);
typedef int64_t (*Prototype_Int_Double)(double arg0);
typedef int64_t (*Prototype_Int_IntDouble)(int64_t arg0, double arg1);
typedef int64_t (*Prototype_Int_DoubleInt)(double arg0, int64_t arg1);
typedef int64_t (*Prototype_Int_DoubleIntInt)(double arg0, int64_t arg1,
int64_t arg2);
typedef int64_t (*Prototype_Int_IntDoubleIntInt)(int64_t arg0, double arg1,
int64_t arg2, int64_t arg3);
typedef float (*Prototype_Float32_Float32)(float arg0);
typedef int64_t (*Prototype_Int_Float32)(float arg0);
typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1);
typedef double (*Prototype_Double_None)();
typedef double (*Prototype_Double_Double)(double arg0);
typedef double (*Prototype_Double_Int)(int64_t arg0);
typedef double (*Prototype_Double_DoubleInt)(double arg0, int64_t arg1);
typedef double (*Prototype_Double_IntDouble)(int64_t arg0, double arg1);
typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1);
typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1,
double arg2);
typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0,
double arg1,
double arg2,
double arg3);
typedef int32_t (*Prototype_Int32_General)(int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32)(int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int64_t, int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32)(int64_t, int32_t,
int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int64_t, int32_t,
int32_t, int32_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)(
int64_t, int32_t, int32_t, int32_t, int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32General)(
int64_t, int32_t, int32_t, int32_t, int32_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)(
int64_t, int32_t, int32_t, int32_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int64_t, int32_t,
int32_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64Int32)(int64_t, int32_t,
int32_t, int64_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int64_t, int32_t,
int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)(
int64_t, int32_t, int64_t, int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64Int32)(int64_t, int32_t,
int64_t, int64_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralGeneral)(int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralGeneral)(int64_t, int64_t,
int64_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int64_t, int64_t,
int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32)(int64_t, int64_t,
int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32Int32)(
int64_t, int64_t, int32_t, int32_t, int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64Int32)(int64_t, int64_t,
int32_t, int64_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32)(int64_t, int64_t,
int32_t, int32_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32Int32GeneralInt32)(
int64_t, int64_t, int32_t, int32_t, int32_t, int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralInt32General)(int32_t, int32_t,
int32_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64General)(
int64_t, int64_t, int32_t, int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64)(int64_t, int64_t,
int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64Int32)(int64_t, int64_t,
int64_t, int64_t,
int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int64_t, int64_t,
int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64General)(
int64_t, int64_t, int64_t, int64_t, int64_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64Int32Int32)(
int64_t, int64_t, int64_t, int64_t, int32_t, int32_t);
typedef int64_t (*Prototype_General_GeneralInt32)(int64_t, int32_t);
typedef int64_t (*Prototype_General_GeneralInt32Int32)(int64_t, int32_t,
int32_t);
typedef int64_t (*Prototype_General_GeneralInt32General)(int64_t, int32_t,
int64_t);
typedef int64_t (*Prototype_General_GeneralInt32Int32GeneralInt32)(
int64_t, int32_t, int32_t, int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32)(
int64_t, int64_t, int32_t, int64_t, int32_t, int32_t, int32_t);
typedef int64_t (*Prototype_Int64_General)(int64_t);
typedef int64_t (*Prototype_Int64_GeneralInt32)(int64_t, int32_t);
typedef int64_t (*Prototype_Int64_GeneralInt64)(int64_t, int64_t);
typedef int64_t (*Prototype_Int64_GeneralInt64Int32)(int64_t, int64_t, int32_t);
typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int64_t, int64_t,
int64_t, int64_t);
// Generated by Assembler::break_()/stop(), ebreak code is passed as immediate
// field of a subsequent LUI instruction; otherwise returns -1
static inline uint32_t get_ebreak_code(Instruction* instr) {
MOZ_ASSERT(instr->InstructionBits() == kBreakInstr);
uint8_t* cur = reinterpret_cast<uint8_t*>(instr);
Instruction* next_instr = reinterpret_cast<Instruction*>(cur + kInstrSize);
if (next_instr->BaseOpcodeFieldRaw() == LUI)
return (next_instr->Imm20UValue());
else
return -1;
}
// Software interrupt instructions are used by the simulator to call into C++.
void Simulator::SoftwareInterrupt() {
// There are two instructions that could get us here, the ebreak or ecall
// instructions are "SYSTEM" class opcode distinuished by Imm12Value field w/
// the rest of instruction fields being zero
// We first check if we met a call_rt_redirected.
if (instr_.InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
uintptr_t nativeFn =
reinterpret_cast<uintptr_t>(redirection->nativeFunction());
intptr_t arg0 = getRegister(a0);
intptr_t arg1 = getRegister(a1);
intptr_t arg2 = getRegister(a2);
intptr_t arg3 = getRegister(a3);
intptr_t arg4 = getRegister(a4);
intptr_t arg5 = getRegister(a5);
intptr_t arg6 = getRegister(a6);
intptr_t arg7 = getRegister(a7);
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
intptr_t saved_ra = getRegister(ra);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->nativeFunction());
bool stack_aligned = (getRegister(sp) & (ABIStackAlignment - 1)) == 0;
if (!stack_aligned) {
fprintf(stderr, "Runtime call with unaligned stack!\n");
MOZ_CRASH();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
if (FLAG_trace_sim) {
printf(
"Call to host function at %p with args %ld, %ld, %ld, %ld, %ld, %ld, "
"%ld, %ld\n",
reinterpret_cast<void*>(external), arg0, arg1, arg2, arg3, arg4, arg5,
arg6, arg7);
}
switch (redirection->type()) {
case Args_General0: {
Prototype_General0 target =
reinterpret_cast<Prototype_General0>(external);
int64_t result = target();
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General1: {
Prototype_General1 target =
reinterpret_cast<Prototype_General1>(external);
int64_t result = target(arg0);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General2: {
Prototype_General2 target =
reinterpret_cast<Prototype_General2>(external);
int64_t result = target(arg0, arg1);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General3: {
Prototype_General3 target =
reinterpret_cast<Prototype_General3>(external);
int64_t result = target(arg0, arg1, arg2);
if (FLAG_trace_sim) printf("ret %ld\n", result);
if (external == intptr_t(&js::wasm::Instance::wake_m32)) {
result = int32_t(result);
}
setCallResult(result);
break;
}
case Args_General4: {
Prototype_General4 target =
reinterpret_cast<Prototype_General4>(external);
int64_t result = target(arg0, arg1, arg2, arg3);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General5: {
Prototype_General5 target =
reinterpret_cast<Prototype_General5>(external);
int64_t result = target(arg0, arg1, arg2, arg3, arg4);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General6: {
Prototype_General6 target =
reinterpret_cast<Prototype_General6>(external);
int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General7: {
Prototype_General7 target =
reinterpret_cast<Prototype_General7>(external);
int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_General8: {
Prototype_General8 target =
reinterpret_cast<Prototype_General8>(external);
int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setCallResult(result);
break;
}
case Args_Double_None: {
Prototype_Double_None target =
reinterpret_cast<Prototype_Double_None>(external);
double dresult = target();
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Int_Double: {
double dval0 = getFpuRegisterDouble(fa0);
Prototype_Int_Double target =
reinterpret_cast<Prototype_Int_Double>(external);
int64_t result = target(dval0);
if (FLAG_trace_sim) printf("ret %ld\n", result);
if (external == intptr_t((int32_t(*)(double))JS::ToInt32)) {
result = int32_t(result);
}
setRegister(a0, result);
break;
}
case Args_Int_GeneralGeneralGeneralInt64: {
Prototype_GeneralGeneralGeneralInt64 target =
reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(external);
int64_t result = target(arg0, arg1, arg2, arg3);
if (FLAG_trace_sim) printf("ret %ld\n", result);
if (external == intptr_t(&js::wasm::Instance::wait_i32_m32)) {
result = int32_t(result);
}
setRegister(a0, result);
break;
}
case Args_Int_GeneralGeneralInt64Int64: {
Prototype_GeneralGeneralInt64Int64 target =
reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(external);
int64_t result = target(arg0, arg1, arg2, arg3);
if (FLAG_trace_sim) printf("ret %ld\n", result);
if (external == intptr_t(&js::wasm::Instance::wait_i64_m32)) {
result = int32_t(result);
}
setRegister(a0, result);
break;
}
case Args_Int_DoubleInt: {
double dval = getFpuRegisterDouble(fa0);
Prototype_Int_DoubleInt target =
reinterpret_cast<Prototype_Int_DoubleInt>(external);
int64_t result = target(dval, arg0);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setRegister(a0, result);
break;
}
case Args_Int_DoubleIntInt: {
double dval = getFpuRegisterDouble(fa0);
Prototype_Int_DoubleIntInt target =
reinterpret_cast<Prototype_Int_DoubleIntInt>(external);
int64_t result = target(dval, arg1, arg2);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setRegister(a0, result);
break;
}
case Args_Int_IntDoubleIntInt: {
double dval = getFpuRegisterDouble(fa0);
Prototype_Int_IntDoubleIntInt target =
reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external);
int64_t result = target(arg0, dval, arg2, arg3);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setRegister(a0, result);
break;
}
case Args_Double_Double: {
double dval0 = getFpuRegisterDouble(fa0);
Prototype_Double_Double target =
reinterpret_cast<Prototype_Double_Double>(external);
double dresult = target(dval0);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Float32_Float32: {
float fval0;
fval0 = getFpuRegisterFloat(fa0);
Prototype_Float32_Float32 target =
reinterpret_cast<Prototype_Float32_Float32>(external);
float fresult = target(fval0);
if (FLAG_trace_sim) printf("ret %f\n", fresult);
setCallResultFloat(fresult);
break;
}
case Args_Int_Float32: {
float fval0;
fval0 = getFpuRegisterFloat(fa0);
Prototype_Int_Float32 target =
reinterpret_cast<Prototype_Int_Float32>(external);
int64_t result = target(fval0);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setRegister(a0, result);
break;
}
case Args_Float32_Float32Float32: {
float fval0;
float fval1;
fval0 = getFpuRegisterFloat(fa0);
fval1 = getFpuRegisterFloat(fa1);
Prototype_Float32_Float32Float32 target =
reinterpret_cast<Prototype_Float32_Float32Float32>(external);
float fresult = target(fval0, fval1);
if (FLAG_trace_sim) printf("ret %f\n", fresult);
setCallResultFloat(fresult);
break;
}
case Args_Double_Int: {
Prototype_Double_Int target =
reinterpret_cast<Prototype_Double_Int>(external);
double dresult = target(arg0);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Double_DoubleInt: {
double dval0 = getFpuRegisterDouble(fa0);
Prototype_Double_DoubleInt target =
reinterpret_cast<Prototype_Double_DoubleInt>(external);
double dresult = target(dval0, arg0);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Double_DoubleDouble: {
double dval0 = getFpuRegisterDouble(fa0);
double dval1 = getFpuRegisterDouble(fa1);
Prototype_Double_DoubleDouble target =
reinterpret_cast<Prototype_Double_DoubleDouble>(external);
double dresult = target(dval0, dval1);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Double_IntDouble: {
double dval0 = getFpuRegisterDouble(fa0);
Prototype_Double_IntDouble target =
reinterpret_cast<Prototype_Double_IntDouble>(external);
double dresult = target(arg0, dval0);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Int_IntDouble: {
double dval0 = getFpuRegisterDouble(fa0);
Prototype_Int_IntDouble target =
reinterpret_cast<Prototype_Int_IntDouble>(external);
int64_t result = target(arg0, dval0);
if (FLAG_trace_sim) printf("ret %ld\n", result);
setRegister(a0, result);
break;
}
case Args_Double_DoubleDoubleDouble: {
double dval0 = getFpuRegisterDouble(fa0);
double dval1 = getFpuRegisterDouble(fa1);
double dval2 = getFpuRegisterDouble(fa2);
Prototype_Double_DoubleDoubleDouble target =
reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external);
double dresult = target(dval0, dval1, dval2);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Double_DoubleDoubleDoubleDouble: {
double dval0 = getFpuRegisterDouble(fa0);
double dval1 = getFpuRegisterDouble(fa1);
double dval2 = getFpuRegisterDouble(fa2);
double dval3 = getFpuRegisterDouble(fa3);
Prototype_Double_DoubleDoubleDoubleDouble target =
reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>(
external);
double dresult = target(dval0, dval1, dval2, dval3);
if (FLAG_trace_sim) printf("ret %f\n", dresult);
setCallResultDouble(dresult);
break;
}
case Args_Int32_General: {
int32_t ret = reinterpret_cast<Prototype_Int32_General>(nativeFn)(arg0);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32>(nativeFn)(
arg0, I32(arg1));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3));
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int32Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4),
I32(arg5));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int32Int32General: {
int32_t ret = reinterpret_cast<
Prototype_Int32_GeneralInt32Int32Int32Int32General>(nativeFn)(
arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4), arg5);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int32General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>(
nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), arg4);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>(
nativeFn)(arg0, I32(arg1), I32(arg2), arg3);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int32Int64Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2), arg3, I32(arg4));
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32GeneralInt32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>(
nativeFn)(arg0, I32(arg1), arg2, I32(arg3));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32GeneralInt32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>(
nativeFn)(arg0, I32(arg1), arg2, I32(arg3), I32(arg4));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralGeneral: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralGeneral>(
nativeFn)(arg0, arg1);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralInt32Int64Int64Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64Int32>(
nativeFn)(arg0, I32(arg1), arg2, arg3, I32(arg4));
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralGeneralGeneral: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralGeneralGeneral>(
nativeFn)(arg0, arg1, arg2);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_Int32_GeneralGeneralInt32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>(
nativeFn)(arg0, arg1, I32(arg2), I32(arg3));
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int32Int32: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32>(
nativeFn)(arg0, arg1, I32(arg2), I32(arg3));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int32Int32Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32Int32Int32>(
nativeFn)(arg0, arg1, I32(arg2), I32(arg3), I32(arg4),
I32(arg5));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int32Int64Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64Int32>(
nativeFn)(arg0, arg1, I32(arg2), arg3, I32(arg4));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int32Int64General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64General>(
nativeFn)(arg0, arg1, I32(arg2), arg3, arg4);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int64Int64: {
int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64>(
nativeFn)(arg0, arg1, arg2, arg3);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int64Int64Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64Int32>(
nativeFn)(arg0, arg1, arg2, arg3, I32(arg4));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int64General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int64General>(
nativeFn)(arg0, arg1, arg2, arg3);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralInt64Int64Int64General: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64General>(
nativeFn)(arg0, arg1, arg2, arg3, arg4);
if (FLAG_trace_sim) printf("ret %d\n", ret);
setRegister(a0, I64(ret));
break;
}
case Args_General_GeneralInt32: {
int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32>(
nativeFn)(arg0, I32(arg1));
if (FLAG_trace_sim) printf("ret %ld\n", ret);
setRegister(a0, ret);
break;
}
case js::jit::Args_Int32_GeneralInt64Int64Int64Int32Int32: {
int32_t ret =
reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64Int32Int32>(
nativeFn)(arg0, arg1, arg2, arg3, I32(arg4), I32(arg5));
setRegister(a0, I64(ret));
break;
}
case Args_General_GeneralInt32Int32: {
int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32Int32>(
nativeFn)(arg0, I32(arg1), I32(arg2));
if (FLAG_trace_sim) printf("ret %ld\n", ret);
setRegister(a0, ret);
break;
}
case Args_General_GeneralInt32General: {
int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32General>(
nativeFn)(arg0, I32(arg1), arg2);
if (FLAG_trace_sim) printf("ret %ld\n", ret);
setRegister(a0, ret);
break;
}
case js::jit::Args_General_GeneralInt32Int32GeneralInt32: {
int64_t ret =
reinterpret_cast<Prototype_General_GeneralInt32Int32GeneralInt32>(
nativeFn)(arg0, I32(arg1), I32(arg2), arg3, I32(arg4));
setRegister(a0, ret);
break;
}
case js::jit::Args_Int32_GeneralGeneralInt32Int32Int32GeneralInt32: {
int32_t ret = reinterpret_cast<
Prototype_Int32_GeneralGeneralInt32Int32Int32GeneralInt32>(
nativeFn)(arg0, arg1, I32(arg2), I32(arg3), I32(arg4), arg5,
I32(arg6));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int32_GeneralGeneralInt32General: {
Prototype_Int32_GeneralGeneralInt32General target =
reinterpret_cast<Prototype_Int32_GeneralGeneralInt32General>(
external);
int64_t result = target(I32(arg0), I32(arg1), I32(arg2), I32(arg3));
setRegister(a0, I64(result));
break;
}
case js::jit::Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32: {
int64_t arg6 = getRegister(a6);
int32_t ret = reinterpret_cast<
Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32>(
nativeFn)(arg0, arg1, I32(arg2), arg3, I32(arg4), I32(arg5),
I32(arg6));
setRegister(a0, I64(ret));
break;
}
case js::jit::Args_Int64_General: {
int64_t ret = reinterpret_cast<Prototype_Int64_General>(nativeFn)(arg0);
if (FLAG_trace_sim) printf("ret %ld\n", ret);
setRegister(a0, ret);
break;
}
case js::jit::Args_Int64_GeneralInt32: {
int64_t ret = reinterpret_cast<Prototype_Int64_GeneralInt32>(nativeFn)(
arg0, I32(arg1));
setRegister(a0, ret);
break;
}
case js::jit::Args_Int64_GeneralInt64: {
int64_t ret = reinterpret_cast<Prototype_Int64_GeneralInt64>(nativeFn)(
arg0, arg1);
setRegister(a0, ret);
break;
}
case js::jit::Args_Int64_GeneralInt64Int32: {
int64_t ret = reinterpret_cast<Prototype_Int64_GeneralInt64Int32>(
nativeFn)(arg0, arg1, I32(arg2));
setRegister(a0, ret);
break;
}
default:
MOZ_CRASH("Unknown function type.");
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
setRegister(ra, saved_ra);
set_pc(getRegister(ra));
} else if (instr_.InstructionBits() == kBreakInstr &&
(get_ebreak_code(instr_.instr()) <= kMaxStopCode)) {
uint32_t code = get_ebreak_code(instr_.instr());
if (isWatchpoint(code)) {
printWatchpoint(code);
} else if (IsTracepoint(code)) {
if (!FLAG_debug_sim) {
MOZ_CRASH("Add --debug-sim when tracepoint instruction is used.\n");
}
// printf("%d %d %d %d %d %d %d\n", code, code & LOG_TRACE, code &
// LOG_REGS,
// code & kDebuggerTracingDirectivesMask, TRACE_ENABLE,
// TRACE_DISABLE, kDebuggerTracingDirectivesMask);
switch (code & kDebuggerTracingDirectivesMask) {
case TRACE_ENABLE:
if (code & LOG_TRACE) {
FLAG_trace_sim = true;
}
if (code & LOG_REGS) {
RiscvDebugger dbg(this);
dbg.printAllRegs();
}
break;
case TRACE_DISABLE:
if (code & LOG_TRACE) {
FLAG_trace_sim = false;
}
break;
default:
UNREACHABLE();
}
} else {
increaseStopCounter(code);
handleStop(code);
}
} else {
// uint8_t code = get_ebreak_code(instr_.instr()) - kMaxStopCode - 1;
// switch (LNode::Opcode(code)) {
// #define EMIT_OP(OP, ...) \
// case LNode::Opcode::OP:\
// std::cout << #OP << std::endl; \
// break;
// LIR_OPCODE_LIST(EMIT_OP);
// #undef EMIT_OP
// }
DieOrDebug();
}
}
// Stop helper functions.
bool Simulator::isWatchpoint(uint32_t code) {
return (code <= kMaxWatchpointCode);
}
bool Simulator::IsTracepoint(uint32_t code) {
return (code <= kMaxTracepointCode && code > kMaxWatchpointCode);
}
void Simulator::printWatchpoint(uint32_t code) {
RiscvDebugger dbg(this);
++break_count_;
if (FLAG_riscv_print_watchpoint) {
printf("\n---- break %d marker: %20" PRIi64 " (instr count: %20" PRIi64
") ----\n",
code, break_count_, icount_);
dbg.printAllRegs(); // Print registers and continue running.
}
}
void Simulator::handleStop(uint32_t code) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
RiscvDebugger dbg(this);
dbg.Debug();
} else {
set_pc(get_pc() + 2 * kInstrSize);
}
}
bool Simulator::isStopInstruction(SimInstruction* instr) {
if (instr->InstructionBits() != kBreakInstr) return false;
int32_t code = get_ebreak_code(instr->instr());
return code != -1 && static_cast<uint32_t>(code) > kMaxWatchpointCode &&
static_cast<uint32_t>(code) <= kMaxStopCode;
}
bool Simulator::isEnabledStop(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
MOZ_ASSERT(code > kMaxWatchpointCode);
return !(watchedStops_[code].count_ & kStopDisabledBit);
}
void Simulator::enableStop(uint32_t code) {
if (!isEnabledStop(code)) {
watchedStops_[code].count_ &= ~kStopDisabledBit;
}
}
void Simulator::disableStop(uint32_t code) {
if (isEnabledStop(code)) {
watchedStops_[code].count_ |= kStopDisabledBit;
}
}
void Simulator::increaseStopCounter(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
if ((watchedStops_[code].count_ & ~(1 << 31)) == 0x7fffffff) {
printf(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watchedStops_[code].count_ = 0;
enableStop(code);
} else {
watchedStops_[code].count_++;
}
}
// Print a stop status.
void Simulator::printStopInfo(uint32_t code) {
if (code <= kMaxWatchpointCode) {
printf("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
printf("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watchedStops_[code].count_ & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watchedStops_[code].desc_) {
printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state,
count, watchedStops_[code].desc_);
} else {
printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
void Simulator::SignalException(Exception e) {
printf("Error: Exception %i raised.", static_cast<int>(e));
MOZ_CRASH();
}
// TODO(plind): refactor this messy debug code when we do unaligned access.
void Simulator::DieOrDebug() {
if (FLAG_riscv_trap_to_simulator_debugger) {
RiscvDebugger dbg(this);
dbg.Debug();
} else {
MOZ_CRASH("Die");
}
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
// if (FLAG_check_icache) {
// CheckICache(SimulatorProcess::icache(), instr);
// }
pc_modified_ = false;
EmbeddedVector<char, 256> buffer;
if (FLAG_trace_sim || FLAG_debug_sim) {
SNPrintF(trace_buf_, " ");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
// printf("EXECUTING 0x%08" PRIxPTR " %-44s\n",
// reinterpret_cast<intptr_t>(instr), buffer.begin());
}
instr_ = instr;
switch (instr_.InstructionType()) {
case Instruction::kRType:
DecodeRVRType();
break;
case Instruction::kR4Type:
DecodeRVR4Type();
break;
case Instruction::kIType:
DecodeRVIType();
break;
case Instruction::kSType:
DecodeRVSType();
break;
case Instruction::kBType:
DecodeRVBType();
break;
case Instruction::kUType:
DecodeRVUType();
break;
case Instruction::kJType:
DecodeRVJType();
break;
case Instruction::kCRType:
DecodeCRType();
break;
case Instruction::kCAType:
DecodeCAType();
break;
case Instruction::kCJType:
DecodeCJType();
break;
case Instruction::kCBType:
DecodeCBType();
break;
case Instruction::kCIType:
DecodeCIType();
break;
case Instruction::kCIWType:
DecodeCIWType();
break;
case Instruction::kCSSType:
DecodeCSSType();
break;
case Instruction::kCLType:
DecodeCLType();
break;
case Instruction::kCSType:
DecodeCSType();
break;
# ifdef CAN_USE_RVV_INSTRUCTIONS
case Instruction::kVType:
DecodeVType();
break;
# endif
default:
UNSUPPORTED();
}
if (FLAG_trace_sim) {
printf(" 0x%012" PRIxPTR " %-44s\t%s\n",
reinterpret_cast<intptr_t>(instr), buffer.start(),
trace_buf_.start());
}
if (!pc_modified_) {
setRegister(pc, reinterpret_cast<sreg_t>(instr) + instr->InstructionSize());
}
if (watch_address_ != nullptr) {
printf(" 0x%012" PRIxPTR " : 0x%016" REGIx_FORMAT " %14" REGId_FORMAT
" \n",
reinterpret_cast<intptr_t>(watch_address_), *watch_address_,
*watch_address_);
if (watch_value_ != *watch_address_) {
RiscvDebugger dbg(this);
dbg.Debug();
watch_value_ = *watch_address_;
}
}
}
void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) {
single_stepping_ = true;
single_step_callback_ = cb;
single_step_callback_arg_ = arg;
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
}
void Simulator::disable_single_stepping() {
if (!single_stepping_) {
return;
}
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
}
template <bool enableStopSimAt>
void Simulator::execute() {
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int64_t program_counter = get_pc();
while (program_counter != end_sim_pc) {
if (enableStopSimAt && (icount_ == Simulator::StopSimAt)) {
RiscvDebugger dbg(this);
dbg.Debug();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this,
(void*)program_counter);
}
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
InstructionDecode(instr);
icount_++;
program_counter = get_pc();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
}
// RISCV Instruction Decode Routine
void Simulator::DecodeRVRType() {
switch (instr_.InstructionBits() & kRTypeMask) {
case RO_ADD: {
set_rd(sext_xlen(rs1() + rs2()));
break;
}
case RO_SUB: {
set_rd(sext_xlen(rs1() - rs2()));
break;
}
case RO_SLL: {
set_rd(sext_xlen(rs1() << (rs2() & (xlen - 1))));
break;
}
case RO_SLT: {
set_rd(sreg_t(rs1()) < sreg_t(rs2()));
break;
}
case RO_SLTU: {
set_rd(reg_t(rs1()) < reg_t(rs2()));
break;
}
case RO_XOR: {
set_rd(rs1() ^ rs2());
break;
}
case RO_SRL: {
set_rd(sext_xlen(zext_xlen(rs1()) >> (rs2() & (xlen - 1))));
break;
}
case RO_SRA: {
set_rd(sext_xlen(sext_xlen(rs1()) >> (rs2() & (xlen - 1))));
break;
}
case RO_OR: {
set_rd(rs1() | rs2());
break;
}
case RO_AND: {
set_rd(rs1() & rs2());
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_ADDW: {
set_rd(sext32(rs1() + rs2()));
break;
}
case RO_SUBW: {
set_rd(sext32(rs1() - rs2()));
break;
}
case RO_SLLW: {
set_rd(sext32(rs1() << (rs2() & 0x1F)));
break;
}
case RO_SRLW: {
set_rd(sext32(uint32_t(rs1()) >> (rs2() & 0x1F)));
break;
}
case RO_SRAW: {
set_rd(sext32(int32_t(rs1()) >> (rs2() & 0x1F)));
break;
}
# endif /* JS_CODEGEN_RISCV64 */
// TODO(riscv): Add RISCV M extension macro
case RO_MUL: {
set_rd(rs1() * rs2());
break;
}
case RO_MULH: {
set_rd(mulh(rs1(), rs2()));
break;
}
case RO_MULHSU: {
set_rd(mulhsu(rs1(), rs2()));
break;
}
case RO_MULHU: {
set_rd(mulhu(rs1(), rs2()));
break;
}
case RO_DIV: {
sreg_t lhs = sext_xlen(rs1());
sreg_t rhs = sext_xlen(rs2());
if (rhs == 0) {
set_rd(-1);
} else if (lhs == INTPTR_MIN && rhs == -1) {
set_rd(lhs);
} else {
set_rd(sext_xlen(lhs / rhs));
}
break;
}
case RO_DIVU: {
reg_t lhs = zext_xlen(rs1());
reg_t rhs = zext_xlen(rs2());
if (rhs == 0) {
set_rd(UINTPTR_MAX);
} else {
set_rd(zext_xlen(lhs / rhs));
}
break;
}
case RO_REM: {
sreg_t lhs = sext_xlen(rs1());
sreg_t rhs = sext_xlen(rs2());
if (rhs == 0) {
set_rd(lhs);
} else if (lhs == INTPTR_MIN && rhs == -1) {
set_rd(0);
} else {
set_rd(sext_xlen(lhs % rhs));
}
break;
}
case RO_REMU: {
reg_t lhs = zext_xlen(rs1());
reg_t rhs = zext_xlen(rs2());
if (rhs == 0) {
set_rd(lhs);
} else {
set_rd(zext_xlen(lhs % rhs));
}
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_MULW: {
set_rd(sext32(sext32(rs1()) * sext32(rs2())));
break;
}
case RO_DIVW: {
sreg_t lhs = sext32(rs1());
sreg_t rhs = sext32(rs2());
if (rhs == 0) {
set_rd(-1);
} else if (lhs == INT32_MIN && rhs == -1) {
set_rd(lhs);
} else {
set_rd(sext32(lhs / rhs));
}
break;
}
case RO_DIVUW: {
reg_t lhs = zext32(rs1());
reg_t rhs = zext32(rs2());
if (rhs == 0) {
set_rd(UINT32_MAX);
} else {
set_rd(zext32(lhs / rhs));
}
break;
}
case RO_REMW: {
sreg_t lhs = sext32(rs1());
sreg_t rhs = sext32(rs2());
if (rhs == 0) {
set_rd(lhs);
} else if (lhs == INT32_MIN && rhs == -1) {
set_rd(0);
} else {
set_rd(sext32(lhs % rhs));
}
break;
}
case RO_REMUW: {
reg_t lhs = zext32(rs1());
reg_t rhs = zext32(rs2());
if (rhs == 0) {
set_rd(zext32(lhs));
} else {
set_rd(zext32(lhs % rhs));
}
break;
}
# endif /*JS_CODEGEN_RISCV64*/
// TODO(riscv): End Add RISCV M extension macro
default: {
switch (instr_.BaseOpcode()) {
case AMO:
DecodeRVRAType();
break;
case OP_FP:
DecodeRVRFPType();
break;
default:
UNSUPPORTED();
}
}
}
}
template <typename T>
T Simulator::FMaxMinHelper(T a, T b, MaxMinKind kind) {
// set invalid bit for signaling nan
if ((a == std::numeric_limits<T>::signaling_NaN()) ||
(b == std::numeric_limits<T>::signaling_NaN())) {
set_csr_bits(csr_fflags, kInvalidOperation);
}
T result = 0;
if (std::isnan(a) && std::isnan(b)) {
result = std::numeric_limits<float>::quiet_NaN();
} else if (std::isnan(a)) {
result = b;
} else if (std::isnan(b)) {
result = a;
} else if (b == a) { // Handle -0.0 == 0.0 case.
if (kind == MaxMinKind::kMax) {
result = std::signbit(b) ? a : b;
} else {
result = std::signbit(b) ? b : a;
}
} else {
result = (kind == MaxMinKind::kMax) ? fmax(a, b) : fmin(a, b);
}
return result;
}
float Simulator::RoundF2FHelper(float input_val, int rmode) {
if (rmode == DYN) rmode = get_dynamic_rounding_mode();
float rounded = 0;
switch (rmode) {
case RNE: { // Round to Nearest, tiest to Even
rounded = floorf(input_val);
float error = input_val - rounded;
// Take care of correctly handling the range [-0.5, -0.0], which must
// yield -0.0.
if ((-0.5 <= input_val) && (input_val < 0.0)) {
rounded = -0.0;
// If the error is greater than 0.5, or is equal to 0.5 and the integer
// result is odd, round up.
} else if ((error > 0.5) ||
((error == 0.5) && (std::fmod(rounded, 2) != 0))) {
rounded++;
}
break;
}
case RTZ: // Round towards Zero
rounded = std::truncf(input_val);
break;
case RDN: // Round Down (towards -infinity)
rounded = floorf(input_val);
break;
case RUP: // Round Up (towards +infinity)
rounded = ceilf(input_val);
break;
case RMM: // Round to Nearest, tiest to Max Magnitude
rounded = std::roundf(input_val);
break;
default:
UNREACHABLE();
}
return rounded;
}
double Simulator::RoundF2FHelper(double input_val, int rmode) {
if (rmode == DYN) rmode = get_dynamic_rounding_mode();
double rounded = 0;
switch (rmode) {
case RNE: { // Round to Nearest, tiest to Even
rounded = std::floor(input_val);
double error = input_val - rounded;
// Take care of correctly handling the range [-0.5, -0.0], which must
// yield -0.0.
if ((-0.5 <= input_val) && (input_val < 0.0)) {
rounded = -0.0;
// If the error is greater than 0.5, or is equal to 0.5 and the integer
// result is odd, round up.
} else if ((error > 0.5) ||
((error == 0.5) && (std::fmod(rounded, 2) != 0))) {
rounded++;
}
break;
}
case RTZ: // Round towards Zero
rounded = std::trunc(input_val);
break;
case RDN: // Round Down (towards -infinity)
rounded = std::floor(input_val);
break;
case RUP: // Round Up (towards +infinity)
rounded = std::ceil(input_val);
break;
case RMM: // Round to Nearest, tiest to Max Magnitude
rounded = std::round(input_val);
break;
default:
UNREACHABLE();
}
return rounded;
}
// convert rounded floating-point to integer types, handle input values that
// are out-of-range, underflow, or NaN, and set appropriate fflags
template <typename I_TYPE, typename F_TYPE>
I_TYPE Simulator::RoundF2IHelper(F_TYPE original, int rmode) {
MOZ_ASSERT(std::is_integral<I_TYPE>::value);
MOZ_ASSERT((std::is_same<F_TYPE, float>::value ||
std::is_same<F_TYPE, double>::value));
I_TYPE max_i = std::numeric_limits<I_TYPE>::max();
I_TYPE min_i = std::numeric_limits<I_TYPE>::min();
if (!std::isfinite(original)) {
set_fflags(kInvalidOperation);
if (std::isnan(original) ||
original == std::numeric_limits<F_TYPE>::infinity()) {
return max_i;
} else {
MOZ_ASSERT(original == -std::numeric_limits<F_TYPE>::infinity());
return min_i;
}
}
F_TYPE rounded = RoundF2FHelper(original, rmode);
if (original != rounded) set_fflags(kInexact);
if (!std::isfinite(rounded)) {
set_fflags(kInvalidOperation);
if (std::isnan(rounded) ||
rounded == std::numeric_limits<F_TYPE>::infinity()) {
return max_i;
} else {
MOZ_ASSERT(rounded == -std::numeric_limits<F_TYPE>::infinity());
return min_i;
}
}
// Since integer max values are either all 1s (for unsigned) or all 1s
// except for sign-bit (for signed), they cannot be represented precisely in
// floating point, in order to precisely tell whether the rounded floating
// point is within the max range, we compare against (max_i+1) which would
// have a single 1 w/ many trailing zeros
float max_i_plus_1 =
std::is_same<uint64_t, I_TYPE>::value
? 0x1p64f // uint64_t::max + 1 cannot be represented in integers,
// so use its float representation directly
: static_cast<float>(static_cast<uint64_t>(max_i) + 1);
if (rounded >= max_i_plus_1) {
set_fflags(kOverflow | kInvalidOperation);
return max_i;
}
// Since min_i (either 0 for unsigned, or for signed) is represented
// precisely in floating-point, comparing rounded directly against min_i
if (rounded <= min_i) {
if (rounded < min_i) set_fflags(kOverflow | kInvalidOperation);
return min_i;
}
F_TYPE underflow_fval =
std::is_same<F_TYPE, float>::value ? FLT_MIN : DBL_MIN;
if (rounded < underflow_fval && rounded > -underflow_fval && rounded != 0) {
set_fflags(kUnderflow);
}
return static_cast<I_TYPE>(rounded);
}
template <typename T>
static int64_t FclassHelper(T value) {
switch (std::fpclassify(value)) {
case FP_INFINITE:
return (std::signbit(value) ? kNegativeInfinity : kPositiveInfinity);
case FP_NAN:
return (isSnan(value) ? kSignalingNaN : kQuietNaN);
case FP_NORMAL:
return (std::signbit(value) ? kNegativeNormalNumber
: kPositiveNormalNumber);
case FP_SUBNORMAL:
return (std::signbit(value) ? kNegativeSubnormalNumber
: kPositiveSubnormalNumber);
case FP_ZERO:
return (std::signbit(value) ? kNegativeZero : kPositiveZero);
default:
UNREACHABLE();
}
UNREACHABLE();
return FP_ZERO;
}
template <typename T>
bool Simulator::CompareFHelper(T input1, T input2, FPUCondition cc) {
MOZ_ASSERT(std::is_floating_point<T>::value);
bool result = false;
switch (cc) {
case LT:
case LE:
// FLT, FLE are signaling compares
if (std::isnan(input1) || std::isnan(input2)) {
set_fflags(kInvalidOperation);
result = false;
} else {
result = (cc == LT) ? (input1 < input2) : (input1 <= input2);
}
break;
case EQ:
if (std::numeric_limits<T>::signaling_NaN() == input1 ||
std::numeric_limits<T>::signaling_NaN() == input2) {
set_fflags(kInvalidOperation);
}
if (std::isnan(input1) || std::isnan(input2)) {
result = false;
} else {
result = (input1 == input2);
}
break;
case NE:
if (std::numeric_limits<T>::signaling_NaN() == input1 ||
std::numeric_limits<T>::signaling_NaN() == input2) {
set_fflags(kInvalidOperation);
}
if (std::isnan(input1) || std::isnan(input2)) {
result = true;
} else {
result = (input1 != input2);
}
break;
default:
UNREACHABLE();
}
return result;
}
template <typename T>
static inline bool is_invalid_fmul(T src1, T src2) {
return (isinf(src1) && src2 == static_cast<T>(0.0)) ||
(src1 == static_cast<T>(0.0) && isinf(src2));
}
template <typename T>
static inline bool is_invalid_fadd(T src1, T src2) {
return (isinf(src1) && isinf(src2) &&
std::signbit(src1) != std::signbit(src2));
}
template <typename T>
static inline bool is_invalid_fsub(T src1, T src2) {
return (isinf(src1) && isinf(src2) &&
std::signbit(src1) == std::signbit(src2));
}
template <typename T>
static inline bool is_invalid_fdiv(T src1, T src2) {
return ((src1 == 0 && src2 == 0) || (isinf(src1) && isinf(src2)));
}
template <typename T>
static inline bool is_invalid_fsqrt(T src1) {
return (src1 < 0);
}
int Simulator::loadLinkedW(uint64_t addr, SimInstruction* instr) {
if ((addr & 3) == 0) {
if (handleWasmSegFault(addr, 4)) {
return -1;
}
volatile int32_t* ptr = reinterpret_cast<volatile int32_t*>(addr);
int32_t value = *ptr;
lastLLValue_ = value;
LLAddr_ = addr;
// Note that any memory write or "external" interrupt should reset this
// value to false.
LLBit_ = true;
return value;
}
printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int Simulator::storeConditionalW(uint64_t addr, int value,
SimInstruction* instr) {
// Correct behavior in this case, as defined by architecture, is to just
// return 0, but there is no point at allowing that. It is certainly an
// indicator of a bug.
if (addr != LLAddr_) {
printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64
", expected: 0x%016" PRIx64 "\n",
addr, reinterpret_cast<intptr_t>(instr), LLAddr_);
MOZ_CRASH();
}
if ((addr & 3) == 0) {
SharedMem<int32_t*> ptr =
SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
if (!LLBit_) {
return 1;
}
LLBit_ = false;
LLAddr_ = 0;
int32_t expected = int32_t(lastLLValue_);
int32_t old =
AtomicOperations::compareExchangeSeqCst(ptr, expected, int32_t(value));
return (old == expected) ? 0 : 1;
}
printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int64_t Simulator::loadLinkedD(uint64_t addr, SimInstruction* instr) {
if ((addr & kPointerAlignmentMask) == 0) {
if (handleWasmSegFault(addr, 8)) {
return -1;
}
volatile int64_t* ptr = reinterpret_cast<volatile int64_t*>(addr);
int64_t value = *ptr;
lastLLValue_ = value;
LLAddr_ = addr;
// Note that any memory write or "external" interrupt should reset this
// value to false.
LLBit_ = true;
return value;
}
printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int Simulator::storeConditionalD(uint64_t addr, int64_t value,
SimInstruction* instr) {
// Correct behavior in this case, as defined by architecture, is to just
// return 0, but there is no point at allowing that. It is certainly an
// indicator of a bug.
if (addr != LLAddr_) {
printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64
", expected: 0x%016" PRIx64 "\n",
addr, reinterpret_cast<intptr_t>(instr), LLAddr_);
MOZ_CRASH();
}
if ((addr & kPointerAlignmentMask) == 0) {
SharedMem<int64_t*> ptr =
SharedMem<int64_t*>::shared(reinterpret_cast<int64_t*>(addr));
if (!LLBit_) {
return 1;
}
LLBit_ = false;
LLAddr_ = 0;
int64_t expected = lastLLValue_;
int64_t old =
AtomicOperations::compareExchangeSeqCst(ptr, expected, int64_t(value));
return (old == expected) ? 0 : 1;
}
printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
void Simulator::DecodeRVRAType() {
// TODO(riscv): Add macro for RISCV A extension
// Special handling for A extension instructions because it uses func5
// For all A extension instruction, V8 simulator is pure sequential. No
// Memory address lock or other synchronizaiton behaviors.
switch (instr_.InstructionBits() & kRATypeMask) {
case RO_LR_W: {
sreg_t addr = rs1();
set_rd(loadLinkedW(addr, &instr_));
TraceLr(addr, getRegister(rd_reg()), getRegister(rd_reg()));
break;
}
case RO_SC_W: {
sreg_t addr = rs1();
auto value = static_cast<int32_t>(rs2());
auto result =
storeConditionalW(addr, static_cast<int32_t>(rs2()), &instr_);
set_rd(result);
if (!result) {
TraceSc(addr, value);
}
break;
}
case RO_AMOSWAP_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return (uint32_t)rs2(); }, instr_.instr(),
WORD)));
break;
}
case RO_AMOADD_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return lhs + (uint32_t)rs2(); },
instr_.instr(), WORD)));
break;
}
case RO_AMOXOR_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return lhs ^ (uint32_t)rs2(); },
instr_.instr(), WORD)));
break;
}
case RO_AMOAND_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return lhs & (uint32_t)rs2(); },
instr_.instr(), WORD)));
break;
}
case RO_AMOOR_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return lhs | (uint32_t)rs2(); },
instr_.instr(), WORD)));
break;
}
case RO_AMOMIN_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<int32_t>(
rs1(), [&](int32_t lhs) { return std::min(lhs, (int32_t)rs2()); },
instr_.instr(), WORD)));
break;
}
case RO_AMOMAX_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<int32_t>(
rs1(), [&](int32_t lhs) { return std::max(lhs, (int32_t)rs2()); },
instr_.instr(), WORD)));
break;
}
case RO_AMOMINU_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return std::min(lhs, (uint32_t)rs2()); },
instr_.instr(), WORD)));
break;
}
case RO_AMOMAXU_W: {
if ((rs1() & 0x3) != 0) {
DieOrDebug();
}
set_rd(sext32(amo<uint32_t>(
rs1(), [&](uint32_t lhs) { return std::max(lhs, (uint32_t)rs2()); },
instr_.instr(), WORD)));
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_LR_D: {
sreg_t addr = rs1();
set_rd(loadLinkedD(addr, &instr_));
TraceLr(addr, getRegister(rd_reg()), getRegister(rd_reg()));
break;
}
case RO_SC_D: {
sreg_t addr = rs1();
auto value = static_cast<int64_t>(rs2());
auto result =
storeConditionalD(addr, static_cast<int64_t>(rs2()), &instr_);
set_rd(result);
if (!result) {
TraceSc(addr, value);
}
break;
}
case RO_AMOSWAP_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return rs2(); }, instr_.instr(), DWORD));
break;
}
case RO_AMOADD_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return lhs + rs2(); }, instr_.instr(),
DWORD));
break;
}
case RO_AMOXOR_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return lhs ^ rs2(); }, instr_.instr(),
DWORD));
break;
}
case RO_AMOAND_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return lhs & rs2(); }, instr_.instr(),
DWORD));
break;
}
case RO_AMOOR_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return lhs | rs2(); }, instr_.instr(),
DWORD));
break;
}
case RO_AMOMIN_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return std::min(lhs, rs2()); },
instr_.instr(), DWORD));
break;
}
case RO_AMOMAX_D: {
set_rd(amo<int64_t>(
rs1(), [&](int64_t lhs) { return std::max(lhs, rs2()); },
instr_.instr(), DWORD));
break;
}
case RO_AMOMINU_D: {
set_rd(amo<uint64_t>(
rs1(), [&](uint64_t lhs) { return std::min(lhs, (uint64_t)rs2()); },
instr_.instr(), DWORD));
break;
}
case RO_AMOMAXU_D: {
set_rd(amo<uint64_t>(
rs1(), [&](uint64_t lhs) { return std::max(lhs, (uint64_t)rs2()); },
instr_.instr(), DWORD));
break;
}
# endif /*JS_CODEGEN_RISCV64*/
// TODO(riscv): End Add macro for RISCV A extension
default: {
UNSUPPORTED();
}
}
}
void Simulator::DecodeRVRFPType() {
// OP_FP instructions (F/D) uses func7 first. Some further uses func3 and
// rs2()
// kRATypeMask is only for func7
switch (instr_.InstructionBits() & kRFPTypeMask) {
// TODO(riscv): Add macro for RISCV F extension
case RO_FADD_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2) {
if (is_invalid_fadd(frs1, frs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return frs1 + frs2;
}
};
set_frd(CanonicalizeFPUOp2<float>(fn));
break;
}
case RO_FSUB_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2) {
if (is_invalid_fsub(frs1, frs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return frs1 - frs2;
}
};
set_frd(CanonicalizeFPUOp2<float>(fn));
break;
}
case RO_FMUL_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2) {
if (is_invalid_fmul(frs1, frs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return frs1 * frs2;
}
};
set_frd(CanonicalizeFPUOp2<float>(fn));
break;
}
case RO_FDIV_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2) {
if (is_invalid_fdiv(frs1, frs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else if (frs2 == 0.0f) {
this->set_fflags(kDivideByZero);
return (std::signbit(frs1) == std::signbit(frs2)
? std::numeric_limits<float>::infinity()
: -std::numeric_limits<float>::infinity());
} else {
return frs1 / frs2;
}
};
set_frd(CanonicalizeFPUOp2<float>(fn));
break;
}
case RO_FSQRT_S: {
if (instr_.Rs2Value() == 0b00000) {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs) {
if (is_invalid_fsqrt(frs)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return std::sqrt(frs);
}
};
set_frd(CanonicalizeFPUOp1<float>(fn));
} else {
UNSUPPORTED();
}
break;
}
case RO_FSGNJ_S: { // RO_FSGNJN_S RO_FSQNJX_S
switch (instr_.Funct3Value()) {
case 0b000: { // RO_FSGNJ_S
set_frd(fsgnj32(frs1_boxed(), frs2_boxed(), false, false));
break;
}
case 0b001: { // RO_FSGNJN_S
set_frd(fsgnj32(frs1_boxed(), frs2_boxed(), true, false));
break;
}
case 0b010: { // RO_FSQNJX_S
set_frd(fsgnj32(frs1_boxed(), frs2_boxed(), false, true));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FMIN_S: { // RO_FMAX_S
switch (instr_.Funct3Value()) {
case 0b000: { // RO_FMIN_S
set_frd(FMaxMinHelper(frs1(), frs2(), MaxMinKind::kMin));
break;
}
case 0b001: { // RO_FMAX_S
set_frd(FMaxMinHelper(frs1(), frs2(), MaxMinKind::kMax));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FCVT_W_S: { // RO_FCVT_WU_S , 64F RO_FCVT_L_S RO_FCVT_LU_S
float original_val = frs1();
switch (instr_.Rs2Value()) {
case 0b00000: { // RO_FCVT_W_S
set_rd(RoundF2IHelper<int32_t>(original_val, instr_.RoundMode()));
break;
}
case 0b00001: { // RO_FCVT_WU_S
set_rd(sext32(
RoundF2IHelper<uint32_t>(original_val, instr_.RoundMode())));
break;
}
# ifdef JS_CODEGEN_RISCV64
case 0b00010: { // RO_FCVT_L_S
set_rd(RoundF2IHelper<int64_t>(original_val, instr_.RoundMode()));
break;
}
case 0b00011: { // RO_FCVT_LU_S
set_rd(RoundF2IHelper<uint64_t>(original_val, instr_.RoundMode()));
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FMV: { // RO_FCLASS_S
switch (instr_.Funct3Value()) {
case 0b000: {
if (instr_.Rs2Value() == 0b00000) {
// RO_FMV_X_W
set_rd(sext32(getFpuRegister(rs1_reg())));
} else {
UNSUPPORTED();
}
break;
}
case 0b001: { // RO_FCLASS_S
set_rd(FclassHelper(frs1()));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FLE_S: { // RO_FEQ_S RO_FLT_S RO_FLE_S
switch (instr_.Funct3Value()) {
case 0b010: { // RO_FEQ_S
set_rd(CompareFHelper(frs1(), frs2(), EQ));
break;
}
case 0b001: { // RO_FLT_S
set_rd(CompareFHelper(frs1(), frs2(), LT));
break;
}
case 0b000: { // RO_FLE_S
set_rd(CompareFHelper(frs1(), frs2(), LE));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FCVT_S_W: { // RO_FCVT_S_WU , 64F RO_FCVT_S_L RO_FCVT_S_LU
switch (instr_.Rs2Value()) {
case 0b00000: { // RO_FCVT_S_W
set_frd(static_cast<float>((int32_t)rs1()));
break;
}
case 0b00001: { // RO_FCVT_S_WU
set_frd(static_cast<float>((uint32_t)rs1()));
break;
}
# ifdef JS_CODEGEN_RISCV64
case 0b00010: { // RO_FCVT_S_L
set_frd(static_cast<float>((int64_t)rs1()));
break;
}
case 0b00011: { // RO_FCVT_S_LU
set_frd(static_cast<float>((uint64_t)rs1()));
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FMV_W_X: {
if (instr_.Funct3Value() == 0b000) {
// since FMV preserves source bit-pattern, no need to canonize
Float32 result = Float32::FromBits((uint32_t)rs1());
set_frd(result);
} else {
UNSUPPORTED();
}
break;
}
// TODO(riscv): Add macro for RISCV D extension
case RO_FADD_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2) {
if (is_invalid_fadd(drs1, drs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return drs1 + drs2;
}
};
set_drd(CanonicalizeFPUOp2<double>(fn));
break;
}
case RO_FSUB_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2) {
if (is_invalid_fsub(drs1, drs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return drs1 - drs2;
}
};
set_drd(CanonicalizeFPUOp2<double>(fn));
break;
}
case RO_FMUL_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2) {
if (is_invalid_fmul(drs1, drs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return drs1 * drs2;
}
};
set_drd(CanonicalizeFPUOp2<double>(fn));
break;
}
case RO_FDIV_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2) {
if (is_invalid_fdiv(drs1, drs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else if (drs2 == 0.0) {
this->set_fflags(kDivideByZero);
return (std::signbit(drs1) == std::signbit(drs2)
? std::numeric_limits<double>::infinity()
: -std::numeric_limits<double>::infinity());
} else {
return drs1 / drs2;
}
};
set_drd(CanonicalizeFPUOp2<double>(fn));
break;
}
case RO_FSQRT_D: {
if (instr_.Rs2Value() == 0b00000) {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs) {
if (is_invalid_fsqrt(drs)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return std::sqrt(drs);
}
};
set_drd(CanonicalizeFPUOp1<double>(fn));
} else {
UNSUPPORTED();
}
break;
}
case RO_FSGNJ_D: { // RO_FSGNJN_D RO_FSQNJX_D
switch (instr_.Funct3Value()) {
case 0b000: { // RO_FSGNJ_D
set_drd(fsgnj64(drs1_boxed(), drs2_boxed(), false, false));
break;
}
case 0b001: { // RO_FSGNJN_D
set_drd(fsgnj64(drs1_boxed(), drs2_boxed(), true, false));
break;
}
case 0b010: { // RO_FSQNJX_D
set_drd(fsgnj64(drs1_boxed(), drs2_boxed(), false, true));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FMIN_D: { // RO_FMAX_D
switch (instr_.Funct3Value()) {
case 0b000: { // RO_FMIN_D
set_drd(FMaxMinHelper(drs1(), drs2(), MaxMinKind::kMin));
break;
}
case 0b001: { // RO_FMAX_D
set_drd(FMaxMinHelper(drs1(), drs2(), MaxMinKind::kMax));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case (RO_FCVT_S_D & kRFPTypeMask): {
if (instr_.Rs2Value() == 0b00001) {
auto fn = [](double drs) { return static_cast<float>(drs); };
set_frd(CanonicalizeDoubleToFloatOperation(fn));
} else {
UNSUPPORTED();
}
break;
}
case RO_FCVT_D_S: {
if (instr_.Rs2Value() == 0b00000) {
auto fn = [](float frs) { return static_cast<double>(frs); };
set_drd(CanonicalizeFloatToDoubleOperation(fn));
} else {
UNSUPPORTED();
}
break;
}
case RO_FLE_D: { // RO_FEQ_D RO_FLT_D RO_FLE_D
switch (instr_.Funct3Value()) {
case 0b010: { // RO_FEQ_S
set_rd(CompareFHelper(drs1(), drs2(), EQ));
break;
}
case 0b001: { // RO_FLT_D
set_rd(CompareFHelper(drs1(), drs2(), LT));
break;
}
case 0b000: { // RO_FLE_D
set_rd(CompareFHelper(drs1(), drs2(), LE));
break;
}
default: {
UNSUPPORTED();
}
}
break;
}
case (RO_FCLASS_D & kRFPTypeMask): { // RO_FCLASS_D , 64D RO_FMV_X_D
if (instr_.Rs2Value() != 0b00000) {
UNSUPPORTED();
}
switch (instr_.Funct3Value()) {
case 0b001: { // RO_FCLASS_D
set_rd(FclassHelper(drs1()));
break;
}
# ifdef JS_CODEGEN_RISCV64
case 0b000: { // RO_FMV_X_D
set_rd(bit_cast<int64_t>(drs1()));
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FCVT_W_D: { // RO_FCVT_WU_D , 64F RO_FCVT_L_D RO_FCVT_LU_D
double original_val = drs1();
switch (instr_.Rs2Value()) {
case 0b00000: { // RO_FCVT_W_D
set_rd(RoundF2IHelper<int32_t>(original_val, instr_.RoundMode()));
break;
}
case 0b00001: { // RO_FCVT_WU_D
set_rd(sext32(
RoundF2IHelper<uint32_t>(original_val, instr_.RoundMode())));
break;
}
# ifdef JS_CODEGEN_RISCV64
case 0b00010: { // RO_FCVT_L_D
set_rd(RoundF2IHelper<int64_t>(original_val, instr_.RoundMode()));
break;
}
case 0b00011: { // RO_FCVT_LU_D
set_rd(RoundF2IHelper<uint64_t>(original_val, instr_.RoundMode()));
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
break;
}
case RO_FCVT_D_W: { // RO_FCVT_D_WU , 64F RO_FCVT_D_L RO_FCVT_D_LU
switch (instr_.Rs2Value()) {
case 0b00000: { // RO_FCVT_D_W
set_drd((int32_t)rs1());
break;
}
case 0b00001: { // RO_FCVT_D_WU
set_drd((uint32_t)rs1());
break;
}
# ifdef JS_CODEGEN_RISCV64
case 0b00010: { // RO_FCVT_D_L
set_drd((int64_t)rs1());
break;
}
case 0b00011: { // RO_FCVT_D_LU
set_drd((uint64_t)rs1());
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_FMV_D_X: {
if (instr_.Funct3Value() == 0b000 && instr_.Rs2Value() == 0b00000) {
// Since FMV preserves source bit-pattern, no need to canonize
set_drd(bit_cast<double>(rs1()));
} else {
UNSUPPORTED();
}
break;
}
# endif /* JS_CODEGEN_RISCV64 */
default: {
UNSUPPORTED();
}
}
}
void Simulator::DecodeRVR4Type() {
switch (instr_.InstructionBits() & kR4TypeMask) {
// TODO(riscv): use F Extension macro block
case RO_FMADD_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2, float frs3) {
if (is_invalid_fmul(frs1, frs2) || is_invalid_fadd(frs1 * frs2, frs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return std::fma(frs1, frs2, frs3);
}
};
set_frd(CanonicalizeFPUOp3<float>(fn));
break;
}
case RO_FMSUB_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2, float frs3) {
if (is_invalid_fmul(frs1, frs2) || is_invalid_fsub(frs1 * frs2, frs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return std::fma(frs1, frs2, -frs3);
}
};
set_frd(CanonicalizeFPUOp3<float>(fn));
break;
}
case RO_FNMSUB_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2, float frs3) {
if (is_invalid_fmul(frs1, frs2) || is_invalid_fsub(frs3, frs1 * frs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return -std::fma(frs1, frs2, -frs3);
}
};
set_frd(CanonicalizeFPUOp3<float>(fn));
break;
}
case RO_FNMADD_S: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](float frs1, float frs2, float frs3) {
if (is_invalid_fmul(frs1, frs2) || is_invalid_fadd(frs1 * frs2, frs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<float>::quiet_NaN();
} else {
return -std::fma(frs1, frs2, frs3);
}
};
set_frd(CanonicalizeFPUOp3<float>(fn));
break;
}
// TODO(riscv): use F Extension macro block
case RO_FMADD_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2, double drs3) {
if (is_invalid_fmul(drs1, drs2) || is_invalid_fadd(drs1 * drs2, drs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return std::fma(drs1, drs2, drs3);
}
};
set_drd(CanonicalizeFPUOp3<double>(fn));
break;
}
case RO_FMSUB_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2, double drs3) {
if (is_invalid_fmul(drs1, drs2) || is_invalid_fsub(drs1 * drs2, drs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return std::fma(drs1, drs2, -drs3);
}
};
set_drd(CanonicalizeFPUOp3<double>(fn));
break;
}
case RO_FNMSUB_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2, double drs3) {
if (is_invalid_fmul(drs1, drs2) || is_invalid_fsub(drs3, drs1 * drs2)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return -std::fma(drs1, drs2, -drs3);
}
};
set_drd(CanonicalizeFPUOp3<double>(fn));
break;
}
case RO_FNMADD_D: {
// TODO(riscv): use rm value (round mode)
auto fn = [this](double drs1, double drs2, double drs3) {
if (is_invalid_fmul(drs1, drs2) || is_invalid_fadd(drs1 * drs2, drs3)) {
this->set_fflags(kInvalidOperation);
return std::numeric_limits<double>::quiet_NaN();
} else {
return -std::fma(drs1, drs2, drs3);
}
};
set_drd(CanonicalizeFPUOp3<double>(fn));
break;
}
default:
UNSUPPORTED();
}
}
# ifdef CAN_USE_RVV_INSTRUCTIONS
bool Simulator::DecodeRvvVL() {
uint32_t instr_temp =
instr_.InstructionBits() & (kRvvMopMask | kRvvNfMask | kBaseOpcodeMask);
if (RO_V_VL == instr_temp) {
if (!(instr_.InstructionBits() & (kRvvRs2Mask))) {
switch (instr_.vl_vs_width()) {
case 8: {
RVV_VI_LD(0, (i * nf + fn), int8, false);
break;
}
case 16: {
RVV_VI_LD(0, (i * nf + fn), int16, false);
break;
}
case 32: {
RVV_VI_LD(0, (i * nf + fn), int32, false);
break;
}
case 64: {
RVV_VI_LD(0, (i * nf + fn), int64, false);
break;
}
default:
UNIMPLEMENTED_RISCV();
break;
}
return true;
} else {
UNIMPLEMENTED_RISCV();
return true;
}
} else if (RO_V_VLS == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VLX == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VLSEG2 == instr_temp || RO_V_VLSEG3 == instr_temp ||
RO_V_VLSEG4 == instr_temp || RO_V_VLSEG5 == instr_temp ||
RO_V_VLSEG6 == instr_temp || RO_V_VLSEG7 == instr_temp ||
RO_V_VLSEG8 == instr_temp) {
if (!(instr_.InstructionBits() & (kRvvRs2Mask))) {
UNIMPLEMENTED_RISCV();
return true;
} else {
UNIMPLEMENTED_RISCV();
return true;
}
} else if (RO_V_VLSSEG2 == instr_temp || RO_V_VLSSEG3 == instr_temp ||
RO_V_VLSSEG4 == instr_temp || RO_V_VLSSEG5 == instr_temp ||
RO_V_VLSSEG6 == instr_temp || RO_V_VLSSEG7 == instr_temp ||
RO_V_VLSSEG8 == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VLXSEG2 == instr_temp || RO_V_VLXSEG3 == instr_temp ||
RO_V_VLXSEG4 == instr_temp || RO_V_VLXSEG5 == instr_temp ||
RO_V_VLXSEG6 == instr_temp || RO_V_VLXSEG7 == instr_temp ||
RO_V_VLXSEG8 == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else {
return false;
}
}
bool Simulator::DecodeRvvVS() {
uint32_t instr_temp =
instr_.InstructionBits() & (kRvvMopMask | kRvvNfMask | kBaseOpcodeMask);
if (RO_V_VS == instr_temp) {
if (!(instr_.InstructionBits() & (kRvvRs2Mask))) {
switch (instr_.vl_vs_width()) {
case 8: {
RVV_VI_ST(0, (i * nf + fn), uint8, false);
break;
}
case 16: {
RVV_VI_ST(0, (i * nf + fn), uint16, false);
break;
}
case 32: {
RVV_VI_ST(0, (i * nf + fn), uint32, false);
break;
}
case 64: {
RVV_VI_ST(0, (i * nf + fn), uint64, false);
break;
}
default:
UNIMPLEMENTED_RISCV();
break;
}
} else {
UNIMPLEMENTED_RISCV();
}
return true;
} else if (RO_V_VSS == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VSX == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VSU == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VSSEG2 == instr_temp || RO_V_VSSEG3 == instr_temp ||
RO_V_VSSEG4 == instr_temp || RO_V_VSSEG5 == instr_temp ||
RO_V_VSSEG6 == instr_temp || RO_V_VSSEG7 == instr_temp ||
RO_V_VSSEG8 == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VSSSEG2 == instr_temp || RO_V_VSSSEG3 == instr_temp ||
RO_V_VSSSEG4 == instr_temp || RO_V_VSSSEG5 == instr_temp ||
RO_V_VSSSEG6 == instr_temp || RO_V_VSSSEG7 == instr_temp ||
RO_V_VSSSEG8 == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else if (RO_V_VSXSEG2 == instr_temp || RO_V_VSXSEG3 == instr_temp ||
RO_V_VSXSEG4 == instr_temp || RO_V_VSXSEG5 == instr_temp ||
RO_V_VSXSEG6 == instr_temp || RO_V_VSXSEG7 == instr_temp ||
RO_V_VSXSEG8 == instr_temp) {
UNIMPLEMENTED_RISCV();
return true;
} else {
return false;
}
}
# endif
void Simulator::DecodeRVIType() {
switch (instr_.InstructionBits() & kITypeMask) {
case RO_JALR: {
set_rd(get_pc() + kInstrSize);
// Note: No need to shift 2 for JALR's imm12, but set lowest bit to 0.
sreg_t next_pc = (rs1() + imm12()) & ~sreg_t(1);
set_pc(next_pc);
break;
}
case RO_LB: {
sreg_t addr = rs1() + imm12();
int8_t val = ReadMem<int8_t>(addr, instr_.instr());
set_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
case RO_LH: {
sreg_t addr = rs1() + imm12();
int16_t val = ReadMem<int16_t>(addr, instr_.instr());
set_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
case RO_LW: {
sreg_t addr = rs1() + imm12();
int32_t val = ReadMem<int32_t>(addr, instr_.instr());
set_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
case RO_LBU: {
sreg_t addr = rs1() + imm12();
uint8_t val = ReadMem<uint8_t>(addr, instr_.instr());
set_rd(zext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
case RO_LHU: {
sreg_t addr = rs1() + imm12();
uint16_t val = ReadMem<uint16_t>(addr, instr_.instr());
set_rd(zext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_LWU: {
int64_t addr = rs1() + imm12();
uint32_t val = ReadMem<uint32_t>(addr, instr_.instr());
set_rd(zext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
case RO_LD: {
int64_t addr = rs1() + imm12();
int64_t val = ReadMem<int64_t>(addr, instr_.instr());
set_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rd_reg()));
break;
}
# endif /*JS_CODEGEN_RISCV64*/
case RO_ADDI: {
set_rd(sext_xlen(rs1() + imm12()));
break;
}
case RO_SLTI: {
set_rd(sreg_t(rs1()) < sreg_t(imm12()));
break;
}
case RO_SLTIU: {
set_rd(reg_t(rs1()) < reg_t(imm12()));
break;
}
case RO_XORI: {
set_rd(imm12() ^ rs1());
break;
}
case RO_ORI: {
set_rd(imm12() | rs1());
break;
}
case RO_ANDI: {
set_rd(imm12() & rs1());
break;
}
case RO_SLLI: {
require(shamt6() < xlen);
set_rd(sext_xlen(rs1() << shamt6()));
break;
}
case RO_SRLI: { // RO_SRAI
if (!instr_.IsArithShift()) {
require(shamt6() < xlen);
set_rd(sext_xlen(zext_xlen(rs1()) >> shamt6()));
} else {
require(shamt6() < xlen);
set_rd(sext_xlen(sext_xlen(rs1()) >> shamt6()));
}
break;
}
# ifdef JS_CODEGEN_RISCV64
case RO_ADDIW: {
set_rd(sext32(rs1() + imm12()));
break;
}
case RO_SLLIW: {
set_rd(sext32(rs1() << shamt5()));
break;
}
case RO_SRLIW: { // RO_SRAIW
if (!instr_.IsArithShift()) {
set_rd(sext32(uint32_t(rs1()) >> shamt5()));
} else {
set_rd(sext32(int32_t(rs1()) >> shamt5()));
}
break;
}
# endif /*JS_CODEGEN_RISCV64*/
case RO_FENCE: {
// DO nothing in sumulator
break;
}
case RO_ECALL: { // RO_EBREAK
if (instr_.Imm12Value() == 0) { // ECALL
SoftwareInterrupt();
} else if (instr_.Imm12Value() == 1) { // EBREAK
uint8_t code = get_ebreak_code(instr_.instr());
if (code == kWasmTrapCode) {
HandleWasmTrap();
}
SoftwareInterrupt();
} else {
UNSUPPORTED();
}
break;
}
// TODO(riscv): use Zifencei Standard Extension macro block
case RO_FENCE_I: {
// spike: flush icache.
break;
}
// TODO(riscv): use Zicsr Standard Extension macro block
case RO_CSRRW: {
if (rd_reg() != zero_reg) {
set_rd(zext_xlen(read_csr_value(csr_reg())));
}
write_csr_value(csr_reg(), rs1());
break;
}
case RO_CSRRS: {
set_rd(zext_xlen(read_csr_value(csr_reg())));
if (rs1_reg() != zero_reg) {
set_csr_bits(csr_reg(), rs1());
}
break;
}
case RO_CSRRC: {
set_rd(zext_xlen(read_csr_value(csr_reg())));
if (rs1_reg() != zero_reg) {
clear_csr_bits(csr_reg(), rs1());
}
break;
}
case RO_CSRRWI: {
if (rd_reg() != zero_reg) {
set_rd(zext_xlen(read_csr_value(csr_reg())));
}
if (csr_reg() == csr_cycle) {
if (imm5CSR() == kWasmTrapCode) {
HandleWasmTrap();
return;
}
}
write_csr_value(csr_reg(), imm5CSR());
break;
}
case RO_CSRRSI: {
set_rd(zext_xlen(read_csr_value(csr_reg())));
if (imm5CSR() != 0) {
set_csr_bits(csr_reg(), imm5CSR());
}
break;
}
case RO_CSRRCI: {
set_rd(zext_xlen(read_csr_value(csr_reg())));
if (imm5CSR() != 0) {
clear_csr_bits(csr_reg(), imm5CSR());
}
break;
}
// TODO(riscv): use F Extension macro block
case RO_FLW: {
sreg_t addr = rs1() + imm12();
uint32_t val = ReadMem<uint32_t>(addr, instr_.instr());
set_frd(Float32::FromBits(val), false);
TraceMemRdFloat(addr, Float32::FromBits(val), getFpuRegister(frd_reg()));
break;
}
// TODO(riscv): use D Extension macro block
case RO_FLD: {
sreg_t addr = rs1() + imm12();
uint64_t val = ReadMem<uint64_t>(addr, instr_.instr());
set_drd(Float64::FromBits(val), false);
TraceMemRdDouble(addr, Float64::FromBits(val), getFpuRegister(frd_reg()));
break;
}
default: {
# ifdef CAN_USE_RVV_INSTRUCTIONS
if (!DecodeRvvVL()) {
UNSUPPORTED();
}
break;
# else
UNSUPPORTED();
# endif
}
}
}
void Simulator::DecodeRVSType() {
switch (instr_.InstructionBits() & kSTypeMask) {
case RO_SB:
WriteMem<uint8_t>(rs1() + s_imm12(), (uint8_t)rs2(), instr_.instr());
break;
case RO_SH:
WriteMem<uint16_t>(rs1() + s_imm12(), (uint16_t)rs2(), instr_.instr());
break;
case RO_SW:
WriteMem<uint32_t>(rs1() + s_imm12(), (uint32_t)rs2(), instr_.instr());
break;
# ifdef JS_CODEGEN_RISCV64
case RO_SD:
WriteMem<uint64_t>(rs1() + s_imm12(), (uint64_t)rs2(), instr_.instr());
break;
# endif /*JS_CODEGEN_RISCV64*/
// TODO(riscv): use F Extension macro block
case RO_FSW: {
WriteMem<Float32>(rs1() + s_imm12(), getFpuRegisterFloat32(rs2_reg()),
instr_.instr());
break;
}
// TODO(riscv): use D Extension macro block
case RO_FSD: {
WriteMem<Float64>(rs1() + s_imm12(), getFpuRegisterFloat64(rs2_reg()),
instr_.instr());
break;
}
default:
# ifdef CAN_USE_RVV_INSTRUCTIONS
if (!DecodeRvvVS()) {
UNSUPPORTED();
}
break;
# else
UNSUPPORTED();
# endif
}
}
void Simulator::DecodeRVBType() {
switch (instr_.InstructionBits() & kBTypeMask) {
case RO_BEQ:
if (rs1() == rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
case RO_BNE:
if (rs1() != rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
case RO_BLT:
if (rs1() < rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
case RO_BGE:
if (rs1() >= rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
case RO_BLTU:
if ((reg_t)rs1() < (reg_t)rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
case RO_BGEU:
if ((reg_t)rs1() >= (reg_t)rs2()) {
int64_t next_pc = get_pc() + boffset();
set_pc(next_pc);
}
break;
default:
UNSUPPORTED();
}
}
void Simulator::DecodeRVUType() {
// U Type doesn't have additoinal mask
switch (instr_.BaseOpcodeFieldRaw()) {
case LUI:
set_rd(u_imm20());
break;
case AUIPC:
set_rd(sext_xlen(u_imm20() + get_pc()));
break;
default:
UNSUPPORTED();
}
}
void Simulator::DecodeRVJType() {
// J Type doesn't have additional mask
switch (instr_.BaseOpcodeValue()) {
case JAL: {
set_rd(get_pc() + kInstrSize);
int64_t next_pc = get_pc() + imm20J();
set_pc(next_pc);
break;
}
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCRType() {
switch (instr_.RvcFunct4Value()) {
case 0b1000:
if (instr_.RvcRs1Value() != 0 && instr_.RvcRs2Value() == 0) { // c.jr
set_pc(rvc_rs1());
} else if (instr_.RvcRdValue() != 0 &&
instr_.RvcRs2Value() != 0) { // c.mv
set_rvc_rd(sext_xlen(rvc_rs2()));
} else {
UNSUPPORTED();
}
break;
case 0b1001:
if (instr_.RvcRs1Value() == 0 && instr_.RvcRs2Value() == 0) { // c.ebreak
DieOrDebug();
} else if (instr_.RvcRdValue() != 0 &&
instr_.RvcRs2Value() == 0) { // c.jalr
setRegister(ra, get_pc() + kShortInstrSize);
set_pc(rvc_rs1());
} else if (instr_.RvcRdValue() != 0 &&
instr_.RvcRs2Value() != 0) { // c.add
set_rvc_rd(sext_xlen(rvc_rs1() + rvc_rs2()));
} else {
UNSUPPORTED();
}
break;
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCAType() {
switch (instr_.InstructionBits() & kCATypeMask) {
case RO_C_SUB:
set_rvc_rs1s(sext_xlen(rvc_rs1s() - rvc_rs2s()));
break;
case RO_C_XOR:
set_rvc_rs1s(rvc_rs1s() ^ rvc_rs2s());
break;
case RO_C_OR:
set_rvc_rs1s(rvc_rs1s() | rvc_rs2s());
break;
case RO_C_AND:
set_rvc_rs1s(rvc_rs1s() & rvc_rs2s());
break;
# if JS_CODEGEN_RISCV64
case RO_C_SUBW:
set_rvc_rs1s(sext32(rvc_rs1s() - rvc_rs2s()));
break;
case RO_C_ADDW:
set_rvc_rs1s(sext32(rvc_rs1s() + rvc_rs2s()));
break;
# endif
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCIType() {
switch (instr_.RvcOpcode()) {
case RO_C_NOP_ADDI:
if (instr_.RvcRdValue() == 0) // c.nop
break;
else // c.addi
set_rvc_rd(sext_xlen(rvc_rs1() + rvc_imm6()));
break;
# if JS_CODEGEN_RISCV64
case RO_C_ADDIW:
set_rvc_rd(sext32(rvc_rs1() + rvc_imm6()));
break;
# endif
case RO_C_LI:
set_rvc_rd(sext_xlen(rvc_imm6()));
break;
case RO_C_LUI_ADD:
if (instr_.RvcRdValue() == 2) {
// c.addi16sp
int64_t value = getRegister(sp) + rvc_imm6_addi16sp();
setRegister(sp, value);
} else if (instr_.RvcRdValue() != 0 && instr_.RvcRdValue() != 2) {
// c.lui
set_rvc_rd(rvc_u_imm6());
} else {
UNSUPPORTED();
}
break;
case RO_C_SLLI:
set_rvc_rd(sext_xlen(rvc_rs1() << rvc_shamt6()));
break;
case RO_C_FLDSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_ldsp();
uint64_t val = ReadMem<uint64_t>(addr, instr_.instr());
set_rvc_drd(Float64::FromBits(val), false);
TraceMemRdDouble(addr, Float64::FromBits(val),
getFpuRegister(rvc_frd_reg()));
break;
}
# if JS_CODEGEN_RISCV64
case RO_C_LWSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_lwsp();
int64_t val = ReadMem<int32_t>(addr, instr_.instr());
set_rvc_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rvc_rd_reg()));
break;
}
case RO_C_LDSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_ldsp();
int64_t val = ReadMem<int64_t>(addr, instr_.instr());
set_rvc_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rvc_rd_reg()));
break;
}
# elif JS_CODEGEN_RISCV32
case RO_C_FLWSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_ldsp();
uint32_t val = ReadMem<uint32_t>(addr, instr_.instr());
set_rvc_frd(Float32::FromBits(val), false);
TraceMemRdFloat(addr, Float32::FromBits(val),
getFpuRegister(rvc_frd_reg()));
break;
}
case RO_C_LWSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_lwsp();
int32_t val = ReadMem<int32_t>(addr, instr_.instr());
set_rvc_rd(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rvc_rd_reg()));
break;
}
# endif
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCIWType() {
switch (instr_.RvcOpcode()) {
case RO_C_ADDI4SPN: {
set_rvc_rs2s(getRegister(sp) + rvc_imm8_addi4spn());
break;
default:
UNSUPPORTED();
}
}
}
void Simulator::DecodeCSSType() {
switch (instr_.RvcOpcode()) {
case RO_C_FSDSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_sdsp();
WriteMem<Float64>(addr, getFpuRegisterFloat64(rvc_rs2_reg()),
instr_.instr());
break;
}
# if JS_CODEGEN_RISCV32
case RO_C_FSWSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_sdsp();
WriteMem<Float32>(addr, getFpuRegisterFloat32(rvc_rs2_reg()),
instr_.instr());
break;
}
# endif
case RO_C_SWSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_swsp();
WriteMem<int32_t>(addr, (int32_t)rvc_rs2(), instr_.instr());
break;
}
# if JS_CODEGEN_RISCV64
case RO_C_SDSP: {
sreg_t addr = getRegister(sp) + rvc_imm6_sdsp();
WriteMem<int64_t>(addr, (int64_t)rvc_rs2(), instr_.instr());
break;
}
# endif
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCLType() {
switch (instr_.RvcOpcode()) {
case RO_C_LW: {
sreg_t addr = rvc_rs1s() + rvc_imm5_w();
int64_t val = ReadMem<int32_t>(addr, instr_.instr());
set_rvc_rs2s(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rvc_rs2s_reg()));
break;
}
case RO_C_FLD: {
sreg_t addr = rvc_rs1s() + rvc_imm5_d();
uint64_t val = ReadMem<uint64_t>(addr, instr_.instr());
set_rvc_drs2s(Float64::FromBits(val), false);
break;
}
# if JS_CODEGEN_RISCV64
case RO_C_LD: {
sreg_t addr = rvc_rs1s() + rvc_imm5_d();
int64_t val = ReadMem<int64_t>(addr, instr_.instr());
set_rvc_rs2s(sext_xlen(val), false);
TraceMemRd(addr, val, getRegister(rvc_rs2s_reg()));
break;
}
# elif JS_CODEGEN_RISCV32
case RO_C_FLW: {
sreg_t addr = rvc_rs1s() + rvc_imm5_d();
uint32_t val = ReadMem<uint32_t>(addr, instr_.instr());
set_rvc_frs2s(Float32::FromBits(val), false);
break;
}
# endif
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCSType() {
switch (instr_.RvcOpcode()) {
case RO_C_SW: {
sreg_t addr = rvc_rs1s() + rvc_imm5_w();
WriteMem<int32_t>(addr, (int32_t)rvc_rs2s(), instr_.instr());
break;
}
# if JS_CODEGEN_RISCV64
case RO_C_SD: {
sreg_t addr = rvc_rs1s() + rvc_imm5_d();
WriteMem<int64_t>(addr, (int64_t)rvc_rs2s(), instr_.instr());
break;
}
# endif
case RO_C_FSD: {
sreg_t addr = rvc_rs1s() + rvc_imm5_d();
WriteMem<double>(addr, static_cast<double>(rvc_drs2s()), instr_.instr());
break;
}
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCJType() {
switch (instr_.RvcOpcode()) {
case RO_C_J: {
set_pc(get_pc() + instr_.RvcImm11CJValue());
break;
}
default:
UNSUPPORTED();
}
}
void Simulator::DecodeCBType() {
switch (instr_.RvcOpcode()) {
case RO_C_BNEZ:
if (rvc_rs1() != 0) {
sreg_t next_pc = get_pc() + rvc_imm8_b();
set_pc(next_pc);
}
break;
case RO_C_BEQZ:
if (rvc_rs1() == 0) {
sreg_t next_pc = get_pc() + rvc_imm8_b();
set_pc(next_pc);
}
break;
case RO_C_MISC_ALU:
if (instr_.RvcFunct2BValue() == 0b00) { // c.srli
set_rvc_rs1s(sext_xlen(sext_xlen(rvc_rs1s()) >> rvc_shamt6()));
} else if (instr_.RvcFunct2BValue() == 0b01) { // c.srai
require(rvc_shamt6() < xlen);
set_rvc_rs1s(sext_xlen(sext_xlen(rvc_rs1s()) >> rvc_shamt6()));
} else if (instr_.RvcFunct2BValue() == 0b10) { // c.andi
set_rvc_rs1s(rvc_imm6() & rvc_rs1s());
} else {
UNSUPPORTED();
}
break;
default:
UNSUPPORTED();
}
}
void Simulator::callInternal(uint8_t* entry) {
// Prepare to execute the code at entry.
setRegister(pc, reinterpret_cast<int64_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
setRegister(ra, end_sim_pc);
// Remember the values of callee-saved registers.
intptr_t s0_val = getRegister(Simulator::Register::fp);
intptr_t s1_val = getRegister(Simulator::Register::s1);
intptr_t s2_val = getRegister(Simulator::Register::s2);
intptr_t s3_val = getRegister(Simulator::Register::s3);
intptr_t s4_val = getRegister(Simulator::Register::s4);
intptr_t s5_val = getRegister(Simulator::Register::s5);
intptr_t s6_val = getRegister(Simulator::Register::s6);
intptr_t s7_val = getRegister(Simulator::Register::s7);
intptr_t s8_val = getRegister(Simulator::Register::s8);
intptr_t s9_val = getRegister(Simulator::Register::s9);
intptr_t s10_val = getRegister(Simulator::Register::s10);
intptr_t s11_val = getRegister(Simulator::Register::s11);
intptr_t gp_val = getRegister(Simulator::Register::gp);
intptr_t sp_val = getRegister(Simulator::Register::sp);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution. If this value is
// small int, it should be SMI.
intptr_t callee_saved_value = icount_;
setRegister(Simulator::Register::fp, callee_saved_value);
setRegister(Simulator::Register::s1, callee_saved_value);
setRegister(Simulator::Register::s2, callee_saved_value);
setRegister(Simulator::Register::s3, callee_saved_value);
setRegister(Simulator::Register::s4, callee_saved_value);
setRegister(Simulator::Register::s5, callee_saved_value);
setRegister(Simulator::Register::s6, callee_saved_value);
setRegister(Simulator::Register::s7, callee_saved_value);
setRegister(Simulator::Register::s8, callee_saved_value);
setRegister(Simulator::Register::s9, callee_saved_value);
setRegister(Simulator::Register::s10, callee_saved_value);
setRegister(Simulator::Register::s11, callee_saved_value);
setRegister(Simulator::Register::gp, callee_saved_value);
// Start the simulation.
if (Simulator::StopSimAt != -1) {
execute<true>();
} else {
execute<false>();
}
// Check that the callee-saved registers have been preserved.
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::fp));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s1));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s2));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s3));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s4));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s5));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s6));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s7));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s8));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s9));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s10));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::s11));
MOZ_ASSERT(callee_saved_value == getRegister(Simulator::Register::gp));
// Restore callee-saved registers with the original value.
setRegister(Simulator::Register::fp, s0_val);
setRegister(Simulator::Register::s1, s1_val);
setRegister(Simulator::Register::s2, s2_val);
setRegister(Simulator::Register::s3, s3_val);
setRegister(Simulator::Register::s4, s4_val);
setRegister(Simulator::Register::s5, s5_val);
setRegister(Simulator::Register::s6, s6_val);
setRegister(Simulator::Register::s7, s7_val);
setRegister(Simulator::Register::s8, s8_val);
setRegister(Simulator::Register::s9, s9_val);
setRegister(Simulator::Register::s10, s10_val);
setRegister(Simulator::Register::s11, s11_val);
setRegister(Simulator::Register::gp, gp_val);
setRegister(Simulator::Register::sp, sp_val);
}
int64_t Simulator::call(uint8_t* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
int64_t original_stack = getRegister(sp);
// Compute position of stack on entry to generated code.
int64_t entry_stack = original_stack;
if (argument_count > kCArgSlotCount) {
entry_stack = entry_stack - argument_count * sizeof(int64_t);
} else {
entry_stack = entry_stack - kCArgsSlotsSize;
}
entry_stack &= ~U64(ABIStackAlignment - 1);
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
// Setup the arguments.
for (int i = 0; i < argument_count; i++) {
js::jit::Register argReg;
if (GetIntArgReg(i, &argReg)) {
setRegister(argReg.code(), va_arg(parameters, int64_t));
} else {
stack_argument[i] = va_arg(parameters, int64_t);
}
}
va_end(parameters);
setRegister(sp, entry_stack);
callInternal(entry);
// Pop stack passed arguments.
MOZ_ASSERT(entry_stack == getRegister(sp));
setRegister(sp, original_stack);
int64_t result = getRegister(a0);
return result;
}
uintptr_t Simulator::pushAddress(uintptr_t address) {
int new_sp = getRegister(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
setRegister(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::popAddress() {
int current_sp = getRegister(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
setRegister(sp, current_sp + sizeof(uintptr_t));
return address;
}
} // namespace jit
} // namespace js
js::jit::Simulator* JSContext::simulator() const { return simulator_; }
#endif // JS_SIMULATOR_RISCV64