Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright 2020 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "jit/loong64/Simulator-loong64.h"
#include <float.h>
#include <limits>
#include "jit/AtomicOperations.h"
#include "jit/loong64/Assembler-loong64.h"
#include "js/Conversions.h"
#include "threading/LockGuard.h"
#include "vm/JSContext.h"
#include "vm/Runtime.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmSignalHandlers.h"
#define I8(v) static_cast<int8_t>(v)
#define I16(v) static_cast<int16_t>(v)
#define U16(v) static_cast<uint16_t>(v)
#define I32(v) static_cast<int32_t>(v)
#define U32(v) static_cast<uint32_t>(v)
#define I64(v) static_cast<int64_t>(v)
#define U64(v) static_cast<uint64_t>(v)
#define I128(v) static_cast<__int128_t>(v)
#define U128(v) static_cast<__uint128_t>(v)
#define I32_CHECK(v) \
({ \
MOZ_ASSERT(I64(I32(v)) == I64(v)); \
I32((v)); \
})
namespace js {
namespace jit {
static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
uint64_t u0, v0, w0;
int64_t u1, v1, w1, w2, t;
u0 = u & 0xFFFFFFFFL;
u1 = u >> 32;
v0 = v & 0xFFFFFFFFL;
v1 = v >> 32;
w0 = u0 * v0;
t = u1 * v0 + (w0 >> 32);
w1 = t & 0xFFFFFFFFL;
w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
static uint64_t MultiplyHighUnsigned(uint64_t u, uint64_t v) {
uint64_t u0, v0, w0;
uint64_t u1, v1, w1, w2, t;
u0 = u & 0xFFFFFFFFL;
u1 = u >> 32;
v0 = v & 0xFFFFFFFFL;
v1 = v >> 32;
w0 = u0 * v0;
t = u1 * v0 + (w0 >> 32);
w1 = t & 0xFFFFFFFFL;
w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
// Precondition: 0 <= shift < 32
inline constexpr uint32_t RotateRight32(uint32_t value, uint32_t shift) {
return (value >> shift) | (value << ((32 - shift) & 31));
}
// Precondition: 0 <= shift < 32
inline constexpr uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
return (value << shift) | (value >> ((32 - shift) & 31));
}
// Precondition: 0 <= shift < 64
inline constexpr uint64_t RotateRight64(uint64_t value, uint64_t shift) {
return (value >> shift) | (value << ((64 - shift) & 63));
}
// Precondition: 0 <= shift < 64
inline constexpr uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
return (value << shift) | (value >> ((64 - shift) & 63));
}
// break instr with MAX_BREAK_CODE.
static const Instr kCallRedirInstr = op_break | CODEMask;
// -----------------------------------------------------------------------------
// LoongArch64 assembly various constants.
class SimInstruction {
public:
enum {
kInstrSize = 4,
// On LoongArch, PC cannot actually be directly accessed. We behave as if PC
// was always the value of the current instruction being executed.
kPCReadOffset = 0
};
// Get the raw instruction bits.
inline Instr instructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void setInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int bit(int nr) const { return (instructionBits() >> nr) & 1; }
// Read a bit field out of the instruction bits.
inline int bits(int hi, int lo) const {
return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1);
}
// Instruction type.
enum Type {
kUnsupported = -1,
kOp6Type,
kOp7Type,
kOp8Type,
kOp10Type,
kOp11Type,
kOp12Type,
kOp14Type,
kOp15Type,
kOp16Type,
kOp17Type,
kOp22Type,
kOp24Type
};
// Get the encoding type of the instruction.
Type instructionType() const;
inline int rjValue() const { return bits(RJShift + RJBits - 1, RJShift); }
inline int rkValue() const { return bits(RKShift + RKBits - 1, RKShift); }
inline int rdValue() const { return bits(RDShift + RDBits - 1, RDShift); }
inline int sa2Value() const { return bits(SAShift + SA2Bits - 1, SAShift); }
inline int sa3Value() const { return bits(SAShift + SA3Bits - 1, SAShift); }
inline int lsbwValue() const {
return bits(LSBWShift + LSBWBits - 1, LSBWShift);
}
inline int msbwValue() const {
return bits(MSBWShift + MSBWBits - 1, MSBWShift);
}
inline int lsbdValue() const {
return bits(LSBDShift + LSBDBits - 1, LSBDShift);
}
inline int msbdValue() const {
return bits(MSBDShift + MSBDBits - 1, MSBDShift);
}
inline int fdValue() const { return bits(FDShift + FDBits - 1, FDShift); }
inline int fjValue() const { return bits(FJShift + FJBits - 1, FJShift); }
inline int fkValue() const { return bits(FKShift + FKBits - 1, FKShift); }
inline int faValue() const { return bits(FAShift + FABits - 1, FAShift); }
inline int cdValue() const { return bits(CDShift + CDBits - 1, CDShift); }
inline int cjValue() const { return bits(CJShift + CJBits - 1, CJShift); }
inline int caValue() const { return bits(CAShift + CABits - 1, CAShift); }
inline int condValue() const {
return bits(CONDShift + CONDBits - 1, CONDShift);
}
inline int imm5Value() const {
return bits(Imm5Shift + Imm5Bits - 1, Imm5Shift);
}
inline int imm6Value() const {
return bits(Imm6Shift + Imm6Bits - 1, Imm6Shift);
}
inline int imm12Value() const {
return bits(Imm12Shift + Imm12Bits - 1, Imm12Shift);
}
inline int imm14Value() const {
return bits(Imm14Shift + Imm14Bits - 1, Imm14Shift);
}
inline int imm16Value() const {
return bits(Imm16Shift + Imm16Bits - 1, Imm16Shift);
}
inline int imm20Value() const {
return bits(Imm20Shift + Imm20Bits - 1, Imm20Shift);
}
inline int32_t imm26Value() const {
return bits(Imm26Shift + Imm26Bits - 1, Imm26Shift);
}
// Say if the instruction is a debugger break/trap.
bool isTrap() const;
private:
SimInstruction() = delete;
SimInstruction(const SimInstruction& other) = delete;
void operator=(const SimInstruction& other) = delete;
};
bool SimInstruction::isTrap() const {
// is break??
switch (bits(31, 15) << 15) {
case op_break:
return (instructionBits() != kCallRedirInstr) && (bits(15, 0) != 6);
default:
return false;
};
}
SimInstruction::Type SimInstruction::instructionType() const {
SimInstruction::Type kType = kUnsupported;
// Check for kOp6Type
switch (bits(31, 26) << 26) {
case op_beqz:
case op_bnez:
case op_bcz:
case op_jirl:
case op_b:
case op_bl:
case op_beq:
case op_bne:
case op_blt:
case op_bge:
case op_bltu:
case op_bgeu:
case op_addu16i_d:
kType = kOp6Type;
break;
default:
kType = kUnsupported;
}
if (kType == kUnsupported) {
// Check for kOp7Type
switch (bits(31, 25) << 25) {
case op_lu12i_w:
case op_lu32i_d:
case op_pcaddi:
case op_pcalau12i:
case op_pcaddu12i:
case op_pcaddu18i:
kType = kOp7Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp8Type
switch (bits(31, 24) << 24) {
case op_ll_w:
case op_sc_w:
case op_ll_d:
case op_sc_d:
case op_ldptr_w:
case op_stptr_w:
case op_ldptr_d:
case op_stptr_d:
kType = kOp8Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp10Type
switch (bits(31, 22) << 22) {
case op_bstrins_d:
case op_bstrpick_d:
case op_slti:
case op_sltui:
case op_addi_w:
case op_addi_d:
case op_lu52i_d:
case op_andi:
case op_ori:
case op_xori:
case op_ld_b:
case op_ld_h:
case op_ld_w:
case op_ld_d:
case op_st_b:
case op_st_h:
case op_st_w:
case op_st_d:
case op_ld_bu:
case op_ld_hu:
case op_ld_wu:
case op_preld:
case op_fld_s:
case op_fst_s:
case op_fld_d:
case op_fst_d:
case op_bstr_w: // BSTRINS_W & BSTRPICK_W
kType = kOp10Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp11Type
switch (bits(31, 21) << 21) {
case op_bstr_w:
kType = kOp11Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp12Type
switch (bits(31, 20) << 20) {
case op_fmadd_s:
case op_fmadd_d:
case op_fmsub_s:
case op_fmsub_d:
case op_fnmadd_s:
case op_fnmadd_d:
case op_fnmsub_s:
case op_fnmsub_d:
case op_fcmp_cond_s:
case op_fcmp_cond_d:
kType = kOp12Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp14Type
switch (bits(31, 18) << 18) {
case op_bytepick_d:
case op_fsel:
kType = kOp14Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp15Type
switch (bits(31, 17) << 17) {
case op_bytepick_w:
case op_alsl_w:
case op_alsl_wu:
case op_alsl_d:
kType = kOp15Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp16Type
switch (bits(31, 16) << 16) {
case op_slli_d:
case op_srli_d:
case op_srai_d:
case op_rotri_d:
kType = kOp16Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp17Type
switch (bits(31, 15) << 15) {
case op_slli_w:
case op_srli_w:
case op_srai_w:
case op_rotri_w:
case op_add_w:
case op_add_d:
case op_sub_w:
case op_sub_d:
case op_slt:
case op_sltu:
case op_maskeqz:
case op_masknez:
case op_nor:
case op_and:
case op_or:
case op_xor:
case op_orn:
case op_andn:
case op_sll_w:
case op_srl_w:
case op_sra_w:
case op_sll_d:
case op_srl_d:
case op_sra_d:
case op_rotr_w:
case op_rotr_d:
case op_mul_w:
case op_mul_d:
case op_mulh_d:
case op_mulh_du:
case op_mulh_w:
case op_mulh_wu:
case op_mulw_d_w:
case op_mulw_d_wu:
case op_div_w:
case op_mod_w:
case op_div_wu:
case op_mod_wu:
case op_div_d:
case op_mod_d:
case op_div_du:
case op_mod_du:
case op_break:
case op_fadd_s:
case op_fadd_d:
case op_fsub_s:
case op_fsub_d:
case op_fmul_s:
case op_fmul_d:
case op_fdiv_s:
case op_fdiv_d:
case op_fmax_s:
case op_fmax_d:
case op_fmin_s:
case op_fmin_d:
case op_fmaxa_s:
case op_fmaxa_d:
case op_fmina_s:
case op_fmina_d:
case op_fcopysign_s:
case op_fcopysign_d:
case op_ldx_b:
case op_ldx_h:
case op_ldx_w:
case op_ldx_d:
case op_stx_b:
case op_stx_h:
case op_stx_w:
case op_stx_d:
case op_ldx_bu:
case op_ldx_hu:
case op_ldx_wu:
case op_fldx_s:
case op_fldx_d:
case op_fstx_s:
case op_fstx_d:
case op_amswap_w:
case op_amswap_d:
case op_amadd_w:
case op_amadd_d:
case op_amand_w:
case op_amand_d:
case op_amor_w:
case op_amor_d:
case op_amxor_w:
case op_amxor_d:
case op_ammax_w:
case op_ammax_d:
case op_ammin_w:
case op_ammin_d:
case op_ammax_wu:
case op_ammax_du:
case op_ammin_wu:
case op_ammin_du:
case op_amswap_db_w:
case op_amswap_db_d:
case op_amadd_db_w:
case op_amadd_db_d:
case op_amand_db_w:
case op_amand_db_d:
case op_amor_db_w:
case op_amor_db_d:
case op_amxor_db_w:
case op_amxor_db_d:
case op_ammax_db_w:
case op_ammax_db_d:
case op_ammin_db_w:
case op_ammin_db_d:
case op_ammax_db_wu:
case op_ammax_db_du:
case op_ammin_db_wu:
case op_ammin_db_du:
case op_dbar:
case op_ibar:
kType = kOp17Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp22Type
switch (bits(31, 10) << 10) {
case op_clo_w:
case op_clz_w:
case op_cto_w:
case op_ctz_w:
case op_clo_d:
case op_clz_d:
case op_cto_d:
case op_ctz_d:
case op_revb_2h:
case op_revb_4h:
case op_revb_2w:
case op_revb_d:
case op_revh_2w:
case op_revh_d:
case op_bitrev_4b:
case op_bitrev_8b:
case op_bitrev_w:
case op_bitrev_d:
case op_ext_w_h:
case op_ext_w_b:
case op_fabs_s:
case op_fabs_d:
case op_fneg_s:
case op_fneg_d:
case op_fsqrt_s:
case op_fsqrt_d:
case op_fmov_s:
case op_fmov_d:
case op_movgr2fr_w:
case op_movgr2fr_d:
case op_movgr2frh_w:
case op_movfr2gr_s:
case op_movfr2gr_d:
case op_movfrh2gr_s:
case op_movfcsr2gr:
case op_movfr2cf:
case op_movgr2cf:
case op_fcvt_s_d:
case op_fcvt_d_s:
case op_ftintrm_w_s:
case op_ftintrm_w_d:
case op_ftintrm_l_s:
case op_ftintrm_l_d:
case op_ftintrp_w_s:
case op_ftintrp_w_d:
case op_ftintrp_l_s:
case op_ftintrp_l_d:
case op_ftintrz_w_s:
case op_ftintrz_w_d:
case op_ftintrz_l_s:
case op_ftintrz_l_d:
case op_ftintrne_w_s:
case op_ftintrne_w_d:
case op_ftintrne_l_s:
case op_ftintrne_l_d:
case op_ftint_w_s:
case op_ftint_w_d:
case op_ftint_l_s:
case op_ftint_l_d:
case op_ffint_s_w:
case op_ffint_s_l:
case op_ffint_d_w:
case op_ffint_d_l:
case op_frint_s:
case op_frint_d:
kType = kOp22Type;
break;
default:
kType = kUnsupported;
}
}
if (kType == kUnsupported) {
// Check for kOp24Type
switch (bits(31, 8) << 8) {
case op_movcf2fr:
case op_movcf2gr:
kType = kOp24Type;
break;
default:
kType = kUnsupported;
}
}
return kType;
}
// C/C++ argument slots size.
const int kCArgSlotCount = 0;
const int kCArgsSlotsSize = kCArgSlotCount * sizeof(uintptr_t);
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* validityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* cachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
// Protects the icache() and redirection() properties of the
// Simulator.
class AutoLockSimulatorCache : public LockGuard<Mutex> {
using Base = LockGuard<Mutex>;
public:
explicit AutoLockSimulatorCache()
: Base(SimulatorProcess::singleton_->cacheLock_) {}
};
mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
SimulatorProcess::ICacheCheckingDisableCount(
1); // Checking is disabled by default.
SimulatorProcess* SimulatorProcess::singleton_ = nullptr;
int64_t Simulator::StopSimAt = -1;
Simulator* Simulator::Create() {
auto sim = MakeUnique<Simulator>();
if (!sim) {
return nullptr;
}
if (!sim->init()) {
return nullptr;
}
int64_t stopAt;
char* stopAtStr = getenv("LOONG64_SIM_STOP_AT");
if (stopAtStr && sscanf(stopAtStr, "%" PRIi64, &stopAt) == 1) {
fprintf(stderr, "\nStopping simulation at icount %" PRIi64 "\n", stopAt);
Simulator::StopSimAt = stopAt;
}
return sim.release();
}
void Simulator::Destroy(Simulator* sim) { js_delete(sim); }
// The loong64Debugger class is used by the simulator while debugging simulated
// code.
class loong64Debugger {
public:
explicit loong64Debugger(Simulator* sim) : sim_(sim) {}
void stop(SimInstruction* instr);
void debug();
// Print all registers with a nice formatting.
void printAllRegs();
void printAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0x7fff to easily recognize it.
static const Instr kBreakpointInstr = op_break | (0x7fff & CODEMask);
static const Instr kNopInstr = 0x0;
Simulator* sim_;
int64_t getRegisterValue(int regnum);
int64_t getFPURegisterValueLong(int regnum);
float getFPURegisterValueFloat(int regnum);
double getFPURegisterValueDouble(int regnum);
bool getValue(const char* desc, int64_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool setBreakpoint(SimInstruction* breakpc);
bool deleteBreakpoint(SimInstruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void undoBreakpoints();
void redoBreakpoints();
};
static void UNIMPLEMENTED() {
printf("UNIMPLEMENTED instruction.\n");
MOZ_CRASH();
}
static void UNREACHABLE() {
printf("UNREACHABLE instruction.\n");
MOZ_CRASH();
}
static void UNSUPPORTED() {
printf("Unsupported instruction.\n");
MOZ_CRASH();
}
void loong64Debugger::stop(SimInstruction* instr) {
// Get the stop code.
uint32_t code = instr->bits(25, 6);
// Retrieve the encoded address, which comes just after this stop.
char* msg =
*reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize);
// Update this stop description.
if (!sim_->watchedStops_[code].desc_) {
sim_->watchedStops_[code].desc_ = msg;
}
// Print the stop message and code if it is not the default code.
if (code != kMaxStopCode) {
printf("Simulator hit stop %u: %s\n", code, msg);
} else {
printf("Simulator hit %s\n", msg);
}
sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize);
debug();
}
int64_t loong64Debugger::getRegisterValue(int regnum) {
if (regnum == kPCRegister) {
return sim_->get_pc();
}
return sim_->getRegister(regnum);
}
int64_t loong64Debugger::getFPURegisterValueLong(int regnum) {
return sim_->getFpuRegister(regnum);
}
float loong64Debugger::getFPURegisterValueFloat(int regnum) {
return sim_->getFpuRegisterFloat(regnum);
}
double loong64Debugger::getFPURegisterValueDouble(int regnum) {
return sim_->getFpuRegisterDouble(regnum);
}
bool loong64Debugger::getValue(const char* desc, int64_t* value) {
Register reg = Register::FromName(desc);
if (reg != InvalidReg) {
*value = getRegisterValue(reg.code());
return true;
}
if (strncmp(desc, "0x", 2) == 0) {
return sscanf(desc + 2, "%lx", reinterpret_cast<uint64_t*>(value)) == 1;
}
return sscanf(desc, "%lu", reinterpret_cast<uint64_t*>(value)) == 1;
}
bool loong64Debugger::setBreakpoint(SimInstruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != nullptr) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->instructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool loong64Debugger::deleteBreakpoint(SimInstruction* breakpc) {
if (sim_->break_pc_ != nullptr) {
sim_->break_pc_->setInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = nullptr;
sim_->break_instr_ = 0;
return true;
}
void loong64Debugger::undoBreakpoints() {
if (sim_->break_pc_) {
sim_->break_pc_->setInstructionBits(sim_->break_instr_);
}
}
void loong64Debugger::redoBreakpoints() {
if (sim_->break_pc_) {
sim_->break_pc_->setInstructionBits(kBreakpointInstr);
}
}
void loong64Debugger::printAllRegs() {
int64_t value;
for (uint32_t i = 0; i < Registers::Total; i++) {
value = getRegisterValue(i);
printf("%3s: 0x%016" PRIx64 " %20" PRIi64 " ", Registers::GetName(i),
value, value);
if (i % 2) {
printf("\n");
}
}
printf("\n");
value = getRegisterValue(Simulator::pc);
printf(" pc: 0x%016" PRIx64 "\n", value);
}
void loong64Debugger::printAllRegsIncludingFPU() {
printAllRegs();
printf("\n\n");
// f0, f1, f2, ... f31.
for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) {
printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n",
FloatRegisters::GetName(i), getFPURegisterValueLong(i),
getFPURegisterValueFloat(i), getFPURegisterValueDouble(i));
}
}
static char* ReadLine(const char* prompt) {
UniqueChars result;
char lineBuf[256];
int offset = 0;
bool keepGoing = true;
fprintf(stdout, "%s", prompt);
fflush(stdout);
while (keepGoing) {
if (fgets(lineBuf, sizeof(lineBuf), stdin) == nullptr) {
// fgets got an error. Just give up.
return nullptr;
}
int len = strlen(lineBuf);
if (len > 0 && lineBuf[len - 1] == '\n') {
// Since we read a new line we are done reading the line. This
// will exit the loop after copying this buffer into the result.
keepGoing = false;
}
if (!result) {
// Allocate the initial result and make room for the terminating '\0'
result.reset(js_pod_malloc<char>(len + 1));
if (!result) {
return nullptr;
}
} else {
// Allocate a new result with enough room for the new addition.
int new_len = offset + len + 1;
char* new_result = js_pod_malloc<char>(new_len);
if (!new_result) {
return nullptr;
}
// Copy the existing input into the new array and set the new
// array as the result.
memcpy(new_result, result.get(), offset * sizeof(char));
result.reset(new_result);
}
// Copy the newly read line into the result.
memcpy(result.get() + offset, lineBuf, len * sizeof(char));
offset += len;
}
MOZ_ASSERT(result);
result[offset] = '\0';
return result.release();
}
static void DisassembleInstruction(uint64_t pc) {
printf("Not supported on loongarch64 yet\n");
}
void loong64Debugger::debug() {
intptr_t lastPC = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
undoBreakpoints();
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (lastPC != sim_->get_pc()) {
DisassembleInstruction(sim_->get_pc());
printf(" 0x%016" PRIi64 " \n", sim_->get_pc());
lastPC = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
char* last_input = sim_->lastDebuggerInput();
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->setLastDebuggerInput(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = sscanf(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
SimInstruction* instr =
reinterpret_cast<SimInstruction*>(sim_->get_pc());
if (!instr->isTrap()) {
sim_->instructionDecode(
reinterpret_cast<SimInstruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
printf("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + SimInstruction::kInstrSize);
}
sim_->icount_++;
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->instructionDecode(
reinterpret_cast<SimInstruction*>(sim_->get_pc()));
sim_->icount_++;
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
int64_t value;
if (strcmp(arg1, "all") == 0) {
printAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
printAllRegsIncludingFPU();
} else {
Register reg = Register::FromName(arg1);
FloatRegisters::Code fReg = FloatRegisters::FromName(arg1);
if (reg != InvalidReg) {
value = getRegisterValue(reg.code());
printf("%s: 0x%016" PRIi64 " %20" PRIi64 " \n", arg1, value,
value);
} else if (fReg != FloatRegisters::Invalid) {
printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n",
FloatRegisters::GetName(fReg),
getFPURegisterValueLong(fReg),
getFPURegisterValueFloat(fReg),
getFPURegisterValueDouble(fReg));
} else {
printf("%s unrecognized\n", arg1);
}
}
} else {
printf("print <register> or print <fpu register> single\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int64_t* cur = nullptr;
int64_t* end = nullptr;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int64_t*>(sim_->getRegister(Simulator::sp));
} else { // Command "mem".
int64_t value;
if (!getValue(arg1, &value)) {
printf("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int64_t*>(value);
next_arg++;
}
int64_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!getValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
printf(" %p: 0x%016" PRIx64 " %20" PRIi64, cur, *cur, *cur);
printf("\n");
cur++;
}
} else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
uint8_t* cur = nullptr;
uint8_t* end = nullptr;
if (argc == 1) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
end = cur + (10 * SimInstruction::kInstrSize);
} else if (argc == 2) {
Register reg = Register::FromName(arg1);
if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int64_t value;
if (getValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * SimInstruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int64_t value;
if (getValue(arg1, &value)) {
cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * SimInstruction::kInstrSize);
}
}
} else {
int64_t value1;
int64_t value2;
if (getValue(arg1, &value1) && getValue(arg2, &value2)) {
cur = reinterpret_cast<uint8_t*>(value1);
end = cur + (value2 * SimInstruction::kInstrSize);
}
}
while (cur < end) {
DisassembleInstruction(uint64_t(cur));
cur += SimInstruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
printf("relinquishing control to gdb\n");
asm("int $3");
printf("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int64_t value;
if (getValue(arg1, &value)) {
if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) {
printf("setting breakpoint failed\n");
}
} else {
printf("%s unrecognized\n", arg1);
}
} else {
printf("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!deleteBreakpoint(nullptr)) {
printf("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
printf("No flags on LOONG64 !\n");
} else if (strcmp(cmd, "stop") == 0) {
int64_t value;
intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize;
SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc);
SimInstruction* msg_address = reinterpret_cast<SimInstruction*>(
stop_pc + SimInstruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->isStopInstruction(stop_instr)) {
stop_instr->setInstructionBits(kNopInstr);
msg_address->setInstructionBits(kNopInstr);
} else {
printf("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
printf("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->printStopInfo(i);
}
} else if (getValue(arg2, &value)) {
sim_->printStopInfo(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->enableStop(i);
}
} else if (getValue(arg2, &value)) {
sim_->enableStop(value);
} else {
printf("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
i++) {
sim_->disableStop(i);
}
} else if (getValue(arg2, &value)) {
sim_->disableStop(value);
} else {
printf("Unrecognized argument.\n");
}
}
} else {
printf("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
printf("cont\n");
printf(" continue execution (alias 'c')\n");
printf("stepi\n");
printf(" step one instruction (alias 'si')\n");
printf("print <register>\n");
printf(" print register content (alias 'p')\n");
printf(" use register name 'all' to print all registers\n");
printf("printobject <register>\n");
printf(" print an object from a register (alias 'po')\n");
printf("stack [<words>]\n");
printf(" dump stack content, default dump 10 words)\n");
printf("mem <address> [<words>]\n");
printf(" dump memory content, default dump 10 words)\n");
printf("flags\n");
printf(" print flags\n");
printf("disasm [<instructions>]\n");
printf("disasm [<address/register>]\n");
printf("disasm [[<address/register>] <instructions>]\n");
printf(" disassemble code, default is 10 instructions\n");
printf(" from pc (alias 'di')\n");
printf("gdb\n");
printf(" enter gdb\n");
printf("break <address>\n");
printf(" set a break point on the address\n");
printf("del\n");
printf(" delete the breakpoint\n");
printf("stop feature:\n");
printf(" Description:\n");
printf(" Stops are debug instructions inserted by\n");
printf(" the Assembler::stop() function.\n");
printf(" When hitting a stop, the Simulator will\n");
printf(" stop and and give control to the Debugger.\n");
printf(" All stop codes are watched:\n");
printf(" - They can be enabled / disabled: the Simulator\n");
printf(" will / won't stop when hitting them.\n");
printf(" - The Simulator keeps track of how many times they \n");
printf(" are met. (See the info command.) Going over a\n");
printf(" disabled stop still increases its counter. \n");
printf(" Commands:\n");
printf(" stop info all/<code> : print infos about number <code>\n");
printf(" or all stop(s).\n");
printf(" stop enable/disable all/<code> : enables / disables\n");
printf(" all or number <code> stop(s)\n");
printf(" stop unstop\n");
printf(" ignore the stop instruction at the current location\n");
printf(" from now on\n");
} else {
printf("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
redoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::setLastDebuggerInput(char* input) {
js_free(lastDebuggerInput_);
lastDebuggerInput_ = input;
}
static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache,
void* page) {
SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page);
if (p) {
return p->value();
}
AutoEnterOOMUnsafeRegion oomUnsafe;
CachePage* new_page = js_new<CachePage>();
if (!new_page || !i_cache.add(p, page, new_page)) {
oomUnsafe.crash("Simulator CachePage");
}
return new_page;
}
// Flush from start up to and not including start + size.
static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache,
intptr_t start, int size) {
MOZ_ASSERT(size <= CachePage::kPageSize);
MOZ_ASSERT(AllOnOnePage(start, size - 1));
MOZ_ASSERT((start & CachePage::kLineMask) == 0);
MOZ_ASSERT((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(i_cache, page);
char* valid_bytemap = cache_page->validityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePageLocked(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
MOZ_ASSERT((start & CachePage::kPageMask) == 0);
offset = 0;
}
if (size != 0) {
FlushOnePageLocked(i_cache, start, size);
}
}
/* static */
void SimulatorProcess::checkICacheLocked(SimInstruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePageLocked(icache(), page);
char* cache_valid_byte = cache_page->validityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
mozilla::DebugOnly<int> cmpret =
memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset),
SimInstruction::kInstrSize);
MOZ_ASSERT(cmpret == 0);
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) {
return U32(reinterpret_cast<uintptr_t>(l)) >> 2;
}
bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) {
MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0);
MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0);
return k == l;
}
/* static */
void SimulatorProcess::FlushICache(void* start_addr, size_t size) {
if (!ICacheCheckingDisableCount) {
AutoLockSimulatorCache als;
js::jit::FlushICacheLocked(icache(), start_addr, size);
}
}
Simulator::Simulator() {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
// Note, allocation and anything that depends on allocated memory is
// deferred until init(), in order to handle OOM properly.
stack_ = nullptr;
stackLimit_ = 0;
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = nullptr;
break_instr_ = 0;
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < Register::kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < Simulator::FPURegister::kNumFPURegisters; i++) {
FPUregisters_[i] = 0;
}
for (int i = 0; i < kNumCFRegisters; i++) {
CFregisters_[i] = 0;
}
FCSR_ = 0;
LLBit_ = false;
LLAddr_ = 0;
lastLLValue_ = 0;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
for (int i = 0; i < kNumExceptions; i++) {
exceptions[i] = 0;
}
lastDebuggerInput_ = nullptr;
}
bool Simulator::init() {
// Allocate 2MB for the stack. Note that we will only use 1MB, see below.
static const size_t stackSize = 2 * 1024 * 1024;
stack_ = js_pod_malloc<char>(stackSize);
if (!stack_) {
return false;
}
// Leave a safety margin of 1MB to prevent overrunning the stack when
// pushing values (total stack size is 2MB).
stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int64_t>(stack_) + stackSize - 64;
return true;
}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
friend class SimulatorProcess;
// sim's lock must already be held.
Redirection(void* nativeFunction, ABIFunctionType type)
: nativeFunction_(nativeFunction),
swiInstruction_(kCallRedirInstr),
type_(type),
next_(nullptr) {
next_ = SimulatorProcess::redirection();
if (!SimulatorProcess::ICacheCheckingDisableCount) {
FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(),
SimInstruction::kInstrSize);
}
SimulatorProcess::setRedirection(this);
}
public:
void* addressOfSwiInstruction() { return &swiInstruction_; }
void* nativeFunction() const { return nativeFunction_; }
ABIFunctionType type() const { return type_; }
static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
AutoLockSimulatorCache als;
Redirection* current = SimulatorProcess::redirection();
for (; current != nullptr; current = current->next_) {
if (current->nativeFunction_ == nativeFunction) {
MOZ_ASSERT(current->type() == type);
return current;
}
}
// Note: we can't use js_new here because the constructor is private.
AutoEnterOOMUnsafeRegion oomUnsafe;
Redirection* redir = js_pod_malloc<Redirection>(1);
if (!redir) {
oomUnsafe.crash("Simulator redirection");
}
new (redir) Redirection(nativeFunction, type);
return redir;
}
static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) {
uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction);
uint8_t* addrOfRedirection =
addrOfSwi - offsetof(Redirection, swiInstruction_);
return reinterpret_cast<Redirection*>(addrOfRedirection);
}
private:
void* nativeFunction_;
uint32_t swiInstruction_;
ABIFunctionType type_;
Redirection* next_;
};
Simulator::~Simulator() { js_free(stack_); }
SimulatorProcess::SimulatorProcess()
: cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) {
if (getenv("LOONG64_SIM_ICACHE_CHECKS")) {
ICacheCheckingDisableCount = 0;
}
}
SimulatorProcess::~SimulatorProcess() {
Redirection* r = redirection_;
while (r) {
Redirection* next = r->next_;
js_delete(r);
r = next;
}
}
/* static */
void* Simulator::RedirectNativeFunction(void* nativeFunction,
ABIFunctionType type) {
Redirection* redirection = Redirection::Get(nativeFunction, type);
return redirection->addressOfSwiInstruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::Current() {
JSContext* cx = TlsContext.get();
MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime()));
return cx->simulator();
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::setRegister(int reg, int64_t value) {
MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::setFpuRegister(int fpureg, int64_t value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
void Simulator::setFpuRegisterHiWord(int fpureg, int32_t value) {
// Set ONLY upper 32-bits, leaving lower bits untouched.
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
int32_t* phiword;
phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
*phiword = value;
}
void Simulator::setFpuRegisterWord(int fpureg, int32_t value) {
// Set ONLY lower 32-bits, leaving upper bits untouched.
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
int32_t* pword;
pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
*pword = value;
}
void Simulator::setFpuRegisterWordInvalidResult(float original, float rounded,
int fpureg) {
double max_int32 = static_cast<double>(INT32_MAX);
double min_int32 = static_cast<double>(INT32_MIN);
if (std::isnan(original)) {
setFpuRegisterWord(fpureg, 0);
} else if (rounded > max_int32) {
setFpuRegister(fpureg, kFPUInvalidResult);
} else if (rounded < min_int32) {
setFpuRegister(fpureg, kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterWordInvalidResult(double original, double rounded,
int fpureg) {
double max_int32 = static_cast<double>(INT32_MAX);
double min_int32 = static_cast<double>(INT32_MIN);
if (std::isnan(original)) {
setFpuRegisterWord(fpureg, 0);
} else if (rounded > max_int32) {
setFpuRegisterWord(fpureg, kFPUInvalidResult);
} else if (rounded < min_int32) {
setFpuRegisterWord(fpureg, kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterInvalidResult(float original, float rounded,
int fpureg) {
double max_int32 = static_cast<double>(INT32_MAX);
double min_int32 = static_cast<double>(INT32_MIN);
if (std::isnan(original)) {
setFpuRegister(fpureg, 0);
} else if (rounded > max_int32) {
setFpuRegister(fpureg, kFPUInvalidResult);
} else if (rounded < min_int32) {
setFpuRegister(fpureg, kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterInvalidResult(double original, double rounded,
int fpureg) {
double max_int32 = static_cast<double>(INT32_MAX);
double min_int32 = static_cast<double>(INT32_MIN);
if (std::isnan(original)) {
setFpuRegister(fpureg, 0);
} else if (rounded > max_int32) {
setFpuRegister(fpureg, kFPUInvalidResult);
} else if (rounded < min_int32) {
setFpuRegister(fpureg, kFPUInvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterInvalidResult64(float original, float rounded,
int fpureg) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = static_cast<double>(INT64_MAX);
double min_int64 = static_cast<double>(INT64_MIN);
if (std::isnan(original)) {
setFpuRegister(fpureg, 0);
} else if (rounded >= max_int64) {
setFpuRegister(fpureg, kFPU64InvalidResult);
} else if (rounded < min_int64) {
setFpuRegister(fpureg, kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterInvalidResult64(double original, double rounded,
int fpureg) {
// The value of INT64_MAX (2^63-1) can't be represented as double exactly,
// loading the most accurate representation into max_int64, which is 2^63.
double max_int64 = static_cast<double>(INT64_MAX);
double min_int64 = static_cast<double>(INT64_MIN);
if (std::isnan(original)) {
setFpuRegister(fpureg, 0);
} else if (rounded >= max_int64) {
setFpuRegister(fpureg, kFPU64InvalidResult);
} else if (rounded < min_int64) {
setFpuRegister(fpureg, kFPU64InvalidResultNegative);
} else {
UNREACHABLE();
}
}
void Simulator::setFpuRegisterFloat(int fpureg, float value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::setFpuRegisterDouble(int fpureg, double value) {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
*mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::setCFRegister(int cfreg, bool value) {
MOZ_ASSERT((cfreg >= 0) && (cfreg < kNumCFRegisters));
CFregisters_[cfreg] = value;
}
bool Simulator::getCFRegister(int cfreg) const {
MOZ_ASSERT((cfreg >= 0) && (cfreg < kNumCFRegisters));
return CFregisters_[cfreg];
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int64_t Simulator::getRegister(int reg) const {
MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters));
if (reg == 0) {
return 0;
}
return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0);
}
int64_t Simulator::getFpuRegister(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return FPUregisters_[fpureg];
}
int32_t Simulator::getFpuRegisterWord(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]);
}
int32_t Simulator::getFpuRegisterSignedWord(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]);
}
int32_t Simulator::getFpuRegisterHiWord(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1);
}
float Simulator::getFpuRegisterFloat(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]);
}
double Simulator::getFpuRegisterDouble(int fpureg) const {
MOZ_ASSERT((fpureg >= 0) &&
(fpureg < Simulator::FPURegister::kNumFPURegisters));
return *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]);
}
void Simulator::setCallResultDouble(double result) {
setFpuRegisterDouble(f0, result);
}
void Simulator::setCallResultFloat(float result) {
setFpuRegisterFloat(f0, result);
}
void Simulator::setCallResult(int64_t res) { setRegister(a0, res); }
void Simulator::setCallResult(__int128_t res) {
setRegister(a0, I64(res));
setRegister(a1, I64(res >> 64));
}
// Helper functions for setting and testing the FCSR register's bits.
void Simulator::setFCSRBit(uint32_t cc, bool value) {
if (value) {
FCSR_ |= (1 << cc);
} else {
FCSR_ &= ~(1 << cc);
}
}
bool Simulator::testFCSRBit(uint32_t cc) { return FCSR_ & (1 << cc); }
unsigned int Simulator::getFCSRRoundingMode() {
return FCSR_ & kFPURoundingModeMask;
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
template <typename T>
bool Simulator::setFCSRRoundError(double original, double rounded) {
bool ret = false;
setFCSRBit(kFCSRInexactCauseBit, false);
setFCSRBit(kFCSRUnderflowCauseBit, false);
setFCSRBit(kFCSROverflowCauseBit, false);
setFCSRBit(kFCSRInvalidOpCauseBit, false);
if (!std::isfinite(original) || !std::isfinite(rounded)) {
setFCSRBit(kFCSRInvalidOpFlagBit, true);
setFCSRBit(kFCSRInvalidOpCauseBit, true);
ret = true;
}
if (original != rounded) {
setFCSRBit(kFCSRInexactFlagBit, true);
setFCSRBit(kFCSRInexactCauseBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
setFCSRBit(kFCSRUnderflowFlagBit, true);
setFCSRBit(kFCSRUnderflowCauseBit, true);
ret = true;
}
if ((long double)rounded > (long double)std::numeric_limits<T>::max() ||
(long double)rounded < (long double)std::numeric_limits<T>::min()) {
setFCSRBit(kFCSROverflowFlagBit, true);
setFCSRBit(kFCSROverflowCauseBit, true);
// The reference is not really clear but it seems this is required:
setFCSRBit(kFCSRInvalidOpFlagBit, true);
setFCSRBit(kFCSRInvalidOpCauseBit, true);
ret = true;
}
return ret;
}
// For cvt instructions only
template <typename T>
void Simulator::roundAccordingToFCSR(T toRound, T* rounded,
int32_t* rounded_int) {
switch ((FCSR_ >> 8) & 3) {
case kRoundToNearest:
*rounded = std::floor(toRound + 0.5);
*rounded_int = static_cast<int32_t>(*rounded);
if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
*rounded_int -= 1;
*rounded -= 1.;
}
break;
case kRoundToZero:
*rounded = trunc(toRound);
*rounded_int = static_cast<int32_t>(*rounded);
break;
case kRoundToPlusInf:
*rounded = std::ceil(toRound);
*rounded_int = static_cast<int32_t>(*rounded);
break;
case kRoundToMinusInf:
*rounded = std::floor(toRound);
*rounded_int = static_cast<int32_t>(*rounded);
break;
}
}
template <typename T>
void Simulator::round64AccordingToFCSR(T toRound, T* rounded,
int64_t* rounded_int) {
switch ((FCSR_ >> 8) & 3) {
case kRoundToNearest:
*rounded = std::floor(toRound + 0.5);
*rounded_int = static_cast<int64_t>(*rounded);
if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
*rounded_int -= 1;
*rounded -= 1.;
}
break;
case kRoundToZero:
*rounded = trunc(toRound);
*rounded_int = static_cast<int64_t>(*rounded);
break;
case kRoundToPlusInf:
*rounded = std::ceil(toRound);
*rounded_int = static_cast<int64_t>(*rounded);
break;
case kRoundToMinusInf:
*rounded = std::floor(toRound);
*rounded_int = static_cast<int64_t>(*rounded);
break;
}
}
// Raw access to the PC register.
void Simulator::set_pc(int64_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int64_t Simulator::get_pc() const { return registers_[pc]; }
JS::ProfilingFrameIterator::RegisterState Simulator::registerState() {
wasm::RegisterState state;
state.pc = (void*)get_pc();
state.fp = (void*)getRegister(fp);
state.sp = (void*)getRegister(sp);
state.lr = (void*)getRegister(ra);
return state;
}
uint8_t Simulator::readBU(uint64_t addr) {
if (handleWasmSegFault(addr, 1)) {
return 0xff;
}
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
int8_t Simulator::readB(uint64_t addr) {
if (handleWasmSegFault(addr, 1)) {
return -1;
}
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::writeB(uint64_t addr, uint8_t value) {
if (handleWasmSegFault(addr, 1)) {
return;
}
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::writeB(uint64_t addr, int8_t value) {
if (handleWasmSegFault(addr, 1)) {
return;
}
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
uint16_t Simulator::readHU(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return 0xffff;
}
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
int16_t Simulator::readH(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return -1;
}
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
void Simulator::writeH(uint64_t addr, uint16_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return;
}
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
void Simulator::writeH(uint64_t addr, int16_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 2)) {
return;
}
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
uint32_t Simulator::readWU(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 4)) {
return -1;
}
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
return *ptr;
}
int32_t Simulator::readW(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 4)) {
return -1;
}
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
return *ptr;
}
void Simulator::writeW(uint64_t addr, uint32_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 4)) {
return;
}
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
void Simulator::writeW(uint64_t addr, int32_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 4)) {
return;
}
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
int64_t Simulator::readDW(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 8)) {
return -1;
}
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
void Simulator::writeDW(uint64_t addr, int64_t value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 8)) {
return;
}
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
double Simulator::readD(uint64_t addr, SimInstruction* instr) {
if (handleWasmSegFault(addr, 8)) {
return NAN;
}
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
void Simulator::writeD(uint64_t addr, double value, SimInstruction* instr) {
if (handleWasmSegFault(addr, 8)) {
return;
}
double* ptr = reinterpret_cast<double*>(addr);
LLBit_ = false;
*ptr = value;
return;
}
int Simulator::loadLinkedW(uint64_t addr, SimInstruction* instr) {
if ((addr & 3) == 0) {
if (handleWasmSegFault(addr, 4)) {
return -1;
}
volatile int32_t* ptr = reinterpret_cast<volatile int32_t*>(addr);
int32_t value = *ptr;
lastLLValue_ = value;
LLAddr_ = addr;
// Note that any memory write or "external" interrupt should reset this
// value to false.
LLBit_ = true;
return value;
}
printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int Simulator::storeConditionalW(uint64_t addr, int value,
SimInstruction* instr) {
// Correct behavior in this case, as defined by architecture, is to just
// return 0, but there is no point at allowing that. It is certainly an
// indicator of a bug.
if (addr != LLAddr_) {
printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64
", expected: 0x%016" PRIx64 "\n",
addr, reinterpret_cast<intptr_t>(instr), LLAddr_);
MOZ_CRASH();
}
if ((addr & 3) == 0) {
SharedMem<int32_t*> ptr =
SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
if (!LLBit_) {
return 0;
}
LLBit_ = false;
LLAddr_ = 0;
int32_t expected = int32_t(lastLLValue_);
int32_t old =
AtomicOperations::compareExchangeSeqCst(ptr, expected, int32_t(value));
return (old == expected) ? 1 : 0;
}
printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int64_t Simulator::loadLinkedD(uint64_t addr, SimInstruction* instr) {
if ((addr & kPointerAlignmentMask) == 0) {
if (handleWasmSegFault(addr, 8)) {
return -1;
}
volatile int64_t* ptr = reinterpret_cast<volatile int64_t*>(addr);
int64_t value = *ptr;
lastLLValue_ = value;
LLAddr_ = addr;
// Note that any memory write or "external" interrupt should reset this
// value to false.
LLBit_ = true;
return value;
}
printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
int Simulator::storeConditionalD(uint64_t addr, int64_t value,
SimInstruction* instr) {
// Correct behavior in this case, as defined by architecture, is to just
// return 0, but there is no point at allowing that. It is certainly an
// indicator of a bug.
if (addr != LLAddr_) {
printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64
", expected: 0x%016" PRIx64 "\n",
addr, reinterpret_cast<intptr_t>(instr), LLAddr_);
MOZ_CRASH();
}
if ((addr & kPointerAlignmentMask) == 0) {
SharedMem<int64_t*> ptr =
SharedMem<int64_t*>::shared(reinterpret_cast<int64_t*>(addr));
if (!LLBit_) {
return 0;
}
LLBit_ = false;
LLAddr_ = 0;
int64_t expected = lastLLValue_;
int64_t old =
AtomicOperations::compareExchangeSeqCst(ptr, expected, int64_t(value));
return (old == expected) ? 1 : 0;
}
printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr,
reinterpret_cast<intptr_t>(instr));
MOZ_CRASH();
return 0;
}
uintptr_t Simulator::stackLimit() const { return stackLimit_; }
uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; }
bool Simulator::overRecursed(uintptr_t newsp) const {
if (newsp == 0) {
newsp = getRegister(sp);
}
return newsp <= stackLimit();
}
bool Simulator::overRecursedWithExtra(uint32_t extra) const {
uintptr_t newsp = getRegister(sp) - extra;
return newsp <= stackLimit();
}
// Unsupported instructions use format to print an error and stop execution.
void Simulator::format(SimInstruction* instr, const char* format) {
printf("Simulator found unsupported instruction:\n 0x%016lx: %s\n",
reinterpret_cast<intptr_t>(instr), format);
MOZ_CRASH();
}
inline int32_t Simulator::rj_reg(SimInstruction* instr) const {
return instr->rjValue();
}
inline int64_t Simulator::rj(SimInstruction* instr) const {
return getRegister(rj_reg(instr));
}
inline uint64_t Simulator::rj_u(SimInstruction* instr) const {
return static_cast<uint64_t>(getRegister(rj_reg(instr)));
}
inline int32_t Simulator::rk_reg(SimInstruction* instr) const {
return instr->rkValue();
}
inline int64_t Simulator::rk(SimInstruction* instr) const {
return getRegister(rk_reg(instr));
}
inline uint64_t Simulator::rk_u(SimInstruction* instr) const {
return static_cast<uint64_t>(getRegister(rk_reg(instr)));
}
inline int32_t Simulator::rd_reg(SimInstruction* instr) const {
return instr->rdValue();
}
inline int64_t Simulator::rd(SimInstruction* instr) const {
return getRegister(rd_reg(instr));
}
inline uint64_t Simulator::rd_u(SimInstruction* instr) const {
return static_cast<uint64_t>(getRegister(rd_reg(instr)));
}
inline int32_t Simulator::fa_reg(SimInstruction* instr) const {
return instr->faValue();
}
inline float Simulator::fa_float(SimInstruction* instr) const {
return getFpuRegisterFloat(fa_reg(instr));
}
inline double Simulator::fa_double(SimInstruction* instr) const {
return getFpuRegisterDouble(fa_reg(instr));
}
inline int32_t Simulator::fj_reg(SimInstruction* instr) const {
return instr->fjValue();
}
inline float Simulator::fj_float(SimInstruction* instr) const {
return getFpuRegisterFloat(fj_reg(instr));
}
inline double Simulator::fj_double(SimInstruction* instr) const {
return getFpuRegisterDouble(fj_reg(instr));
}
inline int32_t Simulator::fk_reg(SimInstruction* instr) const {
return instr->fkValue();
}
inline float Simulator::fk_float(SimInstruction* instr) const {
return getFpuRegisterFloat(fk_reg(instr));
}
inline double Simulator::fk_double(SimInstruction* instr) const {
return getFpuRegisterDouble(fk_reg(instr));
}
inline int32_t Simulator::fd_reg(SimInstruction* instr) const {
return instr->fdValue();
}
inline float Simulator::fd_float(SimInstruction* instr) const {
return getFpuRegisterFloat(fd_reg(instr));
}
inline double Simulator::fd_double(SimInstruction* instr) const {
return getFpuRegisterDouble(fd_reg(instr));
}
inline int32_t Simulator::cj_reg(SimInstruction* instr) const {
return instr->cjValue();
}
inline bool Simulator::cj(SimInstruction* instr) const {
return getCFRegister(cj_reg(instr));
}
inline int32_t Simulator::cd_reg(SimInstruction* instr) const {
return instr->cdValue();
}
inline bool Simulator::cd(SimInstruction* instr) const {
return getCFRegister(cd_reg(instr));
}
inline int32_t Simulator::ca_reg(SimInstruction* instr) const {
return instr->caValue();
}
inline bool Simulator::ca(SimInstruction* instr) const {
return getCFRegister(ca_reg(instr));
}
inline uint32_t Simulator::sa2(SimInstruction* instr) const {
return instr->sa2Value();
}
inline uint32_t Simulator::sa3(SimInstruction* instr) const {
return instr->sa3Value();
}
inline uint32_t Simulator::ui5(SimInstruction* instr) const {
return instr->imm5Value();
}
inline uint32_t Simulator::ui6(SimInstruction* instr) const {
return instr->imm6Value();
}
inline uint32_t Simulator::lsbw(SimInstruction* instr) const {
return instr->lsbwValue();
}
inline uint32_t Simulator::msbw(SimInstruction* instr) const {
return instr->msbwValue();
}
inline uint32_t Simulator::lsbd(SimInstruction* instr) const {
return instr->lsbdValue();
}
inline uint32_t Simulator::msbd(SimInstruction* instr) const {
return instr->msbdValue();
}
inline uint32_t Simulator::cond(SimInstruction* instr) const {
return instr->condValue();
}
inline int32_t Simulator::si12(SimInstruction* instr) const {
return (instr->imm12Value() << 20) >> 20;
}
inline uint32_t Simulator::ui12(SimInstruction* instr) const {
return instr->imm12Value();
}
inline int32_t Simulator::si14(SimInstruction* instr) const {
return (instr->imm14Value() << 18) >> 18;
}
inline int32_t Simulator::si16(SimInstruction* instr) const {
return (instr->imm16Value() << 16) >> 16;
}
inline int32_t Simulator::si20(SimInstruction* instr) const {
return (instr->imm20Value() << 12) >> 12;
}
ABI_FUNCTION_TYPE_SIM_PROTOTYPES
// Software interrupt instructions are used by the simulator to call into C++.
void Simulator::softwareInterrupt(SimInstruction* instr) {
// the break_ instruction could get us here.
mozilla::DebugOnly<int32_t> opcode_hi15 = instr->bits(31, 17);
MOZ_ASSERT(opcode_hi15 == 0x15);
uint32_t code = instr->bits(14, 0);
if (instr->instructionBits() == kCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr);
uintptr_t nativeFn =
reinterpret_cast<uintptr_t>(redirection->nativeFunction());
// Get the SP for reading stack arguments
int64_t* sp_ = reinterpret_cast<int64_t*>(getRegister(sp));
// Store argument register values in local variables for ease of use below.
int64_t a0_ = getRegister(a0);
int64_t a1_ = getRegister(a1);
int64_t a2_ = getRegister(a2);
int64_t a3_ = getRegister(a3);
int64_t a4_ = getRegister(a4);
int64_t a5_ = getRegister(a5);
int64_t a6_ = getRegister(a6);
int64_t a7_ = getRegister(a7);
float f0_s = getFpuRegisterFloat(f0);
float f1_s = getFpuRegisterFloat(f1);
float f2_s = getFpuRegisterFloat(f2);
float f3_s = getFpuRegisterFloat(f3);
float f4_s = getFpuRegisterFloat(f4);
double f0_d = getFpuRegisterDouble(f0);
double f1_d = getFpuRegisterDouble(f1);
double f2_d = getFpuRegisterDouble(f2);
double f3_d = getFpuRegisterDouble(f3);
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int64_t saved_ra = getRegister(ra);
bool stack_aligned = (getRegister(sp) & (ABIStackAlignment - 1)) == 0;
if (!stack_aligned) {
fprintf(stderr, "Runtime call with unaligned stack!\n");
MOZ_CRASH();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
switch (redirection->type()) {
ABI_FUNCTION_TYPE_LOONGARCH64_SIM_DISPATCH
default:
MOZ_CRASH("Unknown function type.");
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
setRegister(ra, saved_ra);
set_pc(getRegister(ra));
} else if ((instr->bits(31, 15) << 15 == op_break) && code == kWasmTrapCode) {
uint8_t* newPC;
if (wasm::HandleIllegalInstruction(registerState(), &newPC)) {
set_pc(int64_t(newPC));
return;
}
} else if ((instr->bits(31, 15) << 15 == op_break) && code <= kMaxStopCode &&
code != 6) {
if (isWatchpoint(code)) {
// printWatchpoint(code);
} else {
increaseStopCounter(code);
handleStop(code, instr);
}
} else {
// All remaining break_ codes, and all traps are handled here.
loong64Debugger dbg(this);
dbg.debug();
}
}
// Stop helper functions.
bool Simulator::isWatchpoint(uint32_t code) {
return (code <= kMaxWatchpointCode);
}
void Simulator::printWatchpoint(uint32_t code) {
loong64Debugger dbg(this);
++break_count_;
printf("\n---- break %d marker: %20" PRIi64 " (instr count: %20" PRIi64
") ----\n",
code, break_count_, icount_);
dbg.printAllRegs(); // Print registers and continue running.
}
void Simulator::handleStop(uint32_t code, SimInstruction* instr) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
loong64Debugger dbg(this);
dbg.stop(instr);
} else {
set_pc(get_pc() + 1 * SimInstruction::kInstrSize);
}
}
bool Simulator::isStopInstruction(SimInstruction* instr) {
int32_t opcode_hi15 = instr->bits(31, 17);
uint32_t code = static_cast<uint32_t>(instr->bits(14, 0));
return (opcode_hi15 == 0x15) && code > kMaxWatchpointCode &&
code <= kMaxStopCode;
}
bool Simulator::isEnabledStop(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
MOZ_ASSERT(code > kMaxWatchpointCode);
return !(watchedStops_[code].count_ & kStopDisabledBit);
}
void Simulator::enableStop(uint32_t code) {
if (!isEnabledStop(code)) {
watchedStops_[code].count_ &= ~kStopDisabledBit;
}
}
void Simulator::disableStop(uint32_t code) {
if (isEnabledStop(code)) {
watchedStops_[code].count_ |= kStopDisabledBit;
}
}
void Simulator::increaseStopCounter(uint32_t code) {
MOZ_ASSERT(code <= kMaxStopCode);
if ((watchedStops_[code].count_ & ~(1 << 31)) == 0x7fffffff) {
printf(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watchedStops_[code].count_ = 0;
enableStop(code);
} else {
watchedStops_[code].count_++;
}
}
// Print a stop status.
void Simulator::printStopInfo(uint32_t code) {
if (code <= kMaxWatchpointCode) {
printf("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
printf("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watchedStops_[code].count_ & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watchedStops_[code].desc_) {
printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state,
count, watchedStops_[code].desc_);
} else {
printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
void Simulator::signalExceptions() {
for (int i = 1; i < kNumExceptions; i++) {
if (exceptions[i] != 0) {
MOZ_CRASH("Error: Exception raised.");
}
}
}
// ReverseBits(value) returns |value| in reverse bit order.
template <typename T>
T ReverseBits(T value) {
MOZ_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8));
T result = 0;
for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
result = (result << 1) | (value & 1);
value >>= 1;
}
return result;
}
// Min/Max template functions for Double and Single arguments.
template <typename T>
static T FPAbs(T a);
template <>
double FPAbs<double>(double a) {
return fabs(a);
}
template <>
float FPAbs<float>(float a) {
return fabsf(a);
}
enum class MaxMinKind : int { kMin = 0, kMax = 1 };
template <typename T>
static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) {
if (std::isnan(a) && std::isnan(b)) {
*result = a;
} else if (std::isnan(a)) {
*result = b;
} else if (std::isnan(b)) {
*result = a;
} else if (b == a) {
// Handle -0.0 == 0.0 case.
// std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax
// negates the result.
*result = std::signbit(b) - static_cast<int>(kind) ? b : a;
} else {
return false;
}
return true;
}
template <typename T>
static T FPUMin(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
return result;
} else {
return b < a ? b : a;
}
}
template <typename T>
static T FPUMax(T a, T b) {
T result;
if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) {
return result;
} else {
return b > a ? b : a;
}
}
template <typename T>
static T FPUMinA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
if (FPAbs(a) < FPAbs(b)) {
result = a;
} else if (FPAbs(b) < FPAbs(a)) {
result = b;
} else {
result = a < b ? a : b;
}
}
return result;
}
template <typename T>
static T FPUMaxA(T a, T b) {
T result;
if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
if (FPAbs(a) > FPAbs(b)) {
result = a;
} else if (FPAbs(b) > FPAbs(a)) {
result = b;
} else {
result = a > b ? a : b;
}
}
return result;
}
enum class KeepSign : bool { no = false, yes };
// Handle execution based on instruction types.
// decodeTypeImmediate
void Simulator::decodeTypeOp6(SimInstruction* instr) {
// Next pc.
int64_t next_pc = bad_ra;
// Used for memory instructions.
int64_t alu_out = 0;
// Branch instructions common part.
auto BranchAndLinkHelper = [this, &next_pc](SimInstruction* instr) {
int64_t current_pc = get_pc();
setRegister(ra, current_pc + SimInstruction::kInstrSize);
int32_t offs26_low16 =
static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16;
int32_t offs26_high10 = static_cast<int32_t>(instr->bits(9, 0) << 22) >> 6;
int32_t offs26 = offs26_low16 | offs26_high10;
next_pc = current_pc + (offs26 << 2);
set_pc(next_pc);
};
auto BranchOff16Helper = [this, &next_pc](SimInstruction* instr,
bool do_branch) {
int64_t current_pc = get_pc();
int32_t offs16 = static_cast<int32_t>(instr->bits(25, 10) << 16) >> 16;
int32_t offs = do_branch ? (offs16 << 2) : SimInstruction::kInstrSize;
next_pc = current_pc + offs;
set_pc(next_pc);
};
auto BranchOff21Helper = [this, &next_pc](SimInstruction* instr,
bool do_branch) {
int64_t current_pc = get_pc();
int32_t offs21_low16 =
static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16;
int32_t offs21_high5 = static_cast<int32_t>(instr->bits(4, 0) << 27) >> 11;
int32_t offs = offs21_low16 | offs21_high5;
offs = do_branch ? (offs << 2) : SimInstruction::kInstrSize;
next_pc = current_pc + offs;
set_pc(next_pc);
};
auto BranchOff26Helper = [this, &next_pc](SimInstruction* instr) {
int64_t current_pc = get_pc();
int32_t offs26_low16 =
static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16;
int32_t offs26_high10 = static_cast<int32_t>(instr->bits(9, 0) << 22) >> 6;
int32_t offs26 = offs26_low16 | offs26_high10;
next_pc = current_pc + (offs26 << 2);
set_pc(next_pc);
};
auto JumpOff16Helper = [this, &next_pc](SimInstruction* instr) {
int32_t offs16 = static_cast<int32_t>(instr->bits(25, 10) << 16) >> 16;
setRegister(rd_reg(instr), get_pc() + SimInstruction::kInstrSize);
next_pc = rj(instr) + (offs16 << 2);
set_pc(next_pc);
};
switch (instr->bits(31, 26) << 26) {
case op_addu16i_d: {
int32_t si16_upper = static_cast<int32_t>(si16(instr)) << 16;
alu_out = static_cast<int64_t>(si16_upper) + rj(instr);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_beqz: {
BranchOff21Helper(instr, rj(instr) == 0);
break;
}
case op_bnez: {
BranchOff21Helper(instr, rj(instr) != 0);
break;
}
case op_bcz: {
if (instr->bits(9, 8) == 0b00) {
// BCEQZ
BranchOff21Helper(instr, cj(instr) == false);
} else if (instr->bits(9, 8) == 0b01) {
// BCNEZ
BranchOff21Helper(instr, cj(instr) == true);
} else {
UNREACHABLE();
}
break;
}
case op_jirl: {
JumpOff16Helper(instr);
break;
}
case op_b: {
BranchOff26Helper(instr);
break;
}
case op_bl: {
BranchAndLinkHelper(instr);
break;
}
case op_beq: {
BranchOff16Helper(instr, rj(instr) == rd(instr));
break;
}
case op_bne: {
BranchOff16Helper(instr, rj(instr) != rd(instr));
break;
}
case op_blt: {
BranchOff16Helper(instr, rj(instr) < rd(instr));
break;
}
case op_bge: {
BranchOff16Helper(instr, rj(instr) >= rd(instr));
break;
}
case op_bltu: {
BranchOff16Helper(instr, rj_u(instr) < rd_u(instr));
break;
}
case op_bgeu: {
BranchOff16Helper(instr, rj_u(instr) >= rd_u(instr));
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp7(SimInstruction* instr) {
int64_t alu_out;
switch (instr->bits(31, 25) << 25) {
case op_lu12i_w: {
int32_t si20_upper = static_cast<int32_t>(si20(instr) << 12);
setRegister(rd_reg(instr), static_cast<int64_t>(si20_upper));
break;
}
case op_lu32i_d: {
int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12) >> 12;
int64_t lower_32bit_mask = 0xFFFFFFFF;
alu_out = (static_cast<int64_t>(si20_signExtend) << 32) |
(rd(instr) & lower_32bit_mask);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_pcaddi: {
int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12) >> 10;
int64_t current_pc = get_pc();
alu_out = static_cast<int64_t>(si20_signExtend) + current_pc;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_pcalau12i: {
int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12);
int64_t current_pc = get_pc();
int64_t clear_lower12bit_mask = 0xFFFFFFFFFFFFF000;
alu_out = static_cast<int64_t>(si20_signExtend) + current_pc;
setRegister(rd_reg(instr), alu_out & clear_lower12bit_mask);
break;
}
case op_pcaddu12i: {
int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12);
int64_t current_pc = get_pc();
alu_out = static_cast<int64_t>(si20_signExtend) + current_pc;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_pcaddu18i: {
int64_t si20_signExtend = (static_cast<int64_t>(si20(instr)) << 44) >> 26;
int64_t current_pc = get_pc();
alu_out = si20_signExtend + current_pc;
setRegister(rd_reg(instr), alu_out);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp8(SimInstruction* instr) {
int64_t addr = 0x0;
int64_t si14_se = (static_cast<int64_t>(si14(instr)) << 50) >> 48;
switch (instr->bits(31, 24) << 24) {
case op_ldptr_w: {
setRegister(rd_reg(instr), readW(rj(instr) + si14_se, instr));
break;
}
case op_stptr_w: {
writeW(rj(instr) + si14_se, static_cast<int32_t>(rd(instr)), instr);
break;
}
case op_ldptr_d: {
setRegister(rd_reg(instr), readDW(rj(instr) + si14_se, instr));
break;
}
case op_stptr_d: {
writeDW(rj(instr) + si14_se, rd(instr), instr);
break;
}
case op_ll_w: {
addr = si14_se + rj(instr);
setRegister(rd_reg(instr), loadLinkedW(addr, instr));
break;
}
case op_sc_w: {
addr = si14_se + rj(instr);
setRegister(
rd_reg(instr),
storeConditionalW(addr, static_cast<int32_t>(rd(instr)), instr));
break;
}
case op_ll_d: {
addr = si14_se + rj(instr);
setRegister(rd_reg(instr), loadLinkedD(addr, instr));
break;
}
case op_sc_d: {
addr = si14_se + rj(instr);
setRegister(rd_reg(instr), storeConditionalD(addr, rd(instr), instr));
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp10(SimInstruction* instr) {
int64_t alu_out = 0x0;
int64_t si12_se = (static_cast<int64_t>(si12(instr)) << 52) >> 52;
uint64_t si12_ze = (static_cast<uint64_t>(ui12(instr)) << 52) >> 52;
switch (instr->bits(31, 22) << 22) {
case op_bstrins_d: {
uint8_t lsbd_ = lsbd(instr);
uint8_t msbd_ = msbd(instr);
MOZ_ASSERT(lsbd_ <= msbd_);
uint8_t size = msbd_ - lsbd_ + 1;
if (size < 64) {
uint64_t mask = (1ULL << size) - 1;
alu_out =
(rd_u(instr) & ~(mask << lsbd_)) | ((rj_u(instr) & mask) << lsbd_);
setRegister(rd_reg(instr), alu_out);
} else if (size == 64) {
setRegister(rd_reg(instr), rj(instr));
}
break;
}
case op_bstrpick_d: {
uint8_t lsbd_ = lsbd(instr);
uint8_t msbd_ = msbd(instr);
MOZ_ASSERT(lsbd_ <= msbd_);
uint8_t size = msbd_ - lsbd_ + 1;
if (size < 64) {
uint64_t mask = (1ULL << size) - 1;
alu_out = (rj_u(instr) & (mask << lsbd_)) >> lsbd_;
setRegister(rd_reg(instr), alu_out);
} else if (size == 64) {
setRegister(rd_reg(instr), rj(instr));
}
break;
}
case op_slti: {
setRegister(rd_reg(instr), rj(instr) < si12_se ? 1 : 0);
break;
}
case op_sltui: {
setRegister(rd_reg(instr),
rj_u(instr) < static_cast<uint64_t>(si12_se) ? 1 : 0);
break;
}
case op_addi_w: {
int32_t alu32_out =
static_cast<int32_t>(rj(instr)) + static_cast<int32_t>(si12_se);
setRegister(rd_reg(instr), alu32_out);
break;
}
case op_addi_d: {
setRegister(rd_reg(instr), rj(instr) + si12_se);
break;
}
case op_lu52i_d: {
int64_t si12_se = static_cast<int64_t>(si12(instr)) << 52;
uint64_t mask = (1ULL << 52) - 1;
alu_out = si12_se + (rj(instr) & mask);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_andi: {
setRegister(rd_reg(instr), rj(instr) & si12_ze);
break;
}
case op_ori: {
setRegister(rd_reg(instr), rj_u(instr) | si12_ze);
break;
}
case op_xori: {
setRegister(rd_reg(instr), rj_u(instr) ^ si12_ze);
break;
}
case op_ld_b: {
setRegister(rd_reg(instr), readB(rj(instr) + si12_se));
break;
}
case op_ld_h: {
setRegister(rd_reg(instr), readH(rj(instr) + si12_se, instr));
break;
}
case op_ld_w: {
setRegister(rd_reg(instr), readW(rj(instr) + si12_se, instr));
break;
}
case op_ld_d: {
setRegister(rd_reg(instr), readDW(rj(instr) + si12_se, instr));
break;
}
case op_st_b: {
writeB(rj(instr) + si12_se, static_cast<int8_t>(rd(instr)));
break;
}
case op_st_h: {
writeH(rj(instr) + si12_se, static_cast<int16_t>(rd(instr)), instr);
break;
}
case op_st_w: {
writeW(rj(instr) + si12_se, static_cast<int32_t>(rd(instr)), instr);
break;
}
case op_st_d: {
writeDW(rj(instr) + si12_se, rd(instr), instr);
break;
}
case op_ld_bu: {
setRegister(rd_reg(instr), readBU(rj(instr) + si12_se));
break;
}
case op_ld_hu: {
setRegister(rd_reg(instr), readHU(rj(instr) + si12_se, instr));
break;
}
case op_ld_wu: {
setRegister(rd_reg(instr), readWU(rj(instr) + si12_se, instr));
break;
}
case op_fld_s: {
setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits.
setFpuRegisterWord(fd_reg(instr), readW(rj(instr) + si12_se, instr));
break;
}
case op_fst_s: {
int32_t alu_out_32 = static_cast<int32_t>(getFpuRegister(fd_reg(instr)));
writeW(rj(instr) + si12_se, alu_out_32, instr);
break;
}
case op_fld_d: {
setFpuRegisterDouble(fd_reg(instr), readD(rj(instr) + si12_se, instr));
break;
}
case op_fst_d: {
writeD(rj(instr) + si12_se, getFpuRegisterDouble(fd_reg(instr)), instr);
break;
}
case op_preld:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp11(SimInstruction* instr) {
int64_t alu_out = 0x0;
switch (instr->bits(31, 21) << 21) {
case op_bstr_w: {
MOZ_ASSERT(instr->bit(21) == 1);
uint8_t lsbw_ = lsbw(instr);
uint8_t msbw_ = msbw(instr);
MOZ_ASSERT(lsbw_ <= msbw_);
uint8_t size = msbw_ - lsbw_ + 1;
uint64_t mask = (1ULL << size) - 1;
if (instr->bit(15) == 0) {
// BSTRINS_W
alu_out = static_cast<int32_t>((rd_u(instr) & ~(mask << lsbw_)) |
((rj_u(instr) & mask) << lsbw_));
} else {
// BSTRPICK_W
alu_out =
static_cast<int32_t>((rj_u(instr) & (mask << lsbw_)) >> lsbw_);
}
setRegister(rd_reg(instr), alu_out);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp12(SimInstruction* instr) {
switch (instr->bits(31, 20) << 20) {
case op_fmadd_s: {
setFpuRegisterFloat(
fd_reg(instr),
std::fma(fj_float(instr), fk_float(instr), fa_float(instr)));
break;
}
case op_fmadd_d: {
setFpuRegisterDouble(
fd_reg(instr),
std::fma(fj_double(instr), fk_double(instr), fa_double(instr)));
break;
}
case op_fmsub_s: {
setFpuRegisterFloat(
fd_reg(instr),
std::fma(-fj_float(instr), fk_float(instr), fa_float(instr)));
break;
}
case op_fmsub_d: {
setFpuRegisterDouble(
fd_reg(instr),
std::fma(-fj_double(instr), fk_double(instr), fa_double(instr)));
break;
}
case op_fnmadd_s: {
setFpuRegisterFloat(
fd_reg(instr),
std::fma(-fj_float(instr), fk_float(instr), -fa_float(instr)));
break;
}
case op_fnmadd_d: {
setFpuRegisterDouble(
fd_reg(instr),
std::fma(-fj_double(instr), fk_double(instr), -fa_double(instr)));
break;
}
case op_fnmsub_s: {
setFpuRegisterFloat(
fd_reg(instr),
std::fma(fj_float(instr), fk_float(instr), -fa_float(instr)));
break;
}
case op_fnmsub_d: {
setFpuRegisterDouble(
fd_reg(instr),
std::fma(fj_double(instr), fk_double(instr), -fa_double(instr)));
break;
}
case op_fcmp_cond_s: {
MOZ_ASSERT(instr->bits(4, 3) == 0);
float fj = fj_float(instr);
float fk = fk_float(instr);
switch (cond(instr)) {
case AssemblerLOONG64::CAF: {
setCFRegister(cd_reg(instr), false);
break;
}
case AssemblerLOONG64::CUN: {
setCFRegister(cd_reg(instr), std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CEQ: {
setCFRegister(cd_reg(instr), fj == fk);
break;
}
case AssemblerLOONG64::CUEQ: {
setCFRegister(cd_reg(instr),
(fj == fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CLT: {
setCFRegister(cd_reg(instr), fj < fk);
break;
}
case AssemblerLOONG64::CULT: {
setCFRegister(cd_reg(instr),
(fj < fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CLE: {
setCFRegister(cd_reg(instr), fj <= fk);
break;
}
case AssemblerLOONG64::CULE: {
setCFRegister(cd_reg(instr),
(fj <= fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CNE: {
setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk));
break;
}
case AssemblerLOONG64::COR: {
setCFRegister(cd_reg(instr), !std::isnan(fj) && !std::isnan(fk));
break;
}
case AssemblerLOONG64::CUNE: {
setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk) ||
std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::SAF:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUN:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SEQ:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUEQ:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SLT:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SULT:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SLE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SULE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SNE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SOR:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUNE:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
break;
}
case op_fcmp_cond_d: {
MOZ_ASSERT(instr->bits(4, 3) == 0);
double fj = fj_double(instr);
double fk = fk_double(instr);
switch (cond(instr)) {
case AssemblerLOONG64::CAF: {
setCFRegister(cd_reg(instr), false);
break;
}
case AssemblerLOONG64::CUN: {
setCFRegister(cd_reg(instr), std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CEQ: {
setCFRegister(cd_reg(instr), fj == fk);
break;
}
case AssemblerLOONG64::CUEQ: {
setCFRegister(cd_reg(instr),
(fj == fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CLT: {
setCFRegister(cd_reg(instr), fj < fk);
break;
}
case AssemblerLOONG64::CULT: {
setCFRegister(cd_reg(instr),
(fj < fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CLE: {
setCFRegister(cd_reg(instr), fj <= fk);
break;
}
case AssemblerLOONG64::CULE: {
setCFRegister(cd_reg(instr),
(fj <= fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::CNE: {
setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk));
break;
}
case AssemblerLOONG64::COR: {
setCFRegister(cd_reg(instr), !std::isnan(fj) && !std::isnan(fk));
break;
}
case AssemblerLOONG64::CUNE: {
setCFRegister(cd_reg(instr),
(fj != fk) || std::isnan(fj) || std::isnan(fk));
break;
}
case AssemblerLOONG64::SAF:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUN:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SEQ:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUEQ:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SLT:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SULT:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SLE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SULE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SNE:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SOR:
UNIMPLEMENTED();
break;
case AssemblerLOONG64::SUNE:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp14(SimInstruction* instr) {
int64_t alu_out = 0x0;
switch (instr->bits(31, 18) << 18) {
case op_bytepick_d: {
uint8_t sa = sa3(instr) * 8;
if (sa == 0) {
alu_out = rk(instr);
} else {
int64_t mask = (1ULL << 63) >> (sa - 1);
int64_t rk_hi = (rk(instr) & (~mask)) << sa;
int64_t rj_lo = (rj(instr) & mask) >> (64 - sa);
alu_out = rk_hi | rj_lo;
}
setRegister(rd_reg(instr), alu_out);
break;
}
case op_fsel: {
MOZ_ASSERT(instr->bits(19, 18) == 0);
if (ca(instr) == 0) {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr));
} else {
setFpuRegisterDouble(fd_reg(instr), fk_double(instr));
}
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp15(SimInstruction* instr) {
int64_t alu_out = 0x0;
int32_t alu32_out = 0x0;
switch (instr->bits(31, 17) << 17) {
case op_bytepick_w: {
MOZ_ASSERT(instr->bit(17) == 0);
uint8_t sa = sa2(instr) * 8;
if (sa == 0) {
alu32_out = static_cast<int32_t>(rk(instr));
} else {
int32_t mask = (1 << 31) >> (sa - 1);
int32_t rk_hi = (static_cast<int32_t>(rk(instr)) & (~mask)) << sa;
int32_t rj_lo = (static_cast<uint32_t>(rj(instr)) & mask) >> (32 - sa);
alu32_out = rk_hi | rj_lo;
}
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_alsl_w: {
uint8_t sa = sa2(instr) + 1;
alu32_out = (static_cast<int32_t>(rj(instr)) << sa) +
static_cast<int32_t>(rk(instr));
setRegister(rd_reg(instr), alu32_out);
break;
}
case op_alsl_wu: {
uint8_t sa = sa2(instr) + 1;
alu32_out = (static_cast<int32_t>(rj(instr)) << sa) +
static_cast<int32_t>(rk(instr));
setRegister(rd_reg(instr), static_cast<uint32_t>(alu32_out));
break;
}
case op_alsl_d: {
MOZ_ASSERT(instr->bit(17) == 0);
uint8_t sa = sa2(instr) + 1;
alu_out = (rj(instr) << sa) + rk(instr);
setRegister(rd_reg(instr), alu_out);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp16(SimInstruction* instr) {
int64_t alu_out;
switch (instr->bits(31, 16) << 16) {
case op_slli_d: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 16) == 0b01);
setRegister(rd_reg(instr), rj(instr) << ui6(instr));
break;
}
case op_srli_d: {
MOZ_ASSERT(instr->bit(17) == 0);
setRegister(rd_reg(instr), rj_u(instr) >> ui6(instr));
break;
}
case op_srai_d: {
MOZ_ASSERT(instr->bit(17) == 0);
setRegister(rd_reg(instr), rj(instr) >> ui6(instr));
break;
}
case op_rotri_d: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 16) == 0b01);
alu_out = static_cast<int64_t>(RotateRight64(rj_u(instr), ui6(instr)));
setRegister(rd_reg(instr), alu_out);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp17(SimInstruction* instr) {
int64_t alu_out;
int32_t alu32_out;
switch (instr->bits(31, 15) << 15) {
case op_slli_w: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 15) == 0b001);
alu32_out = static_cast<int32_t>(rj(instr)) << ui5(instr);
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_srai_w: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 15) == 0b001);
alu32_out = static_cast<int32_t>(rj(instr)) >> ui5(instr);
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_rotri_w: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 15) == 0b001);
alu32_out = static_cast<int32_t>(
RotateRight32(static_cast<const uint32_t>(rj_u(instr)),
static_cast<const uint32_t>(ui5(instr))));
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_srli_w: {
MOZ_ASSERT(instr->bit(17) == 0);
MOZ_ASSERT(instr->bits(17, 15) == 0b001);
alu32_out = static_cast<uint32_t>(rj(instr)) >> ui5(instr);
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_add_w: {
int32_t alu32_out = static_cast<int32_t>(rj(instr) + rk(instr));
// Sign-extend result of 32bit operation into 64bit register.
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_add_d:
setRegister(rd_reg(instr), rj(instr) + rk(instr));
break;
case op_sub_w: {
int32_t alu32_out = static_cast<int32_t>(rj(instr) - rk(instr));
// Sign-extend result of 32bit operation into 64bit register.
setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out));
break;
}
case op_sub_d:
setRegister(rd_reg(instr), rj(instr) - rk(instr));
break;
case op_slt:
setRegister(rd_reg(instr), rj(instr) < rk(instr) ? 1 : 0);
break;
case op_sltu:
setRegister(rd_reg(instr), rj_u(instr) < rk_u(instr) ? 1 : 0);
break;
case op_maskeqz:
setRegister(rd_reg(instr), rk(instr) == 0 ? 0 : rj(instr));
break;
case op_masknez:
setRegister(rd_reg(instr), rk(instr) != 0 ? 0 : rj(instr));
break;
case op_nor:
setRegister(rd_reg(instr), ~(rj(instr) | rk(instr)));
break;
case op_and:
setRegister(rd_reg(instr), rj(instr) & rk(instr));
break;
case op_or:
setRegister(rd_reg(instr), rj(instr) | rk(instr));
break;
case op_xor:
setRegister(rd_reg(instr), rj(instr) ^ rk(instr));
break;
case op_orn:
setRegister(rd_reg(instr), rj(instr) | (~rk(instr)));
break;
case op_andn:
setRegister(rd_reg(instr), rj(instr) & (~rk(instr)));
break;
case op_sll_w:
setRegister(rd_reg(instr), (int32_t)rj(instr) << (rk_u(instr) % 32));
break;
case op_srl_w: {
alu_out =
static_cast<int32_t>((uint32_t)rj_u(instr) >> (rk_u(instr) % 32));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_sra_w:
setRegister(rd_reg(instr), (int32_t)rj(instr) >> (rk_u(instr) % 32));
break;
case op_sll_d:
setRegister(rd_reg(instr), rj(instr) << (rk_u(instr) % 64));
break;
case op_srl_d: {
alu_out = static_cast<int64_t>(rj_u(instr) >> (rk_u(instr) % 64));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_sra_d:
setRegister(rd_reg(instr), rj(instr) >> (rk_u(instr) % 64));
break;
case op_rotr_w: {
alu_out = static_cast<int32_t>(
RotateRight32(static_cast<const uint32_t>(rj_u(instr)),
static_cast<const uint32_t>(rk_u(instr) % 32)));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_rotr_d: {
alu_out = static_cast<int64_t>(
RotateRight64((rj_u(instr)), (rk_u(instr) % 64)));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_mul_w: {
alu_out =
static_cast<int32_t>(rj(instr)) * static_cast<int32_t>(rk(instr));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_mulh_w: {
int32_t rj_lo = static_cast<int32_t>(rj(instr));
int32_t rk_lo = static_cast<int32_t>(rk(instr));
alu_out = static_cast<int64_t>(rj_lo) * static_cast<int64_t>(rk_lo);
setRegister(rd_reg(instr), alu_out >> 32);
break;
}
case op_mulh_wu: {
uint32_t rj_lo = static_cast<uint32_t>(rj_u(instr));
uint32_t rk_lo = static_cast<uint32_t>(rk_u(instr));
alu_out = static_cast<uint64_t>(rj_lo) * static_cast<uint64_t>(rk_lo);
setRegister(rd_reg(instr), alu_out >> 32);
break;
}
case op_mul_d:
setRegister(rd_reg(instr), rj(instr) * rk(instr));
break;
case op_mulh_d:
setRegister(rd_reg(instr), MultiplyHighSigned(rj(instr), rk(instr)));
break;
case op_mulh_du:
setRegister(rd_reg(instr),
MultiplyHighUnsigned(rj_u(instr), rk_u(instr)));
break;
case op_mulw_d_w: {
int64_t rj_i32 = static_cast<int32_t>(rj(instr));
int64_t rk_i32 = static_cast<int32_t>(rk(instr));
setRegister(rd_reg(instr), rj_i32 * rk_i32);
break;
}
case op_mulw_d_wu: {
uint64_t rj_u32 = static_cast<uint32_t>(rj_u(instr));
uint64_t rk_u32 = static_cast<uint32_t>(rk_u(instr));
setRegister(rd_reg(instr), rj_u32 * rk_u32);
break;
}
case op_div_w: {
int32_t rj_i32 = static_cast<int32_t>(rj(instr));
int32_t rk_i32 = static_cast<int32_t>(rk(instr));
if (rj_i32 == INT_MIN && rk_i32 == -1) {
setRegister(rd_reg(instr), INT_MIN);
} else if (rk_i32 != 0) {
setRegister(rd_reg(instr), rj_i32 / rk_i32);
}
break;
}
case op_mod_w: {
int32_t rj_i32 = static_cast<int32_t>(rj(instr));
int32_t rk_i32 = static_cast<int32_t>(rk(instr));
if (rj_i32 == INT_MIN && rk_i32 == -1) {
setRegister(rd_reg(instr), 0);
} else if (rk_i32 != 0) {
setRegister(rd_reg(instr), rj_i32 % rk_i32);
}
break;
}
case op_div_wu: {
uint32_t rj_u32 = static_cast<uint32_t>(rj(instr));
uint32_t rk_u32 = static_cast<uint32_t>(rk(instr));
if (rk_u32 != 0) {
setRegister(rd_reg(instr), static_cast<int32_t>(rj_u32 / rk_u32));
}
break;
}
case op_mod_wu: {
uint32_t rj_u32 = static_cast<uint32_t>(rj(instr));
uint32_t rk_u32 = static_cast<uint32_t>(rk(instr));
if (rk_u32 != 0) {
setRegister(rd_reg(instr), static_cast<int32_t>(rj_u32 % rk_u32));
}
break;
}
case op_div_d: {
if (rj(instr) == INT64_MIN && rk(instr) == -1) {
setRegister(rd_reg(instr), INT64_MIN);
} else if (rk(instr) != 0) {
setRegister(rd_reg(instr), rj(instr) / rk(instr));
}
break;
}
case op_mod_d: {
if (rj(instr) == LONG_MIN && rk(instr) == -1) {
setRegister(rd_reg(instr), 0);
} else if (rk(instr) != 0) {
setRegister(rd_reg(instr), rj(instr) % rk(instr));
}
break;
}
case op_div_du: {
if (rk_u(instr) != 0) {
setRegister(rd_reg(instr),
static_cast<int64_t>(rj_u(instr) / rk_u(instr)));
}
break;
}
case op_mod_du: {
if (rk_u(instr) != 0) {
setRegister(rd_reg(instr),
static_cast<int64_t>(rj_u(instr) % rk_u(instr)));
}
break;
}
case op_break:
softwareInterrupt(instr);
break;
case op_fadd_s: {
setFpuRegisterFloat(fd_reg(instr), fj_float(instr) + fk_float(instr));
break;
}
case op_fadd_d: {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr) + fk_double(instr));
break;
}
case op_fsub_s: {
setFpuRegisterFloat(fd_reg(instr), fj_float(instr) - fk_float(instr));
break;
}
case op_fsub_d: {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr) - fk_double(instr));
break;
}
case op_fmul_s: {
setFpuRegisterFloat(fd_reg(instr), fj_float(instr) * fk_float(instr));
break;
}
case op_fmul_d: {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr) * fk_double(instr));
break;
}
case op_fdiv_s: {
setFpuRegisterFloat(fd_reg(instr), fj_float(instr) / fk_float(instr));
break;
}
case op_fdiv_d: {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr) / fk_double(instr));
break;
}
case op_fmax_s: {
setFpuRegisterFloat(fd_reg(instr),
FPUMax(fk_float(instr), fj_float(instr)));
break;
}
case op_fmax_d: {
setFpuRegisterDouble(fd_reg(instr),
FPUMax(fk_double(instr), fj_double(instr)));
break;
}
case op_fmin_s: {
setFpuRegisterFloat(fd_reg(instr),
FPUMin(fk_float(instr), fj_float(instr)));
break;
}
case op_fmin_d: {
setFpuRegisterDouble(fd_reg(instr),
FPUMin(fk_double(instr), fj_double(instr)));
break;
}
case op_fmaxa_s: {
setFpuRegisterFloat(fd_reg(instr),
FPUMaxA(fk_float(instr), fj_float(instr)));
break;
}
case op_fmaxa_d: {
setFpuRegisterDouble(fd_reg(instr),
FPUMaxA(fk_double(instr), fj_double(instr)));
break;
}
case op_fmina_s: {
setFpuRegisterFloat(fd_reg(instr),
FPUMinA(fk_float(instr), fj_float(instr)));
break;
}
case op_fmina_d: {
setFpuRegisterDouble(fd_reg(instr),
FPUMinA(fk_double(instr), fj_double(instr)));
break;
}
case op_ldx_b:
setRegister(rd_reg(instr), readB(rj(instr) + rk(instr)));
break;
case op_ldx_h:
setRegister(rd_reg(instr), readH(rj(instr) + rk(instr), instr));
break;
case op_ldx_w:
setRegister(rd_reg(instr), readW(rj(instr) + rk(instr), instr));
break;
case op_ldx_d:
setRegister(rd_reg(instr), readDW(rj(instr) + rk(instr), instr));
break;
case op_stx_b:
writeB(rj(instr) + rk(instr), static_cast<int8_t>(rd(instr)));
break;
case op_stx_h:
writeH(rj(instr) + rk(instr), static_cast<int16_t>(rd(instr)), instr);
break;
case op_stx_w:
writeW(rj(instr) + rk(instr), static_cast<int32_t>(rd(instr)), instr);
break;
case op_stx_d:
writeDW(rj(instr) + rk(instr), rd(instr), instr);
break;
case op_ldx_bu:
setRegister(rd_reg(instr), readBU(rj(instr) + rk(instr)));
break;
case op_ldx_hu:
setRegister(rd_reg(instr), readHU(rj(instr) + rk(instr), instr));
break;
case op_ldx_wu:
setRegister(rd_reg(instr), readWU(rj(instr) + rk(instr), instr));
break;
case op_fldx_s:
setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits.
setFpuRegisterWord(fd_reg(instr), readW(rj(instr) + rk(instr), instr));
break;
case op_fldx_d:
setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits.
setFpuRegisterDouble(fd_reg(instr), readD(rj(instr) + rk(instr), instr));
break;
case op_fstx_s: {
int32_t alu_out_32 = static_cast<int32_t>(getFpuRegister(fd_reg(instr)));
writeW(rj(instr) + rk(instr), alu_out_32, instr);
break;
}
case op_fstx_d: {
writeD(rj(instr) + rk(instr), getFpuRegisterDouble(fd_reg(instr)), instr);
break;
}
case op_amswap_w:
UNIMPLEMENTED();
break;
case op_amswap_d:
UNIMPLEMENTED();
break;
case op_amadd_w:
UNIMPLEMENTED();
break;
case op_amadd_d:
UNIMPLEMENTED();
break;
case op_amand_w:
UNIMPLEMENTED();
break;
case op_amand_d:
UNIMPLEMENTED();
break;
case op_amor_w:
UNIMPLEMENTED();
break;
case op_amor_d:
UNIMPLEMENTED();
break;
case op_amxor_w:
UNIMPLEMENTED();
break;
case op_amxor_d:
UNIMPLEMENTED();
break;
case op_ammax_w:
UNIMPLEMENTED();
break;
case op_ammax_d:
UNIMPLEMENTED();
break;
case op_ammin_w:
UNIMPLEMENTED();
break;
case op_ammin_d:
UNIMPLEMENTED();
break;
case op_ammax_wu:
UNIMPLEMENTED();
break;
case op_ammax_du:
UNIMPLEMENTED();
break;
case op_ammin_wu:
UNIMPLEMENTED();
break;
case op_ammin_du:
UNIMPLEMENTED();
break;
case op_amswap_db_w:
UNIMPLEMENTED();
break;
case op_amswap_db_d:
UNIMPLEMENTED();
break;
case op_amadd_db_w:
UNIMPLEMENTED();
break;
case op_amadd_db_d:
UNIMPLEMENTED();
break;
case op_amand_db_w:
UNIMPLEMENTED();
break;
case op_amand_db_d:
UNIMPLEMENTED();
break;
case op_amor_db_w:
UNIMPLEMENTED();
break;
case op_amor_db_d:
UNIMPLEMENTED();
break;
case op_amxor_db_w:
UNIMPLEMENTED();
break;
case op_amxor_db_d:
UNIMPLEMENTED();
break;
case op_ammax_db_w:
UNIMPLEMENTED();
break;
case op_ammax_db_d:
UNIMPLEMENTED();
break;
case op_ammin_db_w:
UNIMPLEMENTED();
break;
case op_ammin_db_d:
UNIMPLEMENTED();
break;
case op_ammax_db_wu:
UNIMPLEMENTED();
break;
case op_ammax_db_du:
UNIMPLEMENTED();
break;
case op_ammin_db_wu:
UNIMPLEMENTED();
break;
case op_ammin_db_du:
UNIMPLEMENTED();
break;
case op_dbar:
// TODO(loong64): dbar simulation
break;
case op_ibar:
UNIMPLEMENTED();
break;
case op_fcopysign_s:
UNIMPLEMENTED();
break;
case op_fcopysign_d:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp22(SimInstruction* instr) {
int64_t alu_out;
switch (instr->bits(31, 10) << 10) {
case op_clz_w: {
alu_out = U32(rj_u(instr)) ? __builtin_clz(U32(rj_u(instr))) : 32;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_ctz_w: {
alu_out = U32(rj_u(instr)) ? __builtin_ctz(U32(rj_u(instr))) : 32;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_clz_d: {
alu_out = U64(rj_u(instr)) ? __builtin_clzll(U64(rj_u(instr))) : 64;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_ctz_d: {
alu_out = U64(rj_u(instr)) ? __builtin_ctzll(U64(rj_u(instr))) : 64;
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revb_2h: {
uint32_t input = static_cast<uint32_t>(rj(instr));
uint64_t output = 0;
uint32_t mask = 0xFF000000;
for (int i = 0; i < 4; i++) {
uint32_t tmp = mask & input;
if (i % 2 == 0) {
tmp = tmp >> 8;
} else {
tmp = tmp << 8;
}
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revb_4h: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint64_t mask = 0xFF00000000000000;
for (int i = 0; i < 8; i++) {
uint64_t tmp = mask & input;
if (i % 2 == 0) {
tmp = tmp >> 8;
} else {
tmp = tmp << 8;
}
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revb_2w: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint64_t mask = 0xFF000000FF000000;
for (int i = 0; i < 4; i++) {
uint64_t tmp = mask & input;
if (i <= 1) {
tmp = tmp >> (24 - i * 16);
} else {
tmp = tmp << (i * 16 - 24);
}
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revb_d: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint64_t mask = 0xFF00000000000000;
for (int i = 0; i < 8; i++) {
uint64_t tmp = mask & input;
if (i <= 3) {
tmp = tmp >> (56 - i * 16);
} else {
tmp = tmp << (i * 16 - 56);
}
output = output | tmp;
mask = mask >> 8;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revh_2w: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint64_t mask = 0xFFFF000000000000;
for (int i = 0; i < 4; i++) {
uint64_t tmp = mask & input;
if (i % 2 == 0) {
tmp = tmp >> 16;
} else {
tmp = tmp << 16;
}
output = output | tmp;
mask = mask >> 16;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_revh_d: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint64_t mask = 0xFFFF000000000000;
for (int i = 0; i < 4; i++) {
uint64_t tmp = mask & input;
if (i <= 1) {
tmp = tmp >> (48 - i * 32);
} else {
tmp = tmp << (i * 32 - 48);
}
output = output | tmp;
mask = mask >> 16;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_bitrev_4b: {
uint32_t input = static_cast<uint32_t>(rj(instr));
uint32_t output = 0;
uint8_t i_byte, o_byte;
// Reverse the bit in byte for each individual byte
for (int i = 0; i < 4; i++) {
output = output >> 8;
i_byte = input & 0xFF;
// Fast way to reverse bits in byte
// Devised by Sean Anderson, July 13, 2001
o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
(i_byte * 0x8020LU & 0x88440LU)) *
0x10101LU >>
16);
output = output | (static_cast<uint32_t>(o_byte << 24));
input = input >> 8;
}
alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_bitrev_8b: {
uint64_t input = rj_u(instr);
uint64_t output = 0;
uint8_t i_byte, o_byte;
// Reverse the bit in byte for each individual byte
for (int i = 0; i < 8; i++) {
output = output >> 8;
i_byte = input & 0xFF;
// Fast way to reverse bits in byte
// Devised by Sean Anderson, July 13, 2001
o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
(i_byte * 0x8020LU & 0x88440LU)) *
0x10101LU >>
16);
output = output | (static_cast<uint64_t>(o_byte) << 56);
input = input >> 8;
}
alu_out = static_cast<int64_t>(output);
setRegister(rd_reg(instr), alu_out);
break;
}
case op_bitrev_w: {
uint32_t input = static_cast<uint32_t>(rj(instr));
uint32_t output = 0;
output = ReverseBits(input);
alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_bitrev_d: {
alu_out = static_cast<int64_t>(ReverseBits(rj_u(instr)));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_ext_w_b: {
uint8_t input = static_cast<uint8_t>(rj(instr));
alu_out = static_cast<int64_t>(static_cast<int8_t>(input));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_ext_w_h: {
uint16_t input = static_cast<uint16_t>(rj(instr));
alu_out = static_cast<int64_t>(static_cast<int16_t>(input));
setRegister(rd_reg(instr), alu_out);
break;
}
case op_fabs_s: {
setFpuRegisterFloat(fd_reg(instr), std::abs(fj_float(instr)));
break;
}
case op_fabs_d: {
setFpuRegisterDouble(fd_reg(instr), std::abs(fj_double(instr)));
break;
}
case op_fneg_s: {
setFpuRegisterFloat(fd_reg(instr), -fj_float(instr));
break;
}
case op_fneg_d: {
setFpuRegisterDouble(fd_reg(instr), -fj_double(instr));
break;
}
case op_fsqrt_s: {
if (fj_float(instr) >= 0) {
setFpuRegisterFloat(fd_reg(instr), std::sqrt(fj_float(instr)));
} else {
setFpuRegisterFloat(fd_reg(instr), std::sqrt(-1)); // qnan
setFCSRBit(kFCSRInvalidOpFlagBit, true);
}
break;
}
case op_fsqrt_d: {
if (fj_double(instr) >= 0) {
setFpuRegisterDouble(fd_reg(instr), std::sqrt(fj_double(instr)));
} else {
setFpuRegisterDouble(fd_reg(instr), std::sqrt(-1)); // qnan
setFCSRBit(kFCSRInvalidOpFlagBit, true);
}
break;
}
case op_fmov_s: {
setFpuRegisterFloat(fd_reg(instr), fj_float(instr));
break;
}
case op_fmov_d: {
setFpuRegisterDouble(fd_reg(instr), fj_double(instr));
break;
}
case op_movgr2fr_w: {
setFpuRegisterWord(fd_reg(instr), static_cast<int32_t>(rj(instr)));
break;
}
case op_movgr2fr_d: {
setFpuRegister(fd_reg(instr), rj(instr));
break;
}
case op_movgr2frh_w: {
setFpuRegisterHiWord(fd_reg(instr), static_cast<int32_t>(rj(instr)));
break;
}
case op_movfr2gr_s: {
setRegister(rd_reg(instr),
static_cast<int64_t>(getFpuRegisterWord(fj_reg(instr))));
break;
}
case op_movfr2gr_d: {
setRegister(rd_reg(instr), getFpuRegister(fj_reg(instr)));
break;
}
case op_movfrh2gr_s: {
setRegister(rd_reg(instr), getFpuRegisterHiWord(fj_reg(instr)));
break;
}
case op_movgr2fcsr: {
// fcsr could be 0-3
MOZ_ASSERT(rd_reg(instr) < 4);
FCSR_ = static_cast<uint32_t>(rj(instr));
break;
}
case op_movfcsr2gr: {
setRegister(rd_reg(instr), FCSR_);
break;
}
case op_fcvt_s_d: {
setFpuRegisterFloat(fd_reg(instr), static_cast<float>(fj_double(instr)));
break;
}
case op_fcvt_d_s: {
setFpuRegisterDouble(fd_reg(instr), static_cast<double>(fj_float(instr)));
break;
}
case op_ftintrm_w_s: {
float fj = fj_float(instr);
float rounded = std::floor(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrm_w_d: {
double fj = fj_double(instr);
double rounded = std::floor(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrm_l_s: {
float fj = fj_float(instr);
float rounded = std::floor(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrm_l_d: {
double fj = fj_double(instr);
double rounded = std::floor(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrp_w_s: {
float fj = fj_float(instr);
float rounded = std::ceil(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrp_w_d: {
double fj = fj_double(instr);
double rounded = std::ceil(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrp_l_s: {
float fj = fj_float(instr);
float rounded = std::ceil(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrp_l_d: {
double fj = fj_double(instr);
double rounded = std::ceil(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrz_w_s: {
float fj = fj_float(instr);
float rounded = std::trunc(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrz_w_d: {
double fj = fj_double(instr);
double rounded = std::trunc(fj);
int32_t result = static_cast<int32_t>(rounded);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrz_l_s: {
float fj = fj_float(instr);
float rounded = std::trunc(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrz_l_d: {
double fj = fj_double(instr);
double rounded = std::trunc(fj);
int64_t result = static_cast<int64_t>(rounded);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrne_w_s: {
float fj = fj_float(instr);
float rounded = std::floor(fj + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fj == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrne_w_d: {
double fj = fj_double(instr);
double rounded = std::floor(fj + 0.5);
int32_t result = static_cast<int32_t>(rounded);
if ((result & 1) != 0 && result - fj == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrne_l_s: {
float fj = fj_float(instr);
float rounded = std::floor(fj + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fj == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftintrne_l_d: {
double fj = fj_double(instr);
double rounded = std::floor(fj + 0.5);
int64_t result = static_cast<int64_t>(rounded);
if ((result & 1) != 0 && result - fj == 0.5) {
// If the number is halfway between two integers,
// round to the even one.
result--;
}
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftint_w_s: {
float fj = fj_float(instr);
float rounded;
int32_t result;
roundAccordingToFCSR<float>(fj, &rounded, &result);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftint_w_d: {
double fj = fj_double(instr);
double rounded;
int32_t result;
roundAccordingToFCSR<double>(fj, &rounded, &result);
setFpuRegisterWord(fd_reg(instr), result);
if (setFCSRRoundError<int32_t>(fj, rounded)) {
setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftint_l_s: {
float fj = fj_float(instr);
float rounded;
int64_t result;
round64AccordingToFCSR<float>(fj, &rounded, &result);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ftint_l_d: {
double fj = fj_double(instr);
double rounded;
int64_t result;
round64AccordingToFCSR<double>(fj, &rounded, &result);
setFpuRegister(fd_reg(instr), result);
if (setFCSRRoundError<int64_t>(fj, rounded)) {
setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr));
}
break;
}
case op_ffint_s_w: {
alu_out = getFpuRegisterSignedWord(fj_reg(instr));
setFpuRegisterFloat(fd_reg(instr), static_cast<float>(alu_out));
break;
}
case op_ffint_s_l: {
alu_out = getFpuRegister(fj_reg(instr));
setFpuRegisterFloat(fd_reg(instr), static_cast<float>(alu_out));
break;
}
case op_ffint_d_w: {
alu_out = getFpuRegisterSignedWord(fj_reg(instr));
setFpuRegisterDouble(fd_reg(instr), static_cast<double>(alu_out));
break;
}
case op_ffint_d_l: {
alu_out = getFpuRegister(fj_reg(instr));
setFpuRegisterDouble(fd_reg(instr), static_cast<double>(alu_out));
break;
}
case op_frint_s: {
float fj = fj_float(instr);
float result, temp_result;
double temp;
float upper = std::ceil(fj);
float lower = std::floor(fj);
switch (getFCSRRoundingMode()) {
case kRoundToNearest:
if (upper - fj < fj - lower) {
result = upper;
} else if (upper - fj > fj - lower) {
result = lower;
} else {
temp_result = upper / 2;
float reminder = std::modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fj > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
setFpuRegisterFloat(fd_reg(instr), result);
if (result != fj) {
setFCSRBit(kFCSRInexactFlagBit, true);
}
break;
}
case op_frint_d: {
double fj = fj_double(instr);
double result, temp, temp_result;
double upper = std::ceil(fj);
double lower = std::floor(fj);
switch (getFCSRRoundingMode()) {
case kRoundToNearest:
if (upper - fj < fj - lower) {
result = upper;
} else if (upper - fj > fj - lower) {
result = lower;
} else {
temp_result = upper / 2;
double reminder = std::modf(temp_result, &temp);
if (reminder == 0) {
result = upper;
} else {
result = lower;
}
}
break;
case kRoundToZero:
result = (fj > 0 ? lower : upper);
break;
case kRoundToPlusInf:
result = upper;
break;
case kRoundToMinusInf:
result = lower;
break;
}
setFpuRegisterDouble(fd_reg(instr), result);
if (result != fj) {
setFCSRBit(kFCSRInexactFlagBit, true);
}
break;
}
case op_movfr2cf:
printf("Sim UNIMPLEMENTED: MOVFR2CF\n");
UNIMPLEMENTED();
break;
case op_movgr2cf:
printf("Sim UNIMPLEMENTED: MOVGR2CF\n");
UNIMPLEMENTED();
break;
case op_clo_w:
printf("Sim UNIMPLEMENTED: FCO_W\n");
UNIMPLEMENTED();
break;
case op_cto_w:
printf("Sim UNIMPLEMENTED: FTO_W\n");
UNIMPLEMENTED();
break;
case op_clo_d:
printf("Sim UNIMPLEMENTED: FLO_D\n");
UNIMPLEMENTED();
break;
case op_cto_d:
printf("Sim UNIMPLEMENTED: FTO_D\n");
UNIMPLEMENTED();
break;
// Unimplemented opcodes raised an error in the configuration step before,
// so we can use the default here to set the destination register in common
// cases.
default:
UNREACHABLE();
}
}
void Simulator::decodeTypeOp24(SimInstruction* instr) {
switch (instr->bits(31, 8) << 8) {
case op_movcf2fr:
UNIMPLEMENTED();
break;
case op_movcf2gr:
setRegister(rd_reg(instr), getCFRegister(cj_reg(instr)));
break;
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
}
// Executes the current instruction.
void Simulator::instructionDecode(SimInstruction* instr) {
if (!SimulatorProcess::ICacheCheckingDisableCount) {
AutoLockSimulatorCache als;
SimulatorProcess::checkICacheLocked(instr);
}
pc_modified_ = false;
switch (instr->instructionType()) {
case SimInstruction::kOp6Type:
decodeTypeOp6(instr);
break;
case SimInstruction::kOp7Type:
decodeTypeOp7(instr);
break;
case SimInstruction::kOp8Type:
decodeTypeOp8(instr);
break;
case SimInstruction::kOp10Type:
decodeTypeOp10(instr);
break;
case SimInstruction::kOp11Type:
decodeTypeOp11(instr);
break;
case SimInstruction::kOp12Type:
decodeTypeOp12(instr);
break;
case SimInstruction::kOp14Type:
decodeTypeOp14(instr);
break;
case SimInstruction::kOp15Type:
decodeTypeOp15(instr);
break;
case SimInstruction::kOp16Type:
decodeTypeOp16(instr);
break;
case SimInstruction::kOp17Type:
decodeTypeOp17(instr);
break;
case SimInstruction::kOp22Type:
decodeTypeOp22(instr);
break;
case SimInstruction::kOp24Type:
decodeTypeOp24(instr);
break;
default:
UNSUPPORTED();
}
if (!pc_modified_) {
setRegister(pc,
reinterpret_cast<int64_t>(instr) + SimInstruction::kInstrSize);
}
}
void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) {
single_stepping_ = true;
single_step_callback_ = cb;
single_step_callback_arg_ = arg;
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
}
void Simulator::disable_single_stepping() {
if (!single_stepping_) {
return;
}
single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
single_stepping_ = false;
single_step_callback_ = nullptr;
single_step_callback_arg_ = nullptr;
}
template <bool enableStopSimAt>
void Simulator::execute() {
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int64_t program_counter = get_pc();
while (program_counter != end_sim_pc) {
if (enableStopSimAt && (icount_ == Simulator::StopSimAt)) {
loong64Debugger dbg(this);
dbg.debug();
} else {
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this,
(void*)program_counter);
}
SimInstruction* instr =
reinterpret_cast<SimInstruction*>(program_counter);
instructionDecode(instr);
icount_++;
}
program_counter = get_pc();
}
if (single_stepping_) {
single_step_callback_(single_step_callback_arg_, this, nullptr);
}
}
void Simulator::callInternal(uint8_t* entry) {
// Prepare to execute the code at entry.
setRegister(pc, reinterpret_cast<int64_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
setRegister(ra, end_sim_pc);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int64_t s0_val = getRegister(s0);
int64_t s1_val = getRegister(s1);
int64_t s2_val = getRegister(s2);
int64_t s3_val = getRegister(s3);
int64_t s4_val = getRegister(s4);
int64_t s5_val = getRegister(s5);
int64_t s6_val = getRegister(s6);
int64_t s7_val = getRegister(s7);
int64_t s8_val = getRegister(s8);
int64_t gp_val = getRegister(gp);
int64_t sp_val = getRegister(sp);
int64_t tp_val = getRegister(tp);
int64_t fp_val = getRegister(fp);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int64_t callee_saved_value = icount_;
setRegister(s0, callee_saved_value);
setRegister(s1, callee_saved_value);
setRegister(s2, callee_saved_value);
setRegister(s3, callee_saved_value);
setRegister(s4, callee_saved_value);
setRegister(s5, callee_saved_value);
setRegister(s6, callee_saved_value);
setRegister(s7, callee_saved_value);
setRegister(s8, callee_saved_value);
setRegister(gp, callee_saved_value);
setRegister(tp, callee_saved_value);
setRegister(fp, callee_saved_value);
// Start the simulation.
if (Simulator::StopSimAt != -1) {
execute<true>();
} else {
execute<false>();
}
// Check that the callee-saved registers have been preserved.
MOZ_ASSERT(callee_saved_value == getRegister(s0));
MOZ_ASSERT(callee_saved_value == getRegister(s1));
MOZ_ASSERT(callee_saved_value == getRegister(s2));
MOZ_ASSERT(callee_saved_value == getRegister(s3));
MOZ_ASSERT(callee_saved_value == getRegister(s4));
MOZ_ASSERT(callee_saved_value == getRegister(s5));
MOZ_ASSERT(callee_saved_value == getRegister(s6));
MOZ_ASSERT(callee_saved_value == getRegister(s7));
MOZ_ASSERT(callee_saved_value == getRegister(s8));
MOZ_ASSERT(callee_saved_value == getRegister(gp));
MOZ_ASSERT(callee_saved_value == getRegister(tp));
MOZ_ASSERT(callee_saved_value == getRegister(fp));
// Restore callee-saved registers with the original value.
setRegister(s0, s0_val);
setRegister(s1, s1_val);
setRegister(s2, s2_val);
setRegister(s3, s3_val);
setRegister(s4, s4_val);
setRegister(s5, s5_val);
setRegister(s6, s6_val);
setRegister(s7, s7_val);
setRegister(s8, s8_val);
setRegister(gp, gp_val);
setRegister(sp, sp_val);
setRegister(tp, tp_val);
setRegister(fp, fp_val);
}
int64_t Simulator::call(uint8_t* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
int64_t original_stack = getRegister(sp);
// Compute position of stack on entry to generated code.
int64_t entry_stack = original_stack;
if (argument_count > kCArgSlotCount) {
entry_stack = entry_stack - argument_count * sizeof(int64_t);
} else {
entry_stack = entry_stack - kCArgsSlotsSize;
}
entry_stack &= ~U64(ABIStackAlignment - 1);
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
// Setup the arguments.
for (int i = 0; i < argument_count; i++) {
js::jit::Register argReg;
if (GetIntArgReg(i, &argReg)) {
setRegister(argReg.code(), va_arg(parameters, int64_t));
} else {
stack_argument[i] = va_arg(parameters, int64_t);
}
}
va_end(parameters);
setRegister(sp, entry_stack);
callInternal(entry);
// Pop stack passed arguments.
MOZ_ASSERT(entry_stack == getRegister(sp));
setRegister(sp, original_stack);
int64_t result = getRegister(a0);
return result;
}
uintptr_t Simulator::pushAddress(uintptr_t address) {
int new_sp = getRegister(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
setRegister(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::popAddress() {
int current_sp = getRegister(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
setRegister(sp, current_sp + sizeof(uintptr_t));
return address;
}
} // namespace jit
} // namespace js
js::jit::Simulator* JSContext::simulator() const { return simulator_; }