Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "jit/mips64/Assembler-mips64.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include "jit/AutoWritableJitCode.h"
using mozilla::DebugOnly;
using namespace js;
using namespace js::jit;
ABIArgGenerator::ABIArgGenerator()
: regIndex_(0), stackOffset_(0), current_() {}
ABIArg ABIArgGenerator::next(MIRType type) {
static_assert(NumIntArgRegs == NumFloatArgRegs);
if (regIndex_ == NumIntArgRegs) {
if (type != MIRType::Simd128) {
current_ = ABIArg(stackOffset_);
stackOffset_ += sizeof(uint64_t);
} else {
// Mips platform does not support simd yet.
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
switch (type) {
case MIRType::Int32:
case MIRType::Int64:
case MIRType::Pointer:
case MIRType::WasmAnyRef:
case MIRType::WasmArrayData:
case MIRType::StackResults: {
Register destReg;
GetIntArgReg(regIndex_++, &destReg);
current_ = ABIArg(destReg);
break;
}
case MIRType::Float32:
case MIRType::Double: {
FloatRegister::ContentType contentType;
contentType = (type == MIRType::Double) ? FloatRegisters::Double
: FloatRegisters::Single;
FloatRegister destFReg;
GetFloatArgReg(regIndex_++, &destFReg);
current_ = ABIArg(FloatRegister(destFReg.id(), contentType));
break;
}
default:
MOZ_CRASH("Unexpected argument type");
}
return current_;
}
uint32_t js::jit::RT(FloatRegister r) {
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << RTShift;
}
uint32_t js::jit::RD(FloatRegister r) {
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << RDShift;
}
uint32_t js::jit::RZ(FloatRegister r) {
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << RZShift;
}
uint32_t js::jit::SA(FloatRegister r) {
MOZ_ASSERT(r.id() < FloatRegisters::TotalPhys);
return r.id() << SAShift;
}
void Assembler::executableCopy(uint8_t* buffer) {
MOZ_ASSERT(isFinished);
m_buffer.executableCopy(buffer);
}
uintptr_t Assembler::GetPointer(uint8_t* instPtr) {
Instruction* inst = (Instruction*)instPtr;
return Assembler::ExtractLoad64Value(inst);
}
static JitCode* CodeFromJump(Instruction* jump) {
uint8_t* target = (uint8_t*)Assembler::ExtractLoad64Value(jump);
return JitCode::FromExecutable(target);
}
void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
while (reader.more()) {
JitCode* child =
CodeFromJump((Instruction*)(code->raw() + reader.readUnsigned()));
TraceManuallyBarrieredEdge(trc, &child, "rel32");
}
}
static void TraceOneDataRelocation(JSTracer* trc,
mozilla::Maybe<AutoWritableJitCode>& awjc,
JitCode* code, Instruction* inst) {
void* ptr = (void*)Assembler::ExtractLoad64Value(inst);
void* prior = ptr;
// Data relocations can be for Values or for raw pointers. If a Value is
// zero-tagged, we can trace it as if it were a raw pointer. If a Value
// is not zero-tagged, we have to interpret it as a Value to ensure that the
// tag bits are masked off to recover the actual pointer.
uintptr_t word = reinterpret_cast<uintptr_t>(ptr);
if (word >> JSVAL_TAG_SHIFT) {
// This relocation is a Value with a non-zero tag.
Value v = Value::fromRawBits(word);
TraceManuallyBarrieredEdge(trc, &v, "jit-masm-value");
ptr = (void*)v.bitsAsPunboxPointer();
} else {
// This relocation is a raw pointer or a Value with a zero tag.
// No barrier needed since these are constants.
TraceManuallyBarrieredGenericPointerEdge(
trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr");
}
if (ptr != prior) {
if (awjc.isNothing()) {
awjc.emplace(code);
}
Assembler::UpdateLoad64Value(inst, uint64_t(ptr));
}
}
/* static */
void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader) {
mozilla::Maybe<AutoWritableJitCode> awjc;
while (reader.more()) {
size_t offset = reader.readUnsigned();
Instruction* inst = (Instruction*)(code->raw() + offset);
TraceOneDataRelocation(trc, awjc, code, inst);
}
}
void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) {
if (label.patchAt().bound()) {
auto mode = label.linkMode();
intptr_t offset = label.patchAt().offset();
intptr_t target = label.target().offset();
if (mode == CodeLabel::RawPointer) {
*reinterpret_cast<const void**>(rawCode + offset) = rawCode + target;
} else {
MOZ_ASSERT(mode == CodeLabel::MoveImmediate ||
mode == CodeLabel::JumpImmediate);
Instruction* inst = (Instruction*)(rawCode + offset);
Assembler::UpdateLoad64Value(inst, (uint64_t)(rawCode + target));
}
}
}
void Assembler::bind(InstImm* inst, uintptr_t branch, uintptr_t target) {
int64_t offset = target - branch;
InstImm inst_bgezal = InstImm(op_regimm, zero, rt_bgezal, BOffImm16(0));
InstImm inst_beq = InstImm(op_beq, zero, zero, BOffImm16(0));
// If encoded offset is 4, then the jump must be short
if (BOffImm16(inst[0]).decode() == 4) {
MOZ_ASSERT(BOffImm16::IsInRange(offset));
inst[0].setBOffImm16(BOffImm16(offset));
inst[1].makeNop();
return;
}
// Generate the long jump for calls because return address has to be the
// address after the reserved block.
if (inst[0].encode() == inst_bgezal.encode()) {
addLongJump(BufferOffset(branch), BufferOffset(target));
Assembler::WriteLoad64Instructions(inst, ScratchRegister,
LabelBase::INVALID_OFFSET);
inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr).encode();
// There is 1 nop after this.
return;
}
if (BOffImm16::IsInRange(offset)) {
// Don't skip trailing nops can improve performance
// on Loongson3 platform.
bool skipNops =
!isLoongson() && (inst[0].encode() != inst_bgezal.encode() &&
inst[0].encode() != inst_beq.encode());
inst[0].setBOffImm16(BOffImm16(offset));
inst[1].makeNop();
if (skipNops) {
inst[2] =
InstImm(op_regimm, zero, rt_bgez, BOffImm16(5 * sizeof(uint32_t)))
.encode();
// There are 4 nops after this
}
return;
}
if (inst[0].encode() == inst_beq.encode()) {
// Handle long unconditional jump.
addLongJump(BufferOffset(branch), BufferOffset(target));
Assembler::WriteLoad64Instructions(inst, ScratchRegister,
LabelBase::INVALID_OFFSET);
#ifdef MIPSR6
inst[4] =
InstReg(op_special, ScratchRegister, zero, zero, ff_jalr).encode();
#else
inst[4] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode();
#endif
// There is 1 nop after this.
} else {
// Handle long conditional jump.
inst[0] = invertBranch(inst[0], BOffImm16(7 * sizeof(uint32_t)));
// No need for a "nop" here because we can clobber scratch.
addLongJump(BufferOffset(branch + sizeof(uint32_t)), BufferOffset(target));
Assembler::WriteLoad64Instructions(&inst[1], ScratchRegister,
LabelBase::INVALID_OFFSET);
#ifdef MIPSR6
inst[5] =
InstReg(op_special, ScratchRegister, zero, zero, ff_jalr).encode();
#else
inst[5] = InstReg(op_special, ScratchRegister, zero, zero, ff_jr).encode();
#endif
// There is 1 nop after this.
}
}
void Assembler::processCodeLabels(uint8_t* rawCode) {
for (const CodeLabel& label : codeLabels_) {
Bind(rawCode, label);
}
}
uint32_t Assembler::PatchWrite_NearCallSize() {
// Load an address needs 4 instructions, and a jump with a delay slot.
return (4 + 2) * sizeof(uint32_t);
}
void Assembler::PatchWrite_NearCall(CodeLocationLabel start,
CodeLocationLabel toCall) {
Instruction* inst = (Instruction*)start.raw();
uint8_t* dest = toCall.raw();
// Overwrite whatever instruction used to be here with a call.
// Always use long jump for two reasons:
// - Jump has to be the same size because of PatchWrite_NearCallSize.
// - Return address has to be at the end of replaced block.
// Short jump wouldn't be more efficient.
Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)dest);
inst[4] = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
inst[5] = InstNOP();
}
uint64_t Assembler::ExtractLoad64Value(Instruction* inst0) {
InstImm* i0 = (InstImm*)inst0;
InstImm* i1 = (InstImm*)i0->next();
InstReg* i2 = (InstReg*)i1->next();
InstImm* i3 = (InstImm*)i2->next();
InstImm* i5 = (InstImm*)i3->next()->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
(i2->extractFunctionField() == ff_dsrl32)) {
uint64_t value = (uint64_t(i0->extractImm16Value()) << 32) |
(uint64_t(i1->extractImm16Value()) << 16) |
uint64_t(i3->extractImm16Value());
return uint64_t((int64_t(value) << 16) >> 16);
}
MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
uint64_t value = (uint64_t(i0->extractImm16Value()) << 48) |
(uint64_t(i1->extractImm16Value()) << 32) |
(uint64_t(i3->extractImm16Value()) << 16) |
uint64_t(i5->extractImm16Value());
return value;
}
void Assembler::UpdateLoad64Value(Instruction* inst0, uint64_t value) {
InstImm* i0 = (InstImm*)inst0;
InstImm* i1 = (InstImm*)i0->next();
InstReg* i2 = (InstReg*)i1->next();
InstImm* i3 = (InstImm*)i2->next();
InstImm* i5 = (InstImm*)i3->next()->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if ((i2->extractOpcode() == ((uint32_t)op_special >> OpcodeShift)) &&
(i2->extractFunctionField() == ff_dsrl32)) {
i0->setImm16(Imm16::Lower(Imm32(value >> 32)));
i1->setImm16(Imm16::Upper(Imm32(value)));
i3->setImm16(Imm16::Lower(Imm32(value)));
return;
}
MOZ_ASSERT(i5->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
i0->setImm16(Imm16::Upper(Imm32(value >> 32)));
i1->setImm16(Imm16::Lower(Imm32(value >> 32)));
i3->setImm16(Imm16::Upper(Imm32(value)));
i5->setImm16(Imm16::Lower(Imm32(value)));
}
void Assembler::WriteLoad64Instructions(Instruction* inst0, Register reg,
uint64_t value) {
Instruction* inst1 = inst0->next();
Instruction* inst2 = inst1->next();
Instruction* inst3 = inst2->next();
*inst0 = InstImm(op_lui, zero, reg, Imm16::Lower(Imm32(value >> 32)));
*inst1 = InstImm(op_ori, reg, reg, Imm16::Upper(Imm32(value)));
*inst2 = InstReg(op_special, rs_one, reg, reg, 48 - 32, ff_dsrl32);
*inst3 = InstImm(op_ori, reg, reg, Imm16::Lower(Imm32(value)));
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
ImmPtr newValue, ImmPtr expectedValue) {
PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
PatchedImmPtr(expectedValue.value));
}
void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue) {
Instruction* inst = (Instruction*)label.raw();
// Extract old Value
DebugOnly<uint64_t> value = Assembler::ExtractLoad64Value(inst);
MOZ_ASSERT(value == uint64_t(expectedValue.value));
// Replace with new value
Assembler::UpdateLoad64Value(inst, uint64_t(newValue.value));
}
uint64_t Assembler::ExtractInstructionImmediate(uint8_t* code) {
InstImm* inst = (InstImm*)code;
return Assembler::ExtractLoad64Value(inst);
}
void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) {
Instruction* inst = (Instruction*)inst_.raw();
InstImm* i0 = (InstImm*)inst;
InstImm* i1 = (InstImm*)i0->next();
InstImm* i3 = (InstImm*)i1->next()->next();
Instruction* i4 = (Instruction*)i3->next();
MOZ_ASSERT(i0->extractOpcode() == ((uint32_t)op_lui >> OpcodeShift));
MOZ_ASSERT(i1->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
MOZ_ASSERT(i3->extractOpcode() == ((uint32_t)op_ori >> OpcodeShift));
if (enabled) {
MOZ_ASSERT(i4->extractOpcode() != ((uint32_t)op_lui >> OpcodeShift));
InstReg jalr = InstReg(op_special, ScratchRegister, zero, ra, ff_jalr);
*i4 = jalr;
} else {
InstNOP nop;
*i4 = nop;
}
}