Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#ifndef jit_mips32_MacroAssembler_mips32_h
#define jit_mips32_MacroAssembler_mips32_h
#include "mozilla/EndianUtils.h"
#include "jit/mips-shared/MacroAssembler-mips-shared.h"
#include "jit/MoveResolver.h"
#include "vm/BytecodeUtil.h"
#include "wasm/WasmBuiltins.h"
namespace js {
namespace jit {
struct ImmTag : public Imm32 {
ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {}
};
struct ImmType : public ImmTag {
ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {}
};
static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type,
JSReturnReg_Data};
static const ValueOperand softfpReturnOperand = ValueOperand(v1, v0);
static const int defaultShift = 3;
static_assert(1 << defaultShift == sizeof(JS::Value),
"The defaultShift is wrong");
static const uint32_t LOW_32_MASK = (1LL << 32) - 1;
#if MOZ_LITTLE_ENDIAN()
static const int32_t LOW_32_OFFSET = 0;
static const int32_t HIGH_32_OFFSET = 4;
#else
static const int32_t LOW_32_OFFSET = 4;
static const int32_t HIGH_32_OFFSET = 0;
#endif
// See documentation for ScratchTagScope and ScratchTagScopeRelease in
// MacroAssembler-x64.h.
class ScratchTagScope {
const ValueOperand& v_;
public:
ScratchTagScope(MacroAssembler&, const ValueOperand& v) : v_(v) {}
operator Register() { return v_.typeReg(); }
void release() {}
void reacquire() {}
};
class ScratchTagScopeRelease {
public:
explicit ScratchTagScopeRelease(ScratchTagScope*) {}
};
class MacroAssemblerMIPS : public MacroAssemblerMIPSShared {
public:
using MacroAssemblerMIPSShared::ma_b;
using MacroAssemblerMIPSShared::ma_cmp_set;
using MacroAssemblerMIPSShared::ma_ld;
using MacroAssemblerMIPSShared::ma_li;
using MacroAssemblerMIPSShared::ma_liPatchable;
using MacroAssemblerMIPSShared::ma_load;
using MacroAssemblerMIPSShared::ma_ls;
using MacroAssemblerMIPSShared::ma_sd;
using MacroAssemblerMIPSShared::ma_ss;
using MacroAssemblerMIPSShared::ma_store;
using MacroAssemblerMIPSShared::ma_sub32TestOverflow;
void ma_li(Register dest, CodeLabel* label);
void ma_li(Register dest, ImmWord imm);
void ma_liPatchable(Register dest, ImmPtr imm);
void ma_liPatchable(Register dest, ImmWord imm);
// load
void ma_load(Register dest, Address address, LoadStoreSize size = SizeWord,
LoadStoreExtension extension = SignExtend);
// store
void ma_store(Register data, Address address, LoadStoreSize size = SizeWord,
LoadStoreExtension extension = SignExtend);
// arithmetic based ops
// add
void ma_add32TestOverflow(Register rd, Register rs, Register rt,
Label* overflow);
void ma_add32TestOverflow(Register rd, Register rs, Imm32 imm,
Label* overflow);
void ma_addPtrTestOverflow(Register rd, Register rs, Register rt,
Label* overflow) {
ma_add32TestOverflow(rd, rs, rt, overflow);
}
void ma_addPtrTestOverflow(Register rd, Register rs, Imm32 imm,
Label* overflow) {
ma_add32TestOverflow(rd, rs, imm, overflow);
}
void ma_addPtrTestCarry(Condition cond, Register rd, Register rs, Register rt,
Label* overflow) {
ma_add32TestCarry(cond, rd, rs, rt, overflow);
}
void ma_addPtrTestCarry(Condition cond, Register rd, Register rs, Imm32 imm,
Label* overflow) {
ma_add32TestCarry(cond, rd, rs, imm, overflow);
}
// subtract
void ma_sub32TestOverflow(Register rd, Register rs, Register rt,
Label* overflow);
void ma_subPtrTestOverflow(Register rd, Register rs, Register rt,
Label* overflow) {
ma_sub32TestOverflow(rd, rs, rt, overflow);
}
void ma_subPtrTestOverflow(Register rd, Register rs, Imm32 imm,
Label* overflow) {
ma_li(ScratchRegister, imm);
ma_sub32TestOverflow(rd, rs, ScratchRegister, overflow);
}
void ma_mulPtrTestOverflow(Register rd, Register rs, Register rt,
Label* overflow) {
ma_mul32TestOverflow(rd, rs, rt, overflow);
}
// memory
// shortcut for when we know we're transferring 32 bits of data
void ma_lw(Register data, Address address);
void ma_sw(Register data, Address address);
void ma_sw(Imm32 imm, Address address);
void ma_sw(Register data, BaseIndex& address);
void ma_pop(Register r);
void ma_push(Register r);
void branchWithCode(InstImm code, Label* label, JumpKind jumpKind);
// branches when done from within mips-specific code
void ma_b(Register lhs, ImmWord imm, Label* l, Condition c,
JumpKind jumpKind = LongJump) {
ma_b(lhs, Imm32(uint32_t(imm.value)), l, c, jumpKind);
}
void ma_b(Address addr, ImmWord imm, Label* l, Condition c,
JumpKind jumpKind = LongJump) {
ma_b(addr, Imm32(uint32_t(imm.value)), l, c, jumpKind);
}
void ma_b(Register lhs, Address addr, Label* l, Condition c,
JumpKind jumpKind = LongJump);
void ma_b(Address addr, Imm32 imm, Label* l, Condition c,
JumpKind jumpKind = LongJump);
void ma_b(Address addr, ImmGCPtr imm, Label* l, Condition c,
JumpKind jumpKind = LongJump);
void ma_b(Address addr, Register rhs, Label* l, Condition c,
JumpKind jumpKind = LongJump) {
MOZ_ASSERT(rhs != ScratchRegister);
ma_lw(ScratchRegister, addr);
ma_b(ScratchRegister, rhs, l, c, jumpKind);
}
void ma_bal(Label* l, DelaySlotFill delaySlotFill = FillDelaySlot);
// fp instructions
void ma_lid(FloatRegister dest, double value);
void ma_mv(FloatRegister src, ValueOperand dest);
void ma_mv(ValueOperand src, FloatRegister dest);
void ma_ls(FloatRegister ft, Address address);
void ma_ld(FloatRegister ft, Address address);
void ma_sd(FloatRegister ft, Address address);
void ma_ss(FloatRegister ft, Address address);
void ma_ldc1WordAligned(FloatRegister ft, Register base, int32_t off);
void ma_sdc1WordAligned(FloatRegister ft, Register base, int32_t off);
void ma_pop(FloatRegister f);
void ma_push(FloatRegister f);
void ma_cmp_set(Register dst, Register lhs, ImmWord imm, Condition c) {
ma_cmp_set(dst, lhs, Imm32(uint32_t(imm.value)), c);
}
void ma_cmp_set(Register dst, Register lhs, ImmPtr imm, Condition c) {
ma_cmp_set(dst, lhs, ImmWord(uintptr_t(imm.value)), c);
}
void ma_cmp_set(Register dst, Register lhs, Address addr, Condition c) {
MOZ_ASSERT(lhs != ScratchRegister);
ma_lw(ScratchRegister, addr);
ma_cmp_set(dst, lhs, ScratchRegister, c);
}
void ma_cmp_set(Register dst, Address lhs, Register rhs, Condition c) {
MOZ_ASSERT(rhs != ScratchRegister);
ma_lw(ScratchRegister, lhs);
ma_cmp_set(dst, ScratchRegister, rhs, c);
}
void ma_cmp_set(Register dst, Address lhs, ImmPtr imm, Condition c) {
ma_lw(SecondScratchReg, lhs);
ma_cmp_set(dst, SecondScratchReg, imm, c);
}
// These fuctions abstract the access to high part of the double precision
// float register. It is intended to work on both 32 bit and 64 bit
// floating point coprocessor.
void moveToDoubleHi(Register src, FloatRegister dest) {
as_mtc1(src, getOddPair(dest));
}
void moveFromDoubleHi(FloatRegister src, Register dest) {
as_mfc1(dest, getOddPair(src));
}
};
class MacroAssembler;
class MacroAssemblerMIPSCompat : public MacroAssemblerMIPS {
public:
using MacroAssemblerMIPS::call;
MacroAssemblerMIPSCompat() {}
void convertBoolToInt32(Register source, Register dest);
void convertInt32ToDouble(Register src, FloatRegister dest);
void convertInt32ToDouble(const Address& src, FloatRegister dest);
void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest);
void convertUInt32ToDouble(Register src, FloatRegister dest);
void convertUInt32ToFloat32(Register src, FloatRegister dest);
void convertDoubleToFloat32(FloatRegister src, FloatRegister dest);
void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertDoubleToPtr(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true);
void convertFloat32ToDouble(FloatRegister src, FloatRegister dest);
void convertInt32ToFloat32(Register src, FloatRegister dest);
void convertInt32ToFloat32(const Address& src, FloatRegister dest);
void convertDoubleToFloat16(FloatRegister src, FloatRegister dest) {
MOZ_CRASH("Not supported for this target");
}
void convertFloat16ToDouble(FloatRegister src, FloatRegister dest) {
MOZ_CRASH("Not supported for this target");
}
void convertFloat32ToFloat16(FloatRegister src, FloatRegister dest) {
MOZ_CRASH("Not supported for this target");
}
void convertFloat16ToFloat32(FloatRegister src, FloatRegister dest) {
MOZ_CRASH("Not supported for this target");
}
void convertInt32ToFloat16(Register src, FloatRegister dest) {
MOZ_CRASH("Not supported for this target");
}
void computeScaledAddress(const BaseIndex& address, Register dest);
void computeEffectiveAddress(const Address& address, Register dest) {
ma_addu(dest, address.base, Imm32(address.offset));
}
inline void computeEffectiveAddress(const BaseIndex& address, Register dest);
void j(Label* dest) { ma_b(dest); }
void mov(Register src, Register dest) { as_ori(dest, src, 0); }
void mov(ImmWord imm, Register dest) { ma_li(dest, imm); }
void mov(ImmPtr imm, Register dest) {
mov(ImmWord(uintptr_t(imm.value)), dest);
}
void mov(CodeLabel* label, Register dest) { ma_li(dest, label); }
void mov(Register src, Address dest) { MOZ_CRASH("NYI-IC"); }
void mov(Address src, Register dest) { MOZ_CRASH("NYI-IC"); }
void branch(JitCode* c) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
ma_liPatchable(ScratchRegister, ImmPtr(c->raw()));
as_jr(ScratchRegister);
as_nop();
}
void branch(const Register reg) {
as_jr(reg);
as_nop();
}
void nop() { as_nop(); }
void ret() {
ma_pop(ra);
as_jr(ra);
as_nop();
}
inline void retn(Imm32 n);
void push(Imm32 imm) {
ma_li(ScratchRegister, imm);
ma_push(ScratchRegister);
}
void push(ImmWord imm) {
ma_li(ScratchRegister, imm);
ma_push(ScratchRegister);
}
void push(ImmGCPtr imm) {
ma_li(ScratchRegister, imm);
ma_push(ScratchRegister);
}
void push(const Address& address) {
loadPtr(address, ScratchRegister);
ma_push(ScratchRegister);
}
void push(Register reg) { ma_push(reg); }
void push(FloatRegister reg) { ma_push(reg); }
void pop(Register reg) { ma_pop(reg); }
void pop(FloatRegister reg) { ma_pop(reg); }
// Emit a branch that can be toggled to a non-operation. On MIPS we use
// "andi" instruction to toggle the branch.
// See ToggleToJmp(), ToggleToCmp().
CodeOffset toggledJump(Label* label);
// Emit a "jalr" or "nop" instruction. ToggleCall can be used to patch
// this instruction.
CodeOffset toggledCall(JitCode* target, bool enabled);
static size_t ToggledCallSize(uint8_t* code) {
// Four instructions used in: MacroAssemblerMIPSCompat::toggledCall
return 4 * sizeof(uint32_t);
}
CodeOffset pushWithPatch(ImmWord imm) {
CodeOffset label = movWithPatch(imm, ScratchRegister);
ma_push(ScratchRegister);
return label;
}
CodeOffset movWithPatch(ImmWord imm, Register dest) {
CodeOffset label = CodeOffset(currentOffset());
ma_liPatchable(dest, imm);
return label;
}
CodeOffset movWithPatch(ImmPtr imm, Register dest) {
return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
}
void writeCodePointer(CodeLabel* label) {
BufferOffset off = writeInst(-1);
label->patchAt()->bind(off.getOffset());
label->setLinkMode(CodeLabel::RawPointer);
}
void jump(Label* label) { ma_b(label); }
void jump(Register reg) {
as_jr(reg);
as_nop();
}
void jump(const Address& address) {
loadPtr(address, ScratchRegister);
as_jr(ScratchRegister);
as_nop();
}
void jump(JitCode* code) { branch(code); }
void jump(ImmPtr ptr) {
BufferOffset bo = m_buffer.nextOffset();
addPendingJump(bo, ptr, RelocationKind::HARDCODED);
ma_jump(ptr);
}
void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); }
void negl(Register reg) { ma_negu(reg, reg); }
void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) {
MOZ_ASSERT(value.typeReg() == tag);
}
// unboxing code
void unboxNonDouble(const ValueOperand& operand, Register dest, JSValueType);
void unboxNonDouble(const Address& src, Register dest, JSValueType);
void unboxNonDouble(const BaseIndex& src, Register dest, JSValueType);
void unboxInt32(const ValueOperand& operand, Register dest);
void unboxInt32(const Address& src, Register dest);
void unboxBoolean(const ValueOperand& operand, Register dest);
void unboxBoolean(const Address& src, Register dest);
void unboxDouble(const ValueOperand& operand, FloatRegister dest);
void unboxDouble(const Address& src, FloatRegister dest);
void unboxDouble(const BaseIndex& src, FloatRegister dest);
void unboxString(const ValueOperand& operand, Register dest);
void unboxString(const Address& src, Register dest);
void unboxBigInt(const ValueOperand& operand, Register dest);
void unboxBigInt(const Address& src, Register dest);
void unboxObject(const ValueOperand& src, Register dest);
void unboxObject(const Address& src, Register dest);
void unboxObject(const BaseIndex& src, Register dest) {
unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT);
}
void unboxObjectOrNull(const Address& src, Register dest);
void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType);
void unboxGCThingForGCBarrier(const Address& src, Register dest) {
unboxObject(src, dest);
}
void unboxGCThingForGCBarrier(const ValueOperand& src, Register dest) {
unboxObject(src, dest);
}
void notBoolean(const ValueOperand& val) {
as_xori(val.payloadReg(), val.payloadReg(), 1);
}
// boxing code
void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister);
void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest);
// Extended unboxing API. If the payload is already in a register, returns
// that register. Otherwise, provides a move to the given scratch register,
// and returns that.
[[nodiscard]] Register extractObject(const Address& address,
Register scratch);
[[nodiscard]] Register extractObject(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
[[nodiscard]] Register extractString(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
[[nodiscard]] Register extractSymbol(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
[[nodiscard]] Register extractInt32(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
[[nodiscard]] Register extractBoolean(const ValueOperand& value,
Register scratch) {
return value.payloadReg();
}
[[nodiscard]] Register extractTag(const Address& address, Register scratch);
[[nodiscard]] Register extractTag(const BaseIndex& address, Register scratch);
[[nodiscard]] Register extractTag(const ValueOperand& value,
Register scratch) {
return value.typeReg();
}
void loadInt32OrDouble(const Address& address, FloatRegister dest);
void loadInt32OrDouble(Register base, Register index, FloatRegister dest,
int32_t shift = defaultShift);
void loadConstantDouble(double dp, FloatRegister dest);
void loadConstantFloat32(float f, FloatRegister dest);
void testNullSet(Condition cond, const ValueOperand& value, Register dest);
void testObjectSet(Condition cond, const ValueOperand& value, Register dest);
void testUndefinedSet(Condition cond, const ValueOperand& value,
Register dest);
// higher level tag testing code
Operand ToPayload(Operand base);
Address ToPayload(Address base) {
return ToPayload(Operand(base)).toAddress();
}
BaseIndex ToPayload(BaseIndex base) {
return BaseIndex(base.base, base.index, base.scale,
base.offset + NUNBOX32_PAYLOAD_OFFSET);
}
protected:
Operand ToType(Operand base);
Address ToType(Address base) { return ToType(Operand(base)).toAddress(); }
uint32_t getType(const Value& val);
void moveData(const Value& val, Register data);
public:
void moveValue(const Value& val, Register type, Register data);
void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) {
if (dest.isFloat()) {
loadInt32OrDouble(address, dest.fpu());
} else {
ma_lw(dest.gpr(), ToPayload(address));
}
}
void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) {
if (dest.isFloat()) {
loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale);
} else {
load32(ToPayload(address), dest.gpr());
}
}
template <typename T>
void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes,
JSValueType) {
switch (nbytes) {
case 4:
store32(value.payloadReg(), address);
return;
case 1:
store8(value.payloadReg(), address);
return;
default:
MOZ_CRASH("Bad payload width");
}
}
void moveValue(const Value& val, const ValueOperand& dest);
void moveValue(const ValueOperand& src, const ValueOperand& dest) {
Register s0 = src.typeReg(), d0 = dest.typeReg(), s1 = src.payloadReg(),
d1 = dest.payloadReg();
// Either one or both of the source registers could be the same as a
// destination register.
if (s1 == d0) {
if (s0 == d1) {
// If both are, this is just a swap of two registers.
MOZ_ASSERT(d1 != ScratchRegister);
MOZ_ASSERT(d0 != ScratchRegister);
move32(d1, ScratchRegister);
move32(d0, d1);
move32(ScratchRegister, d0);
return;
}
// If only one is, copy that source first.
std::swap(s0, s1);
std::swap(d0, d1);
}
if (s0 != d0) {
move32(s0, d0);
}
if (s1 != d1) {
move32(s1, d1);
}
}
void storeValue(ValueOperand val, Operand dst);
void storeValue(ValueOperand val, const BaseIndex& dest);
void storeValue(JSValueType type, Register reg, BaseIndex dest);
void storeValue(ValueOperand val, const Address& dest);
void storeValue(JSValueType type, Register reg, Address dest);
void storeValue(const Value& val, Address dest);
void storeValue(const Value& val, BaseIndex dest);
void storeValue(const Address& src, const Address& dest, Register temp) {
load32(ToType(src), temp);
store32(temp, ToType(dest));
load32(ToPayload(src), temp);
store32(temp, ToPayload(dest));
}
void loadValue(Address src, ValueOperand val);
void loadValue(Operand dest, ValueOperand val) {
loadValue(dest.toAddress(), val);
}
void loadValue(const BaseIndex& addr, ValueOperand val);
void loadUnalignedValue(const Address& src, ValueOperand dest) {
loadValue(src, dest);
}
void tagValue(JSValueType type, Register payload, ValueOperand dest);
void pushValue(ValueOperand val);
void popValue(ValueOperand val);
#if MOZ_LITTLE_ENDIAN()
void pushValue(const Value& val) {
push(Imm32(val.toNunboxTag()));
if (val.isGCThing()) {
push(ImmGCPtr(val.toGCThing()));
} else {
push(Imm32(val.toNunboxPayload()));
}
}
void pushValue(JSValueType type, Register reg) {
push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
ma_push(reg);
}
#else
void pushValue(const Value& val) {
if (val.isGCThing()) {
push(ImmGCPtr(val.toGCThing()));
} else {
push(Imm32(val.toNunboxPayload()));
}
push(Imm32(val.toNunboxTag()));
}
void pushValue(JSValueType type, Register reg) {
ma_push(reg);
push(ImmTag(JSVAL_TYPE_TO_TAG(type)));
}
#endif
void pushValue(const Address& addr);
void storePayload(const Value& val, Address dest);
void storePayload(Register src, Address dest);
void storePayload(const Value& val, const BaseIndex& dest);
void storePayload(Register src, const BaseIndex& dest);
void storeTypeTag(ImmTag tag, Address dest);
void storeTypeTag(ImmTag tag, const BaseIndex& dest);
void handleFailureWithHandlerTail(Label* profilerExitTail);
template <typename T>
void wasmAtomicStore64(const wasm::MemoryAccessDesc& access, const T& mem,
Register temp, Register64 value);
/////////////////////////////////////////////////////////////////
// Common interface.
/////////////////////////////////////////////////////////////////
public:
// The following functions are exposed for use in platform-shared code.
inline void incrementInt32Value(const Address& addr);
void move32(Imm32 imm, Register dest);
void move32(Register src, Register dest);
void movePtr(Register src, Register dest);
void movePtr(ImmWord imm, Register dest);
void movePtr(ImmPtr imm, Register dest);
void movePtr(wasm::SymbolicAddress imm, Register dest);
void movePtr(ImmGCPtr imm, Register dest);
void load8SignExtend(const Address& address, Register dest);
void load8SignExtend(const BaseIndex& src, Register dest);
void load8ZeroExtend(const Address& address, Register dest);
void load8ZeroExtend(const BaseIndex& src, Register dest);
void load16SignExtend(const Address& address, Register dest);
void load16SignExtend(const BaseIndex& src, Register dest);
template <typename S>
void load16UnalignedSignExtend(const S& src, Register dest) {
ma_load_unaligned(dest, src, SizeHalfWord, SignExtend);
}
void load16ZeroExtend(const Address& address, Register dest);
void load16ZeroExtend(const BaseIndex& src, Register dest);
template <typename S>
void load16UnalignedZeroExtend(const S& src, Register dest) {
ma_load_unaligned(dest, src, SizeHalfWord, ZeroExtend);
}
void load32(const Address& address, Register dest);
void load32(const BaseIndex& address, Register dest);
void load32(AbsoluteAddress address, Register dest);
void load32(wasm::SymbolicAddress address, Register dest);
template <typename S>
void load32Unaligned(const S& src, Register dest) {
ma_load_unaligned(dest, src);
}
void load64(const Address& address, Register64 dest) {
load32(LowWord(address), dest.low);
load32(HighWord(address), dest.high);
}
void load64(const BaseIndex& address, Register64 dest) {
load32(LowWord(address), dest.low);
load32(HighWord(address), dest.high);
}
template <typename S>
void load64Unaligned(const S& src, Register64 dest) {
ma_load_unaligned(dest.low, LowWord(src));
ma_load_unaligned(dest.high, HighWord(src));
}
void loadPtr(const Address& address, Register dest);
void loadPtr(const BaseIndex& src, Register dest);
void loadPtr(AbsoluteAddress address, Register dest);
void loadPtr(wasm::SymbolicAddress address, Register dest);
void loadPrivate(const Address& address, Register dest);
void loadUnalignedDouble(const wasm::MemoryAccessDesc& access,
const BaseIndex& src, Register temp,
FloatRegister dest);
void loadUnalignedFloat32(const wasm::MemoryAccessDesc& access,
const BaseIndex& src, Register temp,
FloatRegister dest);
void store8(Register src, const Address& address);
void store8(Imm32 imm, const Address& address);
void store8(Register src, const BaseIndex& address);
void store8(Imm32 imm, const BaseIndex& address);
void store16(Register src, const Address& address);
void store16(Imm32 imm, const Address& address);
void store16(Register src, const BaseIndex& address);
void store16(Imm32 imm, const BaseIndex& address);
template <typename T>
void store16Unaligned(Register src, const T& dest) {
ma_store_unaligned(src, dest, SizeHalfWord);
}
void store32(Register src, AbsoluteAddress address);
void store32(Register src, const Address& address);
void store32(Register src, const BaseIndex& address);
void store32(Imm32 src, const Address& address);
void store32(Imm32 src, const BaseIndex& address);
template <typename T>
void store32Unaligned(Register src, const T& dest) {
ma_store_unaligned(src, dest);
}
void store64(Register64 src, Address address) {
store32(src.low, Address(address.base, address.offset + LOW_32_OFFSET));
store32(src.high, Address(address.base, address.offset + HIGH_32_OFFSET));
}
void store64(Register64 src, const BaseIndex& address) {
store32(src.low, Address(address.base, address.offset + LOW_32_OFFSET));
store32(src.high, Address(address.base, address.offset + HIGH_32_OFFSET));
}
void store64(Imm64 imm, Address address) {
store32(imm.low(), Address(address.base, address.offset + LOW_32_OFFSET));
store32(imm.hi(), Address(address.base, address.offset + HIGH_32_OFFSET));
}
void store64(Imm64 imm, const BaseIndex& address) {
store32(imm.low(), Address(address.base, address.offset + LOW_32_OFFSET));
store32(imm.hi(), Address(address.base, address.offset + HIGH_32_OFFSET));
}
template <typename T>
void store64Unaligned(Register64 src, const T& dest) {
ma_store_unaligned(src.low, LowWord(dest));
ma_store_unaligned(src.high, HighWord(dest));
}
template <typename T>
void storePtr(ImmWord imm, T address);
template <typename T>
void storePtr(ImmPtr imm, T address);
template <typename T>
void storePtr(ImmGCPtr imm, T address);
void storePtr(Register src, const Address& address);
void storePtr(Register src, const BaseIndex& address);
void storePtr(Register src, AbsoluteAddress dest);
void storeUnalignedFloat32(const wasm::MemoryAccessDesc& access,
FloatRegister src, Register temp,
const BaseIndex& dest);
void storeUnalignedDouble(const wasm::MemoryAccessDesc& access,
FloatRegister src, Register temp,
const BaseIndex& dest);
void moveDouble(FloatRegister src, FloatRegister dest) { as_movd(dest, src); }
void zeroDouble(FloatRegister reg) {
moveToDoubleLo(zero, reg);
moveToDoubleHi(zero, reg);
}
void breakpoint();
void checkStackAlignment();
void alignStackPointer();
void restoreStackPointer();
static void calculateAlignedStackPointer(void** stackPointer);
void cmp64Set(Condition cond, Register64 lhs, Register64 rhs, Register dest);
void cmp64Set(Condition cond, Register64 lhs, Imm64 val, Register dest);
protected:
bool buildOOLFakeExitFrame(void* fakeReturnAddr);
void enterAtomic64Region(Register addr, Register spinlock, Register tmp);
void exitAtomic64Region(Register spinlock);
void wasmLoadI64Impl(const wasm::MemoryAccessDesc& access,
Register memoryBase, Register ptr, Register ptrScratch,
Register64 output, Register tmp);
void wasmStoreI64Impl(const wasm::MemoryAccessDesc& access, Register64 value,
Register memoryBase, Register ptr, Register ptrScratch,
Register tmp);
Condition ma_cmp64(Condition cond, Register64 lhs, Register64 rhs,
Register dest);
Condition ma_cmp64(Condition cond, Register64 lhs, Imm64 val, Register dest);
public:
void lea(Operand addr, Register dest) {
ma_addu(dest, addr.baseReg(), Imm32(addr.disp()));
}
void abiret() {
as_jr(ra);
as_nop();
}
void ma_storeImm(Imm32 imm, const Address& addr) { ma_sw(imm, addr); }
void moveFloat32(FloatRegister src, FloatRegister dest) {
as_movs(dest, src);
}
// Instrumentation for entering and leaving the profiler.
void profilerEnterFrame(Register framePtr, Register scratch);
void profilerExitFrame();
};
typedef MacroAssemblerMIPSCompat MacroAssemblerSpecific;
} // namespace jit
} // namespace js
#endif /* jit_mips32_MacroAssembler_mips32_h */