Source code

Revision control

Copy as Markdown

Other Tools

// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "jit/arm64/vixl/Assembler-vixl.h"
#include <cmath>
#include "jit/arm64/vixl/MacroAssembler-vixl.h"
namespace vixl {
// CPURegList utilities.
CPURegister CPURegList::PopLowestIndex() {
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountTrailingZeros(list_);
VIXL_ASSERT((1ULL << index) & list_);
Remove(index);
return CPURegister(index, size_, type_);
}
CPURegister CPURegList::PopHighestIndex() {
VIXL_ASSERT(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountLeadingZeros(list_);
index = kRegListSizeInBits - 1 - index;
VIXL_ASSERT((1ULL << index) & list_);
Remove(index);
return CPURegister(index, size_, type_);
}
bool CPURegList::IsValid() const {
if ((type_ == CPURegister::kRegister) ||
(type_ == CPURegister::kVRegister)) {
bool is_valid = true;
// Try to create a CPURegister for each element in the list.
for (int i = 0; i < kRegListSizeInBits; i++) {
if (((list_ >> i) & 1) != 0) {
is_valid &= CPURegister(i, size_, type_).IsValid();
}
}
return is_valid;
} else if (type_ == CPURegister::kNoRegister) {
// We can't use IsEmpty here because that asserts IsValid().
return list_ == 0;
} else {
return false;
}
}
void CPURegList::RemoveCalleeSaved() {
if (type() == CPURegister::kRegister) {
Remove(GetCalleeSaved(RegisterSizeInBits()));
} else if (type() == CPURegister::kVRegister) {
Remove(GetCalleeSavedV(RegisterSizeInBits()));
} else {
VIXL_ASSERT(type() == CPURegister::kNoRegister);
VIXL_ASSERT(IsEmpty());
// The list must already be empty, so do nothing.
}
}
CPURegList CPURegList::Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3) {
return Union(list_1, Union(list_2, list_3));
}
CPURegList CPURegList::Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4) {
return Union(Union(list_1, list_2), Union(list_3, list_4));
}
CPURegList CPURegList::Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3) {
return Intersection(list_1, Intersection(list_2, list_3));
}
CPURegList CPURegList::Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4) {
return Intersection(Intersection(list_1, list_2),
Intersection(list_3, list_4));
}
CPURegList CPURegList::GetCalleeSaved(unsigned size) {
return CPURegList(CPURegister::kRegister, size, 19, 29);
}
CPURegList CPURegList::GetCalleeSavedV(unsigned size) {
return CPURegList(CPURegister::kVRegister, size, 8, 15);
}
CPURegList CPURegList::GetCallerSaved(unsigned size) {
// Registers x0-x18 and lr (x30) are caller-saved.
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
// Do not use lr directly to avoid initialisation order fiasco bugs for users.
list.Combine(Register(30, kXRegSize));
return list;
}
CPURegList CPURegList::GetCallerSavedV(unsigned size) {
// Registers d0-d7 and d16-d31 are caller-saved.
CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7);
list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31));
return list;
}
const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved();
const CPURegList kCalleeSavedV = CPURegList::GetCalleeSavedV();
const CPURegList kCallerSaved = CPURegList::GetCallerSaved();
const CPURegList kCallerSavedV = CPURegList::GetCallerSavedV();
// Registers.
#define WREG(n) w##n,
const Register Register::wregisters[] = {
REGISTER_CODE_LIST(WREG)
};
#undef WREG
#define XREG(n) x##n,
const Register Register::xregisters[] = {
REGISTER_CODE_LIST(XREG)
};
#undef XREG
#define BREG(n) b##n,
const VRegister VRegister::bregisters[] = {
REGISTER_CODE_LIST(BREG)
};
#undef BREG
#define HREG(n) h##n,
const VRegister VRegister::hregisters[] = {
REGISTER_CODE_LIST(HREG)
};
#undef HREG
#define SREG(n) s##n,
const VRegister VRegister::sregisters[] = {
REGISTER_CODE_LIST(SREG)
};
#undef SREG
#define DREG(n) d##n,
const VRegister VRegister::dregisters[] = {
REGISTER_CODE_LIST(DREG)
};
#undef DREG
#define QREG(n) q##n,
const VRegister VRegister::qregisters[] = {
REGISTER_CODE_LIST(QREG)
};
#undef QREG
#define VREG(n) v##n,
const VRegister VRegister::vregisters[] = {
REGISTER_CODE_LIST(VREG)
};
#undef VREG
const Register& Register::WRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return wsp;
} else {
VIXL_ASSERT(code < kNumberOfRegisters);
return wregisters[code];
}
}
const Register& Register::XRegFromCode(unsigned code) {
if (code == kSPRegInternalCode) {
return sp;
} else {
VIXL_ASSERT(code < kNumberOfRegisters);
return xregisters[code];
}
}
const VRegister& VRegister::BRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return bregisters[code];
}
const VRegister& VRegister::HRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return hregisters[code];
}
const VRegister& VRegister::SRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return sregisters[code];
}
const VRegister& VRegister::DRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return dregisters[code];
}
const VRegister& VRegister::QRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return qregisters[code];
}
const VRegister& VRegister::VRegFromCode(unsigned code) {
VIXL_ASSERT(code < kNumberOfVRegisters);
return vregisters[code];
}
const Register& CPURegister::W() const {
VIXL_ASSERT(IsValidRegister());
return Register::WRegFromCode(code_);
}
const Register& CPURegister::X() const {
VIXL_ASSERT(IsValidRegister());
return Register::XRegFromCode(code_);
}
const VRegister& CPURegister::B() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::BRegFromCode(code_);
}
const VRegister& CPURegister::H() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::HRegFromCode(code_);
}
const VRegister& CPURegister::S() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::SRegFromCode(code_);
}
const VRegister& CPURegister::D() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::DRegFromCode(code_);
}
const VRegister& CPURegister::Q() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::QRegFromCode(code_);
}
const VRegister& CPURegister::V() const {
VIXL_ASSERT(IsValidVRegister());
return VRegister::VRegFromCode(code_);
}
// Operand.
Operand::Operand(int64_t immediate)
: immediate_(immediate),
reg_(NoReg),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {}
Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
: reg_(reg),
shift_(shift),
extend_(NO_EXTEND),
shift_amount_(shift_amount) {
VIXL_ASSERT(shift != MSL);
VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
VIXL_ASSERT(!reg.IsSP());
}
Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
: reg_(reg),
shift_(NO_SHIFT),
extend_(extend),
shift_amount_(shift_amount) {
VIXL_ASSERT(reg.IsValid());
VIXL_ASSERT(shift_amount <= 4);
VIXL_ASSERT(!reg.IsSP());
// Extend modes SXTX and UXTX require a 64-bit register.
VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
}
bool Operand::IsImmediate() const {
return reg_.Is(NoReg);
}
bool Operand::IsShiftedRegister() const {
return reg_.IsValid() && (shift_ != NO_SHIFT);
}
bool Operand::IsExtendedRegister() const {
return reg_.IsValid() && (extend_ != NO_EXTEND);
}
bool Operand::IsZero() const {
if (IsImmediate()) {
return immediate() == 0;
} else {
return reg().IsZero();
}
}
Operand Operand::ToExtendedRegister() const {
VIXL_ASSERT(IsShiftedRegister());
VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
}
// MemOperand
MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
: base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
}
MemOperand::MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(!regoffset.IsSP());
VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
// SXTX extend mode requires a 64-bit offset register.
VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX));
}
MemOperand::MemOperand(Register base,
Register regoffset,
Shift shift,
unsigned shift_amount)
: base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
VIXL_ASSERT(shift == LSL);
}
MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
: base_(base), regoffset_(NoReg), addrmode_(addrmode) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
if (offset.IsImmediate()) {
offset_ = offset.immediate();
} else if (offset.IsShiftedRegister()) {
VIXL_ASSERT((addrmode == Offset) || (addrmode == PostIndex));
regoffset_ = offset.reg();
shift_ = offset.shift();
shift_amount_ = offset.shift_amount();
extend_ = NO_EXTEND;
offset_ = 0;
// These assertions match those in the shifted-register constructor.
VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
VIXL_ASSERT(shift_ == LSL);
} else {
VIXL_ASSERT(offset.IsExtendedRegister());
VIXL_ASSERT(addrmode == Offset);
regoffset_ = offset.reg();
extend_ = offset.extend();
shift_amount_ = offset.shift_amount();
shift_ = NO_SHIFT;
offset_ = 0;
// These assertions match those in the extended-register constructor.
VIXL_ASSERT(!regoffset_.IsSP());
VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
}
}
bool MemOperand::IsImmediateOffset() const {
return (addrmode_ == Offset) && regoffset_.Is(NoReg);
}
bool MemOperand::IsRegisterOffset() const {
return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
}
bool MemOperand::IsPreIndex() const {
return addrmode_ == PreIndex;
}
bool MemOperand::IsPostIndex() const {
return addrmode_ == PostIndex;
}
void MemOperand::AddOffset(int64_t offset) {
VIXL_ASSERT(IsImmediateOffset());
offset_ += offset;
}
static CPUFeatures InitCachedCPUFeatures() {
CPUFeatures cpu_features = CPUFeatures::AArch64LegacyBaseline();
// Mozilla change: always use maximally-present features.
cpu_features.Combine(CPUFeatures::InferFromOS());
// Mozilla change: Compile time hard-coded value from js-config.mozbuild.
#ifndef MOZ_AARCH64_JSCVT
# error "MOZ_AARCH64_JSCVT must be defined."
#elif MOZ_AARCH64_JSCVT >= 1
// Note, vixl backend implements the JSCVT flag as a boolean despite having 3
// extra bits reserved for forward compatibility in the ARMv8 documentation.
cpu_features.Combine(CPUFeatures::kJSCVT);
#endif
return cpu_features;
}
// Assembler
Assembler::Assembler(PositionIndependentCodeOption pic)
: pic_(pic)
{
// Mozilla change: query cpu features once and cache result.
static CPUFeatures cached_cpu_features = InitCachedCPUFeatures();
cpu_features_ = cached_cpu_features;
}
// Code generation.
void Assembler::br(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(BR | Rn(xn));
}
void Assembler::blr(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(BLR | Rn(xn));
}
void Assembler::ret(const Register& xn) {
VIXL_ASSERT(xn.Is64Bits());
Emit(RET | Rn(xn));
}
void Assembler::NEONTable(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEONTableOp op) {
VIXL_ASSERT(vd.Is16B() || vd.Is8B());
VIXL_ASSERT(vn.Is16B());
VIXL_ASSERT(AreSameFormat(vd, vm));
Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONTable(vd, vn, vm, NEON_TBL_1v);
}
void Assembler::tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm) {
USE(vn2);
VIXL_ASSERT(AreSameFormat(vn, vn2));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBL_2v);
}
void Assembler::tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm) {
USE(vn2, vn3);
VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBL_3v);
}
void Assembler::tbl(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm) {
USE(vn2, vn3, vn4);
VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBL_4v);
}
void Assembler::tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONTable(vd, vn, vm, NEON_TBX_1v);
}
void Assembler::tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vm) {
USE(vn2);
VIXL_ASSERT(AreSameFormat(vn, vn2));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBX_2v);
}
void Assembler::tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vm) {
USE(vn2, vn3);
VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBX_3v);
}
void Assembler::tbx(const VRegister& vd,
const VRegister& vn,
const VRegister& vn2,
const VRegister& vn3,
const VRegister& vn4,
const VRegister& vm) {
USE(vn2, vn3, vn4);
VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters));
NEONTable(vd, vn, vm, NEON_TBX_4v);
}
void Assembler::add(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, ADD);
}
void Assembler::adds(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, ADD);
}
void Assembler::cmn(const Register& rn,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
adds(zr, rn, operand);
}
void Assembler::sub(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, SUB);
}
void Assembler::subs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, SUB);
}
void Assembler::cmp(const Register& rn, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
subs(zr, rn, operand);
}
void Assembler::neg(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sub(rd, zr, operand);
}
void Assembler::negs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
subs(rd, zr, operand);
}
void Assembler::adc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
}
void Assembler::adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
}
void Assembler::sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
}
void Assembler::sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
}
void Assembler::ngc(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbc(rd, zr, operand);
}
void Assembler::ngcs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbcs(rd, zr, operand);
}
// Logical instructions.
void Assembler::and_(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, AND);
}
void Assembler::bic(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BIC);
}
void Assembler::bics(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BICS);
}
void Assembler::orr(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORR);
}
void Assembler::orn(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORN);
}
void Assembler::eor(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EOR);
}
void Assembler::eon(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EON);
}
void Assembler::lslv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::lsrv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::asrv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rorv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
}
// Bitfield operations.
void Assembler::bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.size() == rn.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | BFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | SBFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
VIXL_ASSERT(rd.size() == rn.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | UBFM | N |
ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.size()) | Rn(rn) | Rd(rd));
}
void Assembler::csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSEL);
}
void Assembler::csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINC);
}
void Assembler::csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINV);
}
void Assembler::csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSNEG);
}
void Assembler::cset(const Register &rd, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinc(rd, zr, zr, InvertCondition(cond));
}
void Assembler::csetm(const Register &rd, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinv(rd, zr, zr, InvertCondition(cond));
}
void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csinc(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csinv(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
VIXL_ASSERT((cond != al) && (cond != nv));
csneg(rd, rn, rn, InvertCondition(cond));
}
void Assembler::ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
}
void Assembler::ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMN);
}
void Assembler::ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMP);
}
void Assembler::DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op) {
Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
}
void Assembler::crc32b(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32B | Rn(rn) | Rd(rd));
}
void Assembler::crc32h(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32H | Rn(rn) | Rd(rd));
}
void Assembler::crc32w(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32W | Rn(rn) | Rd(rd));
}
void Assembler::crc32x(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits());
Emit(SF(rm) | Rm(rm) | CRC32X | Rn(rn) | Rd(rd));
}
void Assembler::crc32cb(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32CB | Rn(rn) | Rd(rd));
}
void Assembler::crc32ch(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32CH | Rn(rn) | Rd(rd));
}
void Assembler::crc32cw(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
Emit(SF(rm) | Rm(rm) | CRC32CW | Rn(rn) | Rd(rd));
}
void Assembler::crc32cx(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits());
Emit(SF(rm) | Rm(rm) | CRC32CX | Rn(rn) | Rd(rd));
}
void Assembler::mul(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
}
void Assembler::madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DataProcessing3Source(rd, rn, rm, ra, MADD);
}
void Assembler::mneg(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
}
void Assembler::msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
DataProcessing3Source(rd, rn, rm, ra, MSUB);
}
void Assembler::umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
}
void Assembler::smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
}
void Assembler::umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
}
void Assembler::smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
}
void Assembler::smull(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.Is64Bits());
VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
}
void Assembler::sdiv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::smulh(const Register& xd,
const Register& xn,
const Register& xm) {
VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
}
void Assembler::umulh(const Register& xd,
const Register& xn,
const Register& xm) {
VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
DataProcessing3Source(xd, xn, xm, xzr, UMULH_x);
}
void Assembler::udiv(const Register& rd,
const Register& rn,
const Register& rm) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == rm.size());
Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rbit(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, RBIT);
}
void Assembler::rev16(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, REV16);
}
void Assembler::rev32(const Register& rd,
const Register& rn) {
VIXL_ASSERT(rd.Is64Bits());
DataProcessing1Source(rd, rn, REV);
}
void Assembler::rev(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
}
void Assembler::clz(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLZ);
}
void Assembler::cls(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLS);
}
void Assembler::ldp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
}
void Assembler::stp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
}
void Assembler::ldpsw(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.Is64Bits());
LoadStorePair(rt, rt2, src, LDPSW_x);
}
void Assembler::LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op) {
// 'rt' and 'rt2' can only be aliased for stores.
VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
VIXL_ASSERT(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
int offset = static_cast<int>(addr.offset());
Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(offset, CalcLSPairDataSize(op));
Instr addrmodeop;
if (addr.IsImmediateOffset()) {
addrmodeop = LoadStorePairOffsetFixed;
} else {
VIXL_ASSERT(addr.offset() != 0);
if (addr.IsPreIndex()) {
addrmodeop = LoadStorePairPreIndexFixed;
} else {
VIXL_ASSERT(addr.IsPostIndex());
addrmodeop = LoadStorePairPostIndexFixed;
}
}
Emit(addrmodeop | memop);
}
void Assembler::ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePairNonTemporal(rt, rt2, src,
LoadPairNonTemporalOpFor(rt, rt2));
}
void Assembler::stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePairNonTemporal(rt, rt2, dst,
StorePairNonTemporalOpFor(rt, rt2));
}
void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairNonTemporalOp op) {
VIXL_ASSERT(!rt.Is(rt2));
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
VIXL_ASSERT(addr.IsImmediateOffset());
unsigned size = CalcLSPairDataSize(
static_cast<LoadStorePairOp>(op & LoadStorePairMask));
VIXL_ASSERT(IsImmLSPair(addr.offset(), size));
int offset = static_cast<int>(addr.offset());
Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, size));
}
// Memory instructions.
void Assembler::ldrb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRB_w, option);
}
void Assembler::strb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, STRB_w, option);
}
void Assembler::ldrsb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
}
void Assembler::ldrh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRH_w, option);
}
void Assembler::strh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, STRH_w, option);
}
void Assembler::ldrsh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
}
void Assembler::ldr(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LoadOpFor(rt), option);
}
void Assembler::str(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, dst, StoreOpFor(rt), option);
}
void Assembler::ldrsw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(rt.Is64Bits());
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
LoadStore(rt, src, LDRSW_x, option);
}
void Assembler::ldurb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRB_w, option);
}
void Assembler::sturb(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, STRB_w, option);
}
void Assembler::ldursb(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
}
void Assembler::ldurh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRH_w, option);
}
void Assembler::sturh(const Register& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, STRH_w, option);
}
void Assembler::ldursh(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
}
void Assembler::ldur(const CPURegister& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LoadOpFor(rt), option);
}
void Assembler::stur(const CPURegister& rt, const MemOperand& dst,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, dst, StoreOpFor(rt), option);
}
void Assembler::ldursw(const Register& rt, const MemOperand& src,
LoadStoreScalingOption option) {
VIXL_ASSERT(rt.Is64Bits());
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
LoadStore(rt, src, LDRSW_x, option);
}
void Assembler::ldrsw(const Register& rt, int imm19) {
Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt));
}
void Assembler::ldr(const CPURegister& rt, int imm19) {
LoadLiteralOp op = LoadLiteralOpFor(rt);
Emit(op | ImmLLiteral(imm19) | Rt(rt));
}
// clang-format off
#define COMPARE_AND_SWAP_W_X_LIST(V) \
V(cas, CAS) \
V(casa, CASA) \
V(casl, CASL) \
V(casal, CASAL)
// clang-format on
#define DEFINE_ASM_FUNC(FN, OP) \
void Assembler::FN(const Register& rs, const Register& rt, \
const MemOperand& src) { \
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
}
COMPARE_AND_SWAP_W_X_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
// clang-format off
#define COMPARE_AND_SWAP_W_LIST(V) \
V(casb, CASB) \
V(casab, CASAB) \
V(caslb, CASLB) \
V(casalb, CASALB) \
V(cash, CASH) \
V(casah, CASAH) \
V(caslh, CASLH) \
V(casalh, CASALH)
// clang-format on
#define DEFINE_ASM_FUNC(FN, OP) \
void Assembler::FN(const Register& rs, const Register& rt, \
const MemOperand& src) { \
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
}
COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
// clang-format off
#define COMPARE_AND_SWAP_PAIR_LIST(V) \
V(casp, CASP) \
V(caspa, CASPA) \
V(caspl, CASPL) \
V(caspal, CASPAL)
// clang-format on
#define DEFINE_ASM_FUNC(FN, OP) \
void Assembler::FN(const Register& rs, const Register& rs1, \
const Register& rt, const Register& rt1, \
const MemOperand& src) { \
USE(rs1, rt1); \
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
VIXL_ASSERT(AreEven(rs, rt)); \
VIXL_ASSERT(AreConsecutive(rs, rs1)); \
VIXL_ASSERT(AreConsecutive(rt, rt1)); \
LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
}
COMPARE_AND_SWAP_PAIR_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::prfm(PrefetchOperation op, int imm19) {
Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19));
}
// Exclusive-access instructions.
void Assembler::stxrb(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stxrh(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stxr(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldxrb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldxrh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldxr(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::stxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
}
void Assembler::ldxp(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w;
Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
}
void Assembler::stlxrb(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlxrh(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlxr(const Register& rs,
const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldaxrb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldaxrh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldaxr(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::stlxp(const Register& rs,
const Register& rt,
const Register& rt2,
const MemOperand& dst) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w;
Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
}
void Assembler::ldaxp(const Register& rt,
const Register& rt2,
const MemOperand& src) {
VIXL_ASSERT(rt.size() == rt2.size());
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w;
Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
}
void Assembler::stlrb(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlrh(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::stlr(const Register& rt,
const MemOperand& dst) {
VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
}
void Assembler::ldarb(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldarh(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
void Assembler::ldar(const Register& rt,
const MemOperand& src) {
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w;
Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
}
// These macros generate all the variations of the atomic memory operations,
// e.g. ldadd, ldadda, ldaddb, staddl, etc.
// For a full list of the methods with comments, see the assembler header file.
// clang-format off
#define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \
V(DEF, add, LDADD) \
V(DEF, clr, LDCLR) \
V(DEF, eor, LDEOR) \
V(DEF, set, LDSET) \
V(DEF, smax, LDSMAX) \
V(DEF, smin, LDSMIN) \
V(DEF, umax, LDUMAX) \
V(DEF, umin, LDUMIN)
#define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
V(NAME, OP##_x, OP##_w) \
V(NAME##l, OP##L_x, OP##L_w) \
V(NAME##b, OP##B, OP##B) \
V(NAME##lb, OP##LB, OP##LB) \
V(NAME##h, OP##H, OP##H) \
V(NAME##lh, OP##LH, OP##LH)
#define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \
ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
V(NAME##a, OP##A_x, OP##A_w) \
V(NAME##al, OP##AL_x, OP##AL_w) \
V(NAME##ab, OP##AB, OP##AB) \
V(NAME##alb, OP##ALB, OP##ALB) \
V(NAME##ah, OP##AH, OP##AH) \
V(NAME##alh, OP##ALH, OP##ALH)
// clang-format on
#define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W) \
void Assembler::ld##FN(const Register& rs, const Register& rt, \
const MemOperand& src) { \
VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \
Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \
}
#define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W) \
void Assembler::st##FN(const Register& rs, const MemOperand& src) { \
VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
ld##FN(rs, AppropriateZeroRegFor(rs), src); \
}
ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES,
DEFINE_ASM_LOAD_FUNC)
ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES,
DEFINE_ASM_STORE_FUNC)
#define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W) \
void Assembler::FN(const Register& rs, const Register& rt, \
const MemOperand& src) { \
VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \
Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \
}
ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP)
#undef DEFINE_ASM_LOAD_FUNC
#undef DEFINE_ASM_STORE_FUNC
#undef DEFINE_ASM_SWP_FUNC
void Assembler::prfm(PrefetchOperation op, const MemOperand& address,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireUnscaledOffset);
VIXL_ASSERT(option != PreferUnscaledOffset);
Prefetch(op, address, option);
}
void Assembler::prfum(PrefetchOperation op, const MemOperand& address,
LoadStoreScalingOption option) {
VIXL_ASSERT(option != RequireScaledOffset);
VIXL_ASSERT(option != PreferScaledOffset);
Prefetch(op, address, option);
}
void Assembler::sys(int op1, int crn, int crm, int op2, const Register& rt) {
Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(rt));
}
void Assembler::sys(int op, const Register& rt) {
Emit(SYS | SysOp(op) | Rt(rt));
}
void Assembler::dc(DataCacheOp op, const Register& rt) {
VIXL_ASSERT((op == CVAC) || (op == CVAU) || (op == CIVAC) || (op == ZVA));
sys(op, rt);
}
void Assembler::ic(InstructionCacheOp op, const Register& rt) {
VIXL_ASSERT(op == IVAU);
sys(op, rt);
}
// NEON structure loads and stores.
Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) {
Instr addr_field = RnSP(addr.base());
if (addr.IsPostIndex()) {
VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex ==
static_cast<NEONLoadStoreMultiStructPostIndexOp>(
NEONLoadStoreSingleStructPostIndex));
addr_field |= NEONLoadStoreMultiStructPostIndex;
if (addr.offset() == 0) {
addr_field |= RmNot31(addr.regoffset());
} else {
// The immediate post index addressing mode is indicated by rm = 31.
// The immediate is implied by the number of vector registers used.
addr_field |= (0x1f << Rm_offset);
}
} else {
VIXL_ASSERT(addr.IsImmediateOffset() && (addr.offset() == 0));
}
return addr_field;
}
void Assembler::LoadStoreStructVerify(const VRegister& vt,
const MemOperand& addr,
Instr op) {
#ifdef DEBUG
// Assert that addressing mode is either offset (with immediate 0), post
// index by immediate of the size of the register list, or post index by a
// value in a core register.
if (addr.IsImmediateOffset()) {
VIXL_ASSERT(addr.offset() == 0);
} else {
int offset = vt.SizeInBytes();
switch (op) {
case NEON_LD1_1v:
case NEON_ST1_1v:
offset *= 1; break;
case NEONLoadStoreSingleStructLoad1:
case NEONLoadStoreSingleStructStore1:
case NEON_LD1R:
offset = (offset / vt.lanes()) * 1; break;
case NEON_LD1_2v:
case NEON_ST1_2v:
case NEON_LD2:
case NEON_ST2:
offset *= 2;
break;
case NEONLoadStoreSingleStructLoad2:
case NEONLoadStoreSingleStructStore2:
case NEON_LD2R:
offset = (offset / vt.lanes()) * 2; break;
case NEON_LD1_3v:
case NEON_ST1_3v:
case NEON_LD3:
case NEON_ST3:
offset *= 3; break;
case NEONLoadStoreSingleStructLoad3:
case NEONLoadStoreSingleStructStore3:
case NEON_LD3R:
offset = (offset / vt.lanes()) * 3; break;
case NEON_LD1_4v:
case NEON_ST1_4v:
case NEON_LD4:
case NEON_ST4:
offset *= 4; break;
case NEONLoadStoreSingleStructLoad4:
case NEONLoadStoreSingleStructStore4:
case NEON_LD4R:
offset = (offset / vt.lanes()) * 4; break;
default:
VIXL_UNREACHABLE();
}
VIXL_ASSERT(!addr.regoffset().Is(NoReg) ||
addr.offset() == offset);
}
#else
USE(vt, addr, op);
#endif
}
void Assembler::LoadStoreStruct(const VRegister& vt,
const MemOperand& addr,
NEONLoadStoreMultiStructOp op) {
LoadStoreStructVerify(vt, addr, op);
VIXL_ASSERT(vt.IsVector() || vt.Is1D());
Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
}
void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt,
const MemOperand& addr,
NEONLoadStoreSingleStructOp op) {
LoadStoreStructVerify(vt, addr, op);
Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
}
void Assembler::ld1(const VRegister& vt,
const MemOperand& src) {
LoadStoreStruct(vt, src, NEON_LD1_1v);
}
void Assembler::ld1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStruct(vt, src, NEON_LD1_2v);
}
void Assembler::ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStruct(vt, src, NEON_LD1_3v);
}
void Assembler::ld1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStruct(vt, src, NEON_LD1_4v);
}
void Assembler::ld2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStruct(vt, src, NEON_LD2);
}
void Assembler::ld2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& src) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2);
}
void Assembler::ld2r(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R);
}
void Assembler::ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStruct(vt, src, NEON_LD3);
}
void Assembler::ld3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& src) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3);
}
void Assembler::ld3r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R);
}
void Assembler::ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStruct(vt, src, NEON_LD4);
}
void Assembler::ld4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& src) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4);
}
void Assembler::ld4r(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R);
}
void Assembler::st1(const VRegister& vt,
const MemOperand& src) {
LoadStoreStruct(vt, src, NEON_ST1_1v);
}
void Assembler::st1(const VRegister& vt,
const VRegister& vt2,
const MemOperand& src) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStruct(vt, src, NEON_ST1_2v);
}
void Assembler::st1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& src) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStruct(vt, src, NEON_ST1_3v);
}
void Assembler::st1(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& src) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStruct(vt, src, NEON_ST1_4v);
}
void Assembler::st2(const VRegister& vt,
const VRegister& vt2,
const MemOperand& dst) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStruct(vt, dst, NEON_ST2);
}
void Assembler::st2(const VRegister& vt,
const VRegister& vt2,
int lane,
const MemOperand& dst) {
USE(vt2);
VIXL_ASSERT(AreSameFormat(vt, vt2));
VIXL_ASSERT(AreConsecutive(vt, vt2));
LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2);
}
void Assembler::st3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const MemOperand& dst) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStruct(vt, dst, NEON_ST3);
}
void Assembler::st3(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
int lane,
const MemOperand& dst) {
USE(vt2, vt3);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3);
}
void Assembler::st4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
const MemOperand& dst) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStruct(vt, dst, NEON_ST4);
}
void Assembler::st4(const VRegister& vt,
const VRegister& vt2,
const VRegister& vt3,
const VRegister& vt4,
int lane,
const MemOperand& dst) {
USE(vt2, vt3, vt4);
VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4);
}
void Assembler::LoadStoreStructSingle(const VRegister& vt,
uint32_t lane,
const MemOperand& addr,
NEONLoadStoreSingleStructOp op) {
LoadStoreStructVerify(vt, addr, op);
// We support vt arguments of the form vt.VxT() or vt.T(), where x is the
// number of lanes, and T is b, h, s or d.
unsigned lane_size = vt.LaneSizeInBytes();
VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size));
// Lane size is encoded in the opcode field. Lane index is encoded in the Q,
// S and size fields.
lane *= lane_size;
if (lane_size == 8) lane++;
Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask;
Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask;
Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask;
Instr instr = op;
switch (lane_size) {
case 1: instr |= NEONLoadStoreSingle_b; break;
case 2: instr |= NEONLoadStoreSingle_h; break;
case 4: instr |= NEONLoadStoreSingle_s; break;
default:
VIXL_ASSERT(lane_size == 8);
instr |= NEONLoadStoreSingle_d;
}
Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt));
}
void Assembler::ld1(const VRegister& vt,
int lane,
const MemOperand& src) {
LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1);
}
void Assembler::ld1r(const VRegister& vt,
const MemOperand& src) {
LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R);
}
void Assembler::st1(const VRegister& vt,
int lane,
const MemOperand& dst) {
LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1);
}
void Assembler::NEON3DifferentL(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop) {
VIXL_ASSERT(AreSameFormat(vn, vm));
VIXL_ASSERT((vn.Is1H() && vd.Is1S()) ||
(vn.Is1S() && vd.Is1D()) ||
(vn.Is8B() && vd.Is8H()) ||
(vn.Is4H() && vd.Is4S()) ||
(vn.Is2S() && vd.Is2D()) ||
(vn.Is16B() && vd.Is8H())||
(vn.Is8H() && vd.Is4S()) ||
(vn.Is4S() && vd.Is2D()));
Instr format, op = vop;
if (vd.IsScalar()) {
op |= NEON_Q | NEONScalar;
format = SFormat(vn);
} else {
format = VFormat(vn);
}
Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEON3DifferentW(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT((vm.Is8B() && vd.Is8H()) ||
(vm.Is4H() && vd.Is4S()) ||
(vm.Is2S() && vd.Is2D()) ||
(vm.Is16B() && vd.Is8H())||
(vm.Is8H() && vd.Is4S()) ||
(vm.Is4S() && vd.Is2D()));
Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEON3DifferentHN(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3DifferentOp vop) {
VIXL_ASSERT(AreSameFormat(vm, vn));
VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
(vd.Is4H() && vn.Is4S()) ||
(vd.Is2S() && vn.Is2D()) ||
(vd.Is16B() && vn.Is8H())||
(vd.Is8H() && vn.Is4S()) ||
(vd.Is4S() && vn.Is2D()));
Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
}
#define NEON_3DIFF_LONG_LIST(V) \
V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \
V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \
V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \
V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \
V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \
V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \
V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \
V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \
V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \
V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \
V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \
V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \
V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \
V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \
V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \
V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \
V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \
V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \
V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \
V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \
V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \
V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \
V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \
V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \
V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \
V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \
V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \
V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \
V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \
V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \
V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm) { \
VIXL_ASSERT(AS); \
NEON3DifferentL(vd, vn, vm, OP); \
}
NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
#define NEON_3DIFF_HN_LIST(V) \
V(addhn, NEON_ADDHN, vd.IsD()) \
V(addhn2, NEON_ADDHN2, vd.IsQ()) \
V(raddhn, NEON_RADDHN, vd.IsD()) \
V(raddhn2, NEON_RADDHN2, vd.IsQ()) \
V(subhn, NEON_SUBHN, vd.IsD()) \
V(subhn2, NEON_SUBHN2, vd.IsQ()) \
V(rsubhn, NEON_RSUBHN, vd.IsD()) \
V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm) { \
VIXL_ASSERT(AS); \
NEON3DifferentHN(vd, vn, vm, OP); \
}
NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::uaddw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_UADDW);
}
void Assembler::uaddw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
}
void Assembler::saddw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_SADDW);
}
void Assembler::saddw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
}
void Assembler::usubw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_USUBW);
}
void Assembler::usubw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
}
void Assembler::ssubw(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsD());
NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
}
void Assembler::ssubw2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(vm.IsQ());
NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
}
void Assembler::mov(const Register& rd, const Register& rm) {
// Moves involving the stack pointer are encoded as add immediate with
// second operand of zero. Otherwise, orr with first operand zr is
// used.
if (rd.IsSP() || rm.IsSP()) {
add(rd, rm, 0);
} else {
orr(rd, AppropriateZeroRegFor(rd), rm);
}
}
void Assembler::mvn(const Register& rd, const Operand& operand) {
orn(rd, AppropriateZeroRegFor(rd), operand);
}
void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
VIXL_ASSERT(rt.Is64Bits());
Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
}
void Assembler::msr(SystemRegister sysreg, const Register& rt) {
VIXL_ASSERT(rt.Is64Bits());
Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
}
void Assembler::clrex(int imm4) {
Emit(CLREX | CRm(imm4));
}
void Assembler::dmb(BarrierDomain domain, BarrierType type) {
Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::dsb(BarrierDomain domain, BarrierType type) {
Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::isb() {
Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
}
void Assembler::fmov(const VRegister& vd, double imm) {
if (vd.IsScalar()) {
VIXL_ASSERT(vd.Is1D());
Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm));
} else {
VIXL_ASSERT(vd.Is2D());
Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit;
Instr q = NEON_Q;
uint32_t encoded_imm = FP64ToImm8(imm);
Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
}
}
void Assembler::fmov(const VRegister& vd, float imm) {
if (vd.IsScalar()) {
VIXL_ASSERT(vd.Is1S());
Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm));
} else {
VIXL_ASSERT(vd.Is2S() || vd.Is4S());
Instr op = NEONModifiedImmediate_MOVI;
Instr q = vd.Is4S() ? NEON_Q : 0;
uint32_t encoded_imm = FP32ToImm8(imm);
Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
}
}
void Assembler::fmov(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
VIXL_ASSERT(rd.size() == vn.size());
FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
Emit(op | Rd(rd) | Rn(vn));
}
void Assembler::fmov(const VRegister& vd, const Register& rn) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(vd.size() == rn.size());
FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx;
Emit(op | Rd(vd) | Rn(rn));
}
void Assembler::fmov(const VRegister& vd, const VRegister& vn) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(vd.IsSameFormat(vn));
Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn));
}
void Assembler::fmov(const VRegister& vd, int index, const Register& rn) {
VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX());
USE(index);
Emit(FMOV_d1_x | Rd(vd) | Rn(rn));
}
void Assembler::fmov(const Register& rd, const VRegister& vn, int index) {
VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX());
USE(index);
Emit(FMOV_x_d1 | Rd(rd) | Rn(vn));
}
void Assembler::fmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMADD_s : FMADD_d);
}
void Assembler::fmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMSUB_s : FMSUB_d);
}
void Assembler::fnmadd(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMADD_s : FNMADD_d);
}
void Assembler::fnmsub(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va) {
FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMSUB_s : FNMSUB_d);
}
void Assembler::fnmul(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm));
Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d;
Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::FPCompareMacro(const VRegister& vn,
double value,
FPTrapFlags trap) {
USE(value);
// Although the fcmp{e} instructions can strictly only take an immediate
// value of +0.0, we don't need to check for -0.0 because the sign of 0.0
// doesn't affect the result of the comparison.
VIXL_ASSERT(value == 0.0);
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero;
Emit(FPType(vn) | op | Rn(vn));
}
void Assembler::FPCompareMacro(const VRegister& vn,
const VRegister& vm,
FPTrapFlags trap) {
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
VIXL_ASSERT(vn.IsSameSizeAndType(vm));
Instr op = (trap == EnableTrap) ? FCMPE : FCMP;
Emit(FPType(vn) | op | Rm(vm) | Rn(vn));
}
void Assembler::fcmp(const VRegister& vn,
const VRegister& vm) {
FPCompareMacro(vn, vm, DisableTrap);
}
void Assembler::fcmpe(const VRegister& vn,
const VRegister& vm) {
FPCompareMacro(vn, vm, EnableTrap);
}
void Assembler::fcmp(const VRegister& vn,
double value) {
FPCompareMacro(vn, value, DisableTrap);
}
void Assembler::fcmpe(const VRegister& vn,
double value) {
FPCompareMacro(vn, value, EnableTrap);
}
void Assembler::FPCCompareMacro(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond,
FPTrapFlags trap) {
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
VIXL_ASSERT(vn.IsSameSizeAndType(vm));
Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP;
Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv));
}
void Assembler::fccmp(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond) {
FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap);
}
void Assembler::fccmpe(const VRegister& vn,
const VRegister& vm,
StatusFlags nzcv,
Condition cond) {
FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap);
}
void Assembler::fcsel(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
Condition cond) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(AreSameFormat(vd, vn, vm));
Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd));
}
void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) {
VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT));
VIXL_ASSERT(rd.IsW() && vn.Is1D());
Emit(FJCVTZS | Rn(vn) | Rd(rd));
}
void Assembler::NEONFPConvertToInt(const Register& rd,
const VRegister& vn,
Instr op) {
Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd));
}
void Assembler::NEONFPConvertToInt(const VRegister& vd,
const VRegister& vn,
Instr op) {
if (vn.IsScalar()) {
VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D()));
op |= NEON_Q | NEONScalar;
}
Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::fcvt(const VRegister& vd,
const VRegister& vn) {
FPDataProcessing1SourceOp op;
if (vd.Is1D()) {
VIXL_ASSERT(vn.Is1S() || vn.Is1H());
op = vn.Is1S() ? FCVT_ds : FCVT_dh;
} else if (vd.Is1S()) {
VIXL_ASSERT(vn.Is1D() || vn.Is1H());
op = vn.Is1D() ? FCVT_sd : FCVT_sh;
} else {
VIXL_ASSERT(vd.Is1H());
VIXL_ASSERT(vn.Is1D() || vn.Is1S());
op = vn.Is1D() ? FCVT_hd : FCVT_hs;
}
FPDataProcessing1Source(vd, vn, op);
}
void Assembler::fcvtl(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is4S() && vn.Is4H()) ||
(vd.Is2D() && vn.Is2S()));
Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd));
}
void Assembler::fcvtl2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is4S() && vn.Is8H()) ||
(vd.Is2D() && vn.Is4S()));
Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd));
}
void Assembler::fcvtn(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vn.Is4S() && vd.Is4H()) ||
(vn.Is2D() && vd.Is2S()));
Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd));
}
void Assembler::fcvtn2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vn.Is4S() && vd.Is8H()) ||
(vn.Is2D() && vd.Is4S()));
Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd));
}
void Assembler::fcvtxn(const VRegister& vd,
const VRegister& vn) {
Instr format = 1 << NEONSize_offset;
if (vd.IsScalar()) {
VIXL_ASSERT(vd.Is1S() && vn.Is1D());
Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd));
} else {
VIXL_ASSERT(vd.Is2S() && vn.Is2D());
Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd));
}
}
void Assembler::fcvtxn2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.Is4S() && vn.Is2D());
Instr format = 1 << NEONSize_offset;
Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd));
}
#define NEON_FP2REGMISC_FCVT_LIST(V) \
V(fcvtnu, NEON_FCVTNU, FCVTNU) \
V(fcvtns, NEON_FCVTNS, FCVTNS) \
V(fcvtpu, NEON_FCVTPU, FCVTPU) \
V(fcvtps, NEON_FCVTPS, FCVTPS) \
V(fcvtmu, NEON_FCVTMU, FCVTMU) \
V(fcvtms, NEON_FCVTMS, FCVTMS) \
V(fcvtau, NEON_FCVTAU, FCVTAU) \
V(fcvtas, NEON_FCVTAS, FCVTAS)
#define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \
void Assembler::FN(const Register& rd, \
const VRegister& vn) { \
NEONFPConvertToInt(rd, vn, SCA_OP); \
} \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn) { \
NEONFPConvertToInt(vd, vn, VEC_OP); \
}
NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS)
#undef DEFINE_ASM_FUNCS
void Assembler::fcvtzs(const Register& rd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits()));
if (fbits == 0) {
Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd));
} else {
Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) |
Rd(rd));
}
}
void Assembler::fcvtzs(const VRegister& vd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
NEONFP2RegMisc(vd, vn, NEON_FCVTZS);
} else {
VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm);
}
}
void Assembler::fcvtzu(const Register& rd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(vn.Is1S() || vn.Is1D());
VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits()));
if (fbits == 0) {
Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd));
} else {
Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) |
Rd(rd));
}
}
void Assembler::fcvtzu(const VRegister& vd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
NEONFP2RegMisc(vd, vn, NEON_FCVTZU);
} else {
VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm);
}
}
void Assembler::ucvtf(const VRegister& vd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
NEONFP2RegMisc(vd, vn, NEON_UCVTF);
} else {
VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm);
}
}
void Assembler::scvtf(const VRegister& vd,
const VRegister& vn,
int fbits) {
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
NEONFP2RegMisc(vd, vn, NEON_SCVTF);
} else {
VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm);
}
}
void Assembler::scvtf(const VRegister& vd,
const Register& rn,
int fbits) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd));
} else {
Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(vd));
}
}
void Assembler::ucvtf(const VRegister& vd,
const Register& rn,
int fbits) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(fbits >= 0);
if (fbits == 0) {
Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd));
} else {
Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(vd));
}
}
void Assembler::NEON3Same(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEON3SameOp vop) {
VIXL_ASSERT(AreSameFormat(vd, vn, vm));
VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
Instr format, op = vop;
if (vd.IsScalar()) {
op |= NEON_Q | NEONScalar;
format = SFormat(vd);
} else {
format = VFormat(vd);
}
Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEONFP3Same(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
Instr op) {
VIXL_ASSERT(AreSameFormat(vd, vn, vm));
Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
}
#define NEON_FP2REGMISC_LIST(V) \
V(fabs, NEON_FABS, FABS) \
V(fneg, NEON_FNEG, FNEG) \
V(fsqrt, NEON_FSQRT, FSQRT) \
V(frintn, NEON_FRINTN, FRINTN) \
V(frinta, NEON_FRINTA, FRINTA) \
V(frintp, NEON_FRINTP, FRINTP) \
V(frintm, NEON_FRINTM, FRINTM) \
V(frintx, NEON_FRINTX, FRINTX) \
V(frintz, NEON_FRINTZ, FRINTZ) \
V(frinti, NEON_FRINTI, FRINTI) \
V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \
V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar )
#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn) { \
Instr op; \
if (vd.IsScalar()) { \
VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \
op = SCA_OP; \
} else { \
VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
op = VEC_OP; \
} \
NEONFP2RegMisc(vd, vn, op); \
}
NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::NEONFP2RegMisc(const VRegister& vd,
const VRegister& vn,
Instr op) {
VIXL_ASSERT(AreSameFormat(vd, vn));
Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
}
void Assembler::NEON2RegMisc(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop,
int value) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(value == 0);
USE(value);
Instr format, op = vop;
if (vd.IsScalar()) {
op |= NEON_Q | NEONScalar;
format = SFormat(vd);
} else {
format = VFormat(vd);
}
Emit(format | op | Rn(vn) | Rd(vd));
}
void Assembler::cmeq(const VRegister& vd,
const VRegister& vn,
int value) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value);
}
void Assembler::cmge(const VRegister& vd,
const VRegister& vn,
int value) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_CMGE_zero, value);
}
void Assembler::cmgt(const VRegister& vd,
const VRegister& vn,
int value) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_CMGT_zero, value);
}
void Assembler::cmle(const VRegister& vd,
const VRegister& vn,
int value) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_CMLE_zero, value);
}
void Assembler::cmlt(const VRegister& vd,
const VRegister& vn,
int value) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_CMLT_zero, value);
}
void Assembler::shll(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) ||
(vd.Is4S() && vn.Is4H() && shift == 16) ||
(vd.Is2D() && vn.Is2S() && shift == 32));
USE(shift);
Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
}
void Assembler::shll2(const VRegister& vd,
const VRegister& vn,
int shift) {
USE(shift);
VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) ||
(vd.Is4S() && vn.Is8H() && shift == 16) ||
(vd.Is2D() && vn.Is4S() && shift == 32));
Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
}
void Assembler::NEONFP2RegMisc(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop,
double value) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(value == 0.0);
USE(value);
Instr op = vop;
if (vd.IsScalar()) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
op |= NEON_Q | NEONScalar;
} else {
VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());
}
Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
}
void Assembler::fcmeq(const VRegister& vd,
const VRegister& vn,
double value) {
NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value);
}
void Assembler::fcmge(const VRegister& vd,
const VRegister& vn,
double value) {
NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value);
}
void Assembler::fcmgt(const VRegister& vd,
const VRegister& vn,
double value) {
NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value);
}
void Assembler::fcmle(const VRegister& vd,
const VRegister& vn,
double value) {
NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value);
}
void Assembler::fcmlt(const VRegister& vd,
const VRegister& vn,
double value) {
NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value);
}
void Assembler::frecpx(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsScalar());
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd));
}
#define NEON_3SAME_LIST(V) \
V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \
V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \
V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \
V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \
V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \
V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \
V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \
V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \
V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \
V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \
V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \
V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \
V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \
V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \
V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \
V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \
V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \
V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \
V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \
V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \
V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \
V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \
V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \
V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \
V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \
V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \
V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \
V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \
V(uqadd, NEON_UQADD, true) \
V(sqadd, NEON_SQADD, true) \
V(uqsub, NEON_UQSUB, true) \
V(sqsub, NEON_SQSUB, true) \
V(sqshl, NEON_SQSHL, true) \
V(uqshl, NEON_UQSHL, true) \
V(sqrshl, NEON_SQRSHL, true) \
V(uqrshl, NEON_UQRSHL, true)
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm) { \
VIXL_ASSERT(AS); \
NEON3Same(vd, vn, vm, OP); \
}
NEON_3SAME_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
#define NEON_FP3SAME_OP_LIST(V) \
V(fadd, NEON_FADD, FADD) \
V(fsub, NEON_FSUB, FSUB) \
V(fmul, NEON_FMUL, FMUL) \
V(fdiv, NEON_FDIV, FDIV) \
V(fmax, NEON_FMAX, FMAX) \
V(fmaxnm, NEON_FMAXNM, FMAXNM) \
V(fmin, NEON_FMIN, FMIN) \
V(fminnm, NEON_FMINNM, FMINNM) \
V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \
V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \
V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \
V(fabd, NEON_FABD, NEON_FABD_scalar) \
V(fmla, NEON_FMLA, 0) \
V(fmls, NEON_FMLS, 0) \
V(facge, NEON_FACGE, NEON_FACGE_scalar) \
V(facgt, NEON_FACGT, NEON_FACGT_scalar) \
V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \
V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \
V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \
V(faddp, NEON_FADDP, 0) \
V(fmaxp, NEON_FMAXP, 0) \
V(fminp, NEON_FMINP, 0) \
V(fmaxnmp, NEON_FMAXNMP, 0) \
V(fminnmp, NEON_FMINNMP, 0)
#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm) { \
Instr op; \
if ((SCA_OP != 0) && vd.IsScalar()) { \
VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \
op = SCA_OP; \
} else { \
VIXL_ASSERT(vd.IsVector()); \
VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
op = VEC_OP; \
} \
NEONFP3Same(vd, vn, vm, op); \
}
NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::addp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1D() && vn.Is2D()));
Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::faddp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
(vd.Is1D() && vn.Is2D()));
Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::fmaxp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
(vd.Is1D() && vn.Is2D()));
Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::fminp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
(vd.Is1D() && vn.Is2D()));
Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::fmaxnmp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
(vd.Is1D() && vn.Is2D()));
Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::fminnmp(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
(vd.Is1D() && vn.Is2D()));
Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd));
}
void Assembler::orr(const VRegister& vd,
const int imm8,
const int left_shift) {
NEONModifiedImmShiftLsl(vd, imm8, left_shift,
NEONModifiedImmediate_ORR);
}
void Assembler::mov(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
if (vd.IsD()) {
orr(vd.V8B(), vn.V8B(), vn.V8B());
} else {
VIXL_ASSERT(vd.IsQ());
orr(vd.V16B(), vn.V16B(), vn.V16B());
}
}
void Assembler::bic(const VRegister& vd,
const int imm8,
const int left_shift) {
NEONModifiedImmShiftLsl(vd, imm8, left_shift,
NEONModifiedImmediate_BIC);
}
void Assembler::movi(const VRegister& vd,
const uint64_t imm,
Shift shift,
const int shift_amount) {
VIXL_ASSERT((shift == LSL) || (shift == MSL));
if (vd.Is2D() || vd.Is1D()) {
VIXL_ASSERT(shift_amount == 0);
int imm8 = 0;
for (int i = 0; i < 8; ++i) {
int byte = (imm >> (i * 8)) & 0xff;
VIXL_ASSERT((byte == 0) || (byte == 0xff));
if (byte == 0xff) {
imm8 |= (1 << i);
}
}
int q = vd.Is2D() ? NEON_Q : 0;
Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI |
ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd));
} else if (shift == LSL) {
VIXL_ASSERT(IsUint8(imm));
NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount,
NEONModifiedImmediate_MOVI);
} else {
VIXL_ASSERT(IsUint8(imm));
NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount,
NEONModifiedImmediate_MOVI);
}
}
void Assembler::mvn(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
if (vd.IsD()) {
not_(vd.V8B(), vn.V8B());
} else {
VIXL_ASSERT(vd.IsQ());
not_(vd.V16B(), vn.V16B());
}
}
void Assembler::mvni(const VRegister& vd,
const int imm8,
Shift shift,
const int shift_amount) {
VIXL_ASSERT((shift == LSL) || (shift == MSL));
if (shift == LSL) {
NEONModifiedImmShiftLsl(vd, imm8, shift_amount,
NEONModifiedImmediate_MVNI);
} else {
NEONModifiedImmShiftMsl(vd, imm8, shift_amount,
NEONModifiedImmediate_MVNI);
}
}
void Assembler::NEONFPByElement(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp vop) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT((vd.Is2S() && vm.Is1S()) ||
(vd.Is4S() && vm.Is1S()) ||
(vd.Is1S() && vm.Is1S()) ||
(vd.Is2D() && vm.Is1D()) ||
(vd.Is1D() && vm.Is1D()));
VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) ||
(vm.Is1D() && (vm_index < 2)));
Instr op = vop;
int index_num_bits = vm.Is1S() ? 2 : 1;
if (vd.IsScalar()) {
op |= NEON_Q | NEONScalar;
}
Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) |
Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEONByElement(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp vop) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT((vd.Is4H() && vm.Is1H()) ||
(vd.Is8H() && vm.Is1H()) ||
(vd.Is1H() && vm.Is1H()) ||
(vd.Is2S() && vm.Is1S()) ||
(vd.Is4S() && vm.Is1S()) ||
(vd.Is1S() && vm.Is1S()));
VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
(vm.Is1S() && (vm_index < 4)));
Instr format, op = vop;
int index_num_bits = vm.Is1H() ? 3 : 2;
if (vd.IsScalar()) {
op |= NEONScalar | NEON_Q;
format = SFormat(vn);
} else {
format = VFormat(vn);
}
Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) |
Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::NEONByElementL(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int vm_index,
NEONByIndexedElementOp vop) {
VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) ||
(vd.Is4S() && vn.Is8H() && vm.Is1H()) ||
(vd.Is1S() && vn.Is1H() && vm.Is1H()) ||
(vd.Is2D() && vn.Is2S() && vm.Is1S()) ||
(vd.Is2D() && vn.Is4S() && vm.Is1S()) ||
(vd.Is1D() && vn.Is1S() && vm.Is1S()));
VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
(vm.Is1S() && (vm_index < 4)));
Instr format, op = vop;
int index_num_bits = vm.Is1H() ? 3 : 2;
if (vd.IsScalar()) {
op |= NEONScalar | NEON_Q;
format = SFormat(vn);
} else {
format = VFormat(vn);
}
Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) |
Rm(vm) | Rn(vn) | Rd(vd));
}
#define NEON_BYELEMENT_LIST(V) \
V(mul, NEON_MUL_byelement, vn.IsVector()) \
V(mla, NEON_MLA_byelement, vn.IsVector()) \
V(mls, NEON_MLS_byelement, vn.IsVector()) \
V(sqdmulh, NEON_SQDMULH_byelement, true) \
V(sqrdmulh, NEON_SQRDMULH_byelement, true)
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm, \
int vm_index) { \
VIXL_ASSERT(AS); \
NEONByElement(vd, vn, vm, vm_index, OP); \
}
NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
#define NEON_FPBYELEMENT_LIST(V) \
V(fmul, NEON_FMUL_byelement) \
V(fmla, NEON_FMLA_byelement) \
V(fmls, NEON_FMLS_byelement) \
V(fmulx, NEON_FMULX_byelement)
#define DEFINE_ASM_FUNC(FN, OP) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm, \
int vm_index) { \
NEONFPByElement(vd, vn, vm, vm_index, OP); \
}
NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
#define NEON_BYELEMENT_LONG_LIST(V) \
V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \
V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \
V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \
V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \
V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \
V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \
V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \
V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \
V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \
V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \
V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \
V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \
V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \
V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \
V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \
V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \
V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \
V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ())
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn, \
const VRegister& vm, \
int vm_index) { \
VIXL_ASSERT(AS); \
NEONByElementL(vd, vn, vm, vm_index, OP); \
}
NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::suqadd(const VRegister& vd,
const VRegister& vn) {
NEON2RegMisc(vd, vn, NEON_SUQADD);
}
void Assembler::usqadd(const VRegister& vd,
const VRegister& vn) {
NEON2RegMisc(vd, vn, NEON_USQADD);
}
void Assembler::abs(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_ABS);
}
void Assembler::sqabs(const VRegister& vd,
const VRegister& vn) {
NEON2RegMisc(vd, vn, NEON_SQABS);
}
void Assembler::neg(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEON2RegMisc(vd, vn, NEON_NEG);
}
void Assembler::sqneg(const VRegister& vd,
const VRegister& vn) {
NEON2RegMisc(vd, vn, NEON_SQNEG);
}
void Assembler::NEONXtn(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp vop) {
Instr format, op = vop;
if (vd.IsScalar()) {
VIXL_ASSERT((vd.Is1B() && vn.Is1H()) ||
(vd.Is1H() && vn.Is1S()) ||
(vd.Is1S() && vn.Is1D()));
op |= NEON_Q | NEONScalar;
format = SFormat(vd);
} else {
VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
(vd.Is4H() && vn.Is4S()) ||
(vd.Is2S() && vn.Is2D()) ||
(vd.Is16B() && vn.Is8H()) ||
(vd.Is8H() && vn.Is4S()) ||
(vd.Is4S() && vn.Is2D()));
format = VFormat(vd);
}
Emit(format | op | Rn(vn) | Rd(vd));
}
void Assembler::xtn(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() && vd.IsD());
NEONXtn(vd, vn, NEON_XTN);
}
void Assembler::xtn2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() && vd.IsQ());
NEONXtn(vd, vn, NEON_XTN);
}
void Assembler::sqxtn(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsScalar() || vd.IsD());
NEONXtn(vd, vn, NEON_SQXTN);
}
void Assembler::sqxtn2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() && vd.IsQ());
NEONXtn(vd, vn, NEON_SQXTN);
}
void Assembler::sqxtun(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsScalar() || vd.IsD());
NEONXtn(vd, vn, NEON_SQXTUN);
}
void Assembler::sqxtun2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() && vd.IsQ());
NEONXtn(vd, vn, NEON_SQXTUN);
}
void Assembler::uqxtn(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsScalar() || vd.IsD());
NEONXtn(vd, vn, NEON_UQXTN);
}
void Assembler::uqxtn2(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(vd.IsVector() && vd.IsQ());
NEONXtn(vd, vn, NEON_UQXTN);
}
// NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size".
void Assembler::not_(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is8B() || vd.Is16B());
Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
}
void Assembler::rbit(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is8B() || vd.Is16B());
Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
}
void Assembler::ext(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
int index) {
VIXL_ASSERT(AreSameFormat(vd, vn, vm));
VIXL_ASSERT(vd.Is8B() || vd.Is16B());
VIXL_ASSERT((0 <= index) && (index < vd.lanes()));
Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd));
}
void Assembler::dup(const VRegister& vd,
const VRegister& vn,
int vn_index) {
Instr q, scalar;
// We support vn arguments of the form vn.VxT() or vn.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vn.LaneSizeInBytes();
NEONFormatField format;
switch (lane_size) {
case 1: format = NEON_16B; break;
case 2: format = NEON_8H; break;
case 4: format = NEON_4S; break;
default:
VIXL_ASSERT(lane_size == 8);
format = NEON_2D;
break;
}
if (vd.IsScalar()) {
q = NEON_Q;
scalar = NEONScalar;
} else {
VIXL_ASSERT(!vd.Is1D());
q = vd.IsD() ? 0 : NEON_Q;
scalar = 0;
}
Emit(q | scalar | NEON_DUP_ELEMENT |
ImmNEON5(format, vn_index) | Rn(vn) | Rd(vd));
}
void Assembler::mov(const VRegister& vd,
const VRegister& vn,
int vn_index) {
VIXL_ASSERT(vn.IsScalar());
dup(vd, vn, vn_index);
}
void Assembler::dup(const VRegister& vd, const Register& rn) {
VIXL_ASSERT(!vd.Is1D());
VIXL_ASSERT(vd.Is2D() == rn.IsX());
int q = vd.IsD() ? 0 : NEON_Q;
Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
}
void Assembler::ins(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index) {
VIXL_ASSERT(AreSameFormat(vd, vn));
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vd.LaneSizeInBytes();
NEONFormatField format;
switch (lane_size) {
case 1: format = NEON_16B; break;
case 2: format = NEON_8H; break;
case 4: format = NEON_4S; break;
default:
VIXL_ASSERT(lane_size == 8);
format = NEON_2D;
break;
}
VIXL_ASSERT((0 <= vd_index) &&
(vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
VIXL_ASSERT((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
}
void Assembler::mov(const VRegister& vd,
int vd_index,
const VRegister& vn,
int vn_index) {
ins(vd, vd_index, vn, vn_index);
}
void Assembler::ins(const VRegister& vd,
int vd_index,
const Register& rn) {
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vd.LaneSizeInBytes();
NEONFormatField format;
switch (lane_size) {
case 1: format = NEON_16B; VIXL_ASSERT(rn.IsW()); break;
case 2: format = NEON_8H; VIXL_ASSERT(rn.IsW()); break;
case 4: format = NEON_4S; VIXL_ASSERT(rn.IsW()); break;
default:
VIXL_ASSERT(lane_size == 8);
VIXL_ASSERT(rn.IsX());
format = NEON_2D;
break;
}
VIXL_ASSERT((0 <= vd_index) &&
(vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
}
void Assembler::mov(const VRegister& vd,
int vd_index,
const Register& rn) {
ins(vd, vd_index, rn);
}
void Assembler::umov(const Register& rd,
const VRegister& vn,
int vn_index) {
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s or d.
int lane_size = vn.LaneSizeInBytes();
NEONFormatField format;
Instr q = 0;
switch (lane_size) {
case 1: format = NEON_16B; VIXL_ASSERT(rd.IsW()); break;
case 2: format = NEON_8H; VIXL_ASSERT(rd.IsW()); break;
case 4: format = NEON_4S; VIXL_ASSERT(rd.IsW()); break;
default:
VIXL_ASSERT(lane_size == 8);
VIXL_ASSERT(rd.IsX());
format = NEON_2D;
q = NEON_Q;
break;
}
VIXL_ASSERT((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
}
void Assembler::mov(const Register& rd,
const VRegister& vn,
int vn_index) {
VIXL_ASSERT(vn.SizeInBytes() >= 4);
umov(rd, vn, vn_index);
}
void Assembler::smov(const Register& rd,
const VRegister& vn,
int vn_index) {
// We support vd arguments of the form vd.VxT() or vd.T(), where x is the
// number of lanes, and T is b, h, s.
int lane_size = vn.LaneSizeInBytes();
NEONFormatField format;
Instr q = 0;
VIXL_ASSERT(lane_size != 8);
switch (lane_size) {
case 1: format = NEON_16B; break;
case 2: format = NEON_8H; break;
default:
VIXL_ASSERT(lane_size == 4);
VIXL_ASSERT(rd.IsX());
format = NEON_4S;
break;
}
q = rd.IsW() ? 0 : NEON_Q;
VIXL_ASSERT((0 <= vn_index) &&
(vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
}
void Assembler::cls(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
}
void Assembler::clz(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
}
void Assembler::cnt(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is8B() || vd.Is16B());
Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
}
void Assembler::rev16(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is8B() || vd.Is16B());
Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
}
void Assembler::rev32(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
}
void Assembler::rev64(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
}
void Assembler::ursqrte(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is2S() || vd.Is4S());
Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
}
void Assembler::urecpe(const VRegister& vd,
const VRegister& vn) {
VIXL_ASSERT(AreSameFormat(vd, vn));
VIXL_ASSERT(vd.Is2S() || vd.Is4S());
Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
}
void Assembler::NEONAddlp(const VRegister& vd,
const VRegister& vn,
NEON2RegMiscOp op) {
VIXL_ASSERT((op == NEON_SADDLP) ||
(op == NEON_UADDLP) ||
(op == NEON_SADALP) ||
(op == NEON_UADALP));
VIXL_ASSERT((vn.Is8B() && vd.Is4H()) ||
(vn.Is4H() && vd.Is2S()) ||
(vn.Is2S() && vd.Is1D()) ||
(vn.Is16B() && vd.Is8H())||
(vn.Is8H() && vd.Is4S()) ||
(vn.Is4S() && vd.Is2D()));
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::saddlp(const VRegister& vd,
const VRegister& vn) {
NEONAddlp(vd, vn, NEON_SADDLP);
}
void Assembler::uaddlp(const VRegister& vd,
const VRegister& vn) {
NEONAddlp(vd, vn, NEON_UADDLP);
}
void Assembler::sadalp(const VRegister& vd,
const VRegister& vn) {
NEONAddlp(vd, vn, NEON_SADALP);
}
void Assembler::uadalp(const VRegister& vd,
const VRegister& vn) {
NEONAddlp(vd, vn, NEON_UADALP);
}
void Assembler::NEONAcrossLanesL(const VRegister& vd,
const VRegister& vn,
NEONAcrossLanesOp op) {
VIXL_ASSERT((vn.Is8B() && vd.Is1H()) ||
(vn.Is16B() && vd.Is1H()) ||
(vn.Is4H() && vd.Is1S()) ||
(vn.Is8H() && vd.Is1S()) ||
(vn.Is4S() && vd.Is1D()));
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::saddlv(const VRegister& vd,
const VRegister& vn) {
NEONAcrossLanesL(vd, vn, NEON_SADDLV);
}
void Assembler::uaddlv(const VRegister& vd,
const VRegister& vn) {
NEONAcrossLanesL(vd, vn, NEON_UADDLV);
}
void Assembler::NEONAcrossLanes(const VRegister& vd,
const VRegister& vn,
NEONAcrossLanesOp op) {
VIXL_ASSERT((vn.Is8B() && vd.Is1B()) ||
(vn.Is16B() && vd.Is1B()) ||
(vn.Is4H() && vd.Is1H()) ||
(vn.Is8H() && vd.Is1H()) ||
(vn.Is4S() && vd.Is1S()));
if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
} else {
Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
}
}
#define NEON_ACROSSLANES_LIST(V) \
V(fmaxv, NEON_FMAXV, vd.Is1S()) \
V(fminv, NEON_FMINV, vd.Is1S()) \
V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \
V(fminnmv, NEON_FMINNMV, vd.Is1S()) \
V(addv, NEON_ADDV, true) \
V(smaxv, NEON_SMAXV, true) \
V(sminv, NEON_SMINV, true) \
V(umaxv, NEON_UMAXV, true) \
V(uminv, NEON_UMINV, true)
#define DEFINE_ASM_FUNC(FN, OP, AS) \
void Assembler::FN(const VRegister& vd, \
const VRegister& vn) { \
VIXL_ASSERT(AS); \
NEONAcrossLanes(vd, vn, OP); \
}
NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC)
#undef DEFINE_ASM_FUNC
void Assembler::NEONPerm(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
NEONPermOp op) {
VIXL_ASSERT(AreSameFormat(vd, vn, vm));
VIXL_ASSERT(!vd.Is1D());
Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
}
void Assembler::trn1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_TRN1);
}
void Assembler::trn2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_TRN2);
}
void Assembler::uzp1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_UZP1);
}
void Assembler::uzp2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_UZP2);
}
void Assembler::zip1(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_ZIP1);
}
void Assembler::zip2(const VRegister& vd,
const VRegister& vn,
const VRegister& vm) {
NEONPerm(vd, vn, vm, NEON_ZIP2);
}
void Assembler::NEONShiftImmediate(const VRegister& vd,
const VRegister& vn,
NEONShiftImmediateOp op,
int immh_immb) {
VIXL_ASSERT(AreSameFormat(vd, vn));
Instr q, scalar;
if (vn.IsScalar()) {
q = NEON_Q;
scalar = NEONScalar;
} else {
q = vd.IsD() ? 0 : NEON_Q;
scalar = 0;
}
Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::NEONShiftLeftImmediate(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16);
}
void Assembler::NEONShiftRightImmediate(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16);
}
void Assembler::NEONShiftImmediateL(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op) {
int laneSizeInBits = vn.LaneSizeInBits();
VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
int immh_immb = (laneSizeInBits + shift) << 16;
VIXL_ASSERT((vn.Is8B() && vd.Is8H()) ||
(vn.Is4H() && vd.Is4S()) ||
(vn.Is2S() && vd.Is2D()) ||
(vn.Is16B() && vd.Is8H())||
(vn.Is8H() && vd.Is4S()) ||
(vn.Is4S() && vd.Is2D()));
Instr q;
q = vn.IsD() ? 0 : NEON_Q;
Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::NEONShiftImmediateN(const VRegister& vd,
const VRegister& vn,
int shift,
NEONShiftImmediateOp op) {
Instr q, scalar;
int laneSizeInBits = vd.LaneSizeInBits();
VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
int immh_immb = (2 * laneSizeInBits - shift) << 16;
if (vn.IsScalar()) {
VIXL_ASSERT((vd.Is1B() && vn.Is1H()) ||
(vd.Is1H() && vn.Is1S()) ||
(vd.Is1S() && vn.Is1D()));
q = NEON_Q;
scalar = NEONScalar;
} else {
VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
(vd.Is4H() && vn.Is4S()) ||
(vd.Is2S() && vn.Is2D()) ||
(vd.Is16B() && vn.Is8H())||
(vd.Is8H() && vn.Is4S()) ||
(vd.Is4S() && vn.Is2D()));
scalar = 0;
q = vd.IsD() ? 0 : NEON_Q;
}
Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
}
void Assembler::shl(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
}
void Assembler::sli(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
}
void Assembler::sqshl(const VRegister& vd,
const VRegister& vn,
int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
}
void Assembler::sqshlu(const VRegister& vd,
const VRegister& vn,
int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
}
void Assembler::uqshl(const VRegister& vd,
const VRegister& vn,
int shift) {
NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
}
void Assembler::sshll(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsD());
NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
}
void Assembler::sshll2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsQ());
NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
}
void Assembler::sxtl(const VRegister& vd,
const VRegister& vn) {
sshll(vd, vn, 0);
}
void Assembler::sxtl2(const VRegister& vd,
const VRegister& vn) {
sshll2(vd, vn, 0);
}
void Assembler::ushll(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsD());
NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
}
void Assembler::ushll2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsQ());
NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
}
void Assembler::uxtl(const VRegister& vd,
const VRegister& vn) {
ushll(vd, vn, 0);
}
void Assembler::uxtl2(const VRegister& vd,
const VRegister& vn) {
ushll2(vd, vn, 0);
}
void Assembler::sri(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
}
void Assembler::sshr(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
}
void Assembler::ushr(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
}
void Assembler::srshr(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
}
void Assembler::urshr(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
}
void Assembler::ssra(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
}
void Assembler::usra(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
}
void Assembler::srsra(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
}
void Assembler::ursra(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsVector() || vd.Is1D());
NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
}
void Assembler::shrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsD());
NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
}
void Assembler::shrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
}
void Assembler::rshrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsD());
NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
}
void Assembler::rshrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
}
void Assembler::sqshrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
}
void Assembler::sqshrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
}
void Assembler::sqrshrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
}
void Assembler::sqrshrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
}
void Assembler::sqshrun(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
}
void Assembler::sqshrun2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
}
void Assembler::sqrshrun(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
}
void Assembler::sqrshrun2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
}
void Assembler::uqshrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
}
void Assembler::uqshrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
}
void Assembler::uqrshrn(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
}
void Assembler::uqrshrn2(const VRegister& vd,
const VRegister& vn,
int shift) {
VIXL_ASSERT(vn.IsVector() && vd.IsQ());
NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
}
// Note:
// Below, a difference in case for the same letter indicates a
// negated bit.
// If b is 1, then B is 0.
uint32_t Assembler::FP32ToImm8(float imm) {
VIXL_ASSERT(IsImmFP32(imm));
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = FloatToRawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
return bit7 | bit6 | bit5_to_0;
}
Instr Assembler::ImmFP32(float imm) {
return FP32ToImm8(imm) << ImmFP_offset;
}
uint32_t Assembler::FP64ToImm8(double imm) {
VIXL_ASSERT(IsImmFP64(imm));
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = DoubleToRawbits(imm);
// bit7: a000.0000
uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
// bit6: 0b00.0000
uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
}
Instr Assembler::ImmFP64(double imm) {
return FP64ToImm8(imm) << ImmFP_offset;
}
// Code generation helpers.
void Assembler::MoveWide(const Register& rd,
uint64_t imm,
int shift,
MoveWideImmediateOp mov_op) {
// Ignore the top 32 bits of an immediate if we're moving to a W register.
if (rd.Is32Bits()) {
// Check that the top 32 bits are zero (a positive 32-bit number) or top
// 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
VIXL_ASSERT(((imm >> kWRegSize) == 0) ||
((imm >> (kWRegSize - 1)) == 0x1ffffffff));
imm &= kWRegMask;
}
if (shift >= 0) {
// Explicit shift specified.
VIXL_ASSERT((shift == 0) || (shift == 16) ||
(shift == 32) || (shift == 48));
VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
shift /= 16;
} else {
// Calculate a new immediate and shift combination to encode the immediate
// argument.
shift = 0;
if ((imm & 0xffffffffffff0000) == 0) {
// Nothing to do.
} else if ((imm & 0xffffffff0000ffff) == 0) {
imm >>= 16;
shift = 1;
} else if ((imm & 0xffff0000ffffffff) == 0) {
VIXL_ASSERT(rd.Is64Bits());
imm >>= 32;
shift = 2;
} else if ((imm & 0x0000ffffffffffff) == 0) {
VIXL_ASSERT(rd.Is64Bits());
imm >>= 48;
shift = 3;
}
}
VIXL_ASSERT(IsUint16(imm));
Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
}
void Assembler::AddSub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op) {
VIXL_ASSERT(rd.size() == rn.size());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
VIXL_ASSERT(IsImmAddSub(immediate));
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
} else if (operand.IsShiftedRegister()) {
VIXL_ASSERT(operand.reg().size() == rd.size());
VIXL_ASSERT(operand.shift() != ROR);
// For instructions of the form:
// add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
// add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
// add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
// adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
// or their 64-bit register equivalents, convert the operand from shifted to
// extended register mode, and emit an add/sub extended instruction.
if (rn.IsSP() || rd.IsSP()) {
VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags)));
DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
AddSubExtendedFixed | op);
} else {
DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
}
} else {
VIXL_ASSERT(operand.IsExtendedRegister());
DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
}
}
void Assembler::AddSubWithCarry(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op) {
VIXL_ASSERT(rd.size() == rn.size());
VIXL_ASSERT(rd.size() == operand.reg().size());
VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
}
void Assembler::hlt(int code) {
VIXL_ASSERT(IsUint16(code));
Emit(HLT | ImmException(code));
}
void Assembler::brk(int code) {
VIXL_ASSERT(IsUint16(code));
Emit(BRK | ImmException(code));
}
void Assembler::svc(int code) {
Emit(SVC | ImmException(code));
}
void Assembler::ConditionalCompare(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op) {
Instr ccmpop;
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
VIXL_ASSERT(IsImmConditionalCompare(immediate));
ccmpop = ConditionalCompareImmediateFixed | op |
ImmCondCmp(static_cast<unsigned>(immediate));
} else {
VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
}
Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
}
void Assembler::DataProcessing1Source(const Register& rd,
const Register& rn,
DataProcessing1SourceOp op) {
VIXL_ASSERT(rd.size() == rn.size());
Emit(SF(rn) | op | Rn(rn) | Rd(rd));
}
void Assembler::FPDataProcessing1Source(const VRegister& vd,
const VRegister& vn,
FPDataProcessing1SourceOp op) {
VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
Emit(FPType(vn) | op | Rn(vn) | Rd(vd));
}
void Assembler::FPDataProcessing3Source(const VRegister& vd,
const VRegister& vn,
const VRegister& vm,
const VRegister& va,
FPDataProcessing3SourceOp op) {
VIXL_ASSERT(vd.Is1S() || vd.Is1D());
VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va));
Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va));
}
void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd,
const int imm8,
const int left_shift,
NEONModifiedImmediateOp op) {
VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() ||
vd.Is2S() || vd.Is4S());
VIXL_ASSERT((left_shift == 0) || (left_shift == 8) ||
(left_shift == 16) || (left_shift == 24));
VIXL_ASSERT(IsUint8(imm8));
int cmode_1, cmode_2, cmode_3;
if (vd.Is8B() || vd.Is16B()) {
VIXL_ASSERT(op == NEONModifiedImmediate_MOVI);
cmode_1 = 1;
cmode_2 = 1;
cmode_3 = 1;
} else {
cmode_1 = (left_shift >> 3) & 1;
cmode_2 = left_shift >> 4;
cmode_3 = 0;
if (vd.Is4H() || vd.Is8H()) {
VIXL_ASSERT((left_shift == 0) || (left_shift == 8));
cmode_3 = 1;
}
}
int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1);
int q = vd.IsQ() ? NEON_Q : 0;
Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
}
void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd,
const int imm8,
const int shift_amount,
NEONModifiedImmediateOp op) {
VIXL_ASSERT(vd.Is2S() || vd.Is4S());
VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16));
VIXL_ASSERT(IsUint8(imm8));
int cmode_0 = (shift_amount >> 4) & 1;
int cmode = 0xc | cmode_0;
int q = vd.IsQ() ? NEON_Q : 0;
Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
}
void Assembler::EmitShift(const Register& rd,
const Register& rn,
Shift shift,
unsigned shift_amount) {
switch (shift) {
case LSL:
lsl(rd, rn, shift_amount);
break;
case LSR:
lsr(rd, rn, shift_amount);
break;
case ASR:
asr(rd, rn, shift_amount);
break;
case ROR:
ror(rd, rn, shift_amount);
break;
default:
VIXL_UNREACHABLE();
}
}
void Assembler::EmitExtendShift(const Register& rd,
const Register& rn,
Extend extend,
unsigned left_shift) {
VIXL_ASSERT(rd.size() >= rn.size());
unsigned reg_size = rd.size();
// Use the correct size of register.
Register rn_ = Register(rn.code(), rd.size());
// Bits extracted are high_bit:0.
unsigned high_bit = (8 << (extend & 0x3)) - 1;
// Number of bits left in the result that are not introduced by the shift.
unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
switch (extend) {
case UXTB:
case UXTH:
case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
case SXTB:
case SXTH:
case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
case UXTX:
case SXTX: {
VIXL_ASSERT(rn.size() == kXRegSize);
// Nothing to extend. Just shift.
lsl(rd, rn_, left_shift);
break;
}
default: VIXL_UNREACHABLE();
}
} else {
// No need to extend as the extended bits would be shifted away.
lsl(rd, rn_, left_shift);
}
}
void Assembler::DataProcExtendedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op) {
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
dest_reg | RnSP(rn));
}
Instr Assembler::LoadStoreMemOperand(const MemOperand& addr,
unsigned access_size,
LoadStoreScalingOption option) {
Instr base = RnSP(addr.base());
int64_t offset = addr.offset();
if (addr.IsImmediateOffset()) {
bool prefer_unscaled = (option == PreferUnscaledOffset) ||
(option == RequireUnscaledOffset);
if (prefer_unscaled && IsImmLSUnscaled(offset)) {
// Use the unscaled addressing mode.
return base | LoadStoreUnscaledOffsetFixed |
ImmLS(static_cast<int>(offset));
}
if ((option != RequireUnscaledOffset) &&
IsImmLSScaled(offset, access_size)) {
// Use the scaled addressing mode.
return base | LoadStoreUnsignedOffsetFixed |
ImmLSUnsigned(static_cast<int>(offset) >> access_size);
}
if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) {
// Use the unscaled addressing mode.
return base | LoadStoreUnscaledOffsetFixed |
ImmLS(static_cast<int>(offset));
}
}
// All remaining addressing modes are register-offset, pre-indexed or
// post-indexed modes.
VIXL_ASSERT((option != RequireUnscaledOffset) &&
(option != RequireScaledOffset));
if (addr.IsRegisterOffset()) {
Extend ext = addr.extend();
Shift shift = addr.shift();
unsigned shift_amount = addr.shift_amount();
// LSL is encoded in the option field as UXTX.
if (shift == LSL) {
ext = UXTX;
}
// Shifts are encoded in one bit, indicating a left shift by the memory
// access size.
VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size));
return base | LoadStoreRegisterOffsetFixed | Rm(addr.regoffset()) |
ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0);
}
if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) {
return base | LoadStorePreIndexFixed | ImmLS(static_cast<int>(offset));
}
if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) {
return base | LoadStorePostIndexFixed | ImmLS(static_cast<int>(offset));
}
// If this point is reached, the MemOperand (addr) cannot be encoded.
VIXL_UNREACHABLE();
return 0;
}
void Assembler::LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op,
LoadStoreScalingOption option) {
Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option));
}
void Assembler::Prefetch(PrefetchOperation op,
const MemOperand& addr,
LoadStoreScalingOption option) {
VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset());
Instr prfop = ImmPrefetchOperation(op);
Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option));
}
bool Assembler::IsImmAddSub(int64_t immediate) {
return IsUint12(immediate) ||
(IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0));
}
bool Assembler::IsImmConditionalCompare(int64_t immediate) {
return IsUint5(immediate);
}
bool Assembler::IsImmFP32(float imm) {
// Valid values will have the form:
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = FloatToRawbits(imm);
// bits[19..0] are cleared.
if ((bits & 0x7ffff) != 0) {
return false;
}
// bits[29..25] are all set or all cleared.
uint32_t b_pattern = (bits >> 16) & 0x3e00;
if (b_pattern != 0 && b_pattern != 0x3e00) {
return false;
}
// bit[30] and bit[29] are opposite.
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
return false;
}
return true;
}
bool Assembler::IsImmFP64(double imm) {
// Valid values will have the form:
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = DoubleToRawbits(imm);
// bits[47..0] are cleared.
if ((bits & 0x0000ffffffffffff) != 0) {
return false;
}
// bits[61..54] are all set or all cleared.
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
return false;
}
// bit[62] and bit[61] are opposite.
if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
return false;
}
return true;
}
bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size) {
VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
bool offset_is_size_multiple =
(((offset >> access_size) << access_size) == offset);
return offset_is_size_multiple && IsInt7(offset >> access_size);
}
bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size) {
VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
bool offset_is_size_multiple =
(((offset >> access_size) << access_size) == offset);
return offset_is_size_multiple && IsUint12(offset >> access_size);
}
bool Assembler::IsImmLSUnscaled(int64_t offset) {
return IsInt9(offset);
}
// The movn instruction can generate immediates containing an arbitrary 16-bit
// value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
return IsImmMovz(~imm, reg_size);
}
// The movz instruction can generate immediates containing an arbitrary 16-bit
// value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
}
// Test if a given value can be encoded in the immediate field of a logical
// instruction.
// If it can be encoded, the function returns true, and values pointed to by n,
// imm_s and imm_r are updated with immediates encoded in the format required
// by the corresponding fields in the logical instruction.
// If it can not be encoded, the function returns false, and the values pointed
// to by n, imm_s and imm_r are undefined.
bool Assembler::IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r) {
VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize));
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1) {
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
if (width == kWRegSize) {
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// Avoid making the assumption that the most-significant 32 bits are zero by
// shifting the value left and duplicating it.
value <<= kWRegSize;
value |= value >> kWRegSize;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
uint64_t a = LowestSetBit(value);
uint64_t value_plus_a = value + a;
uint64_t b = LowestSetBit(value_plus_a);
uint64_t value_plus_a_minus_b = value_plus_a - b;
uint64_t c = LowestSetBit(value_plus_a_minus_b);
int d, clz_a, out_n;
uint64_t mask;
if (c != 0) {
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = CountLeadingZeros(a, kXRegSize);
int clz_c = CountLeadingZeros(c, kXRegSize);
d = clz_a - clz_c;
mask = ((UINT64_C(1) << d) - 1);
out_n = 0;
} else {
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0) {
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), for which we just return
// false.
return false;
} else {
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = CountLeadingZeros(a, kXRegSize);
d = 64;
mask = ~UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!IsPowerOf2(d)) {
return false;
}
if (((b - a) & ~mask) != 0) {
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
return false;
}
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
static const uint64_t multipliers[] = {
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
};
uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57];
uint64_t candidate = (b - a) * multiplier;
if (value != candidate) {
// The candidate pattern doesn't match our input value, so fail.
return false;
}
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize);
int s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
int r;
if (negate) {
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
} else {
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) {
*n = out_n;
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
*imm_r = r;
}
return true;
}
LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
VIXL_ASSERT(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? LDR_x : LDR_w;
} else {
VIXL_ASSERT(rt.IsVRegister());
switch (rt.SizeInBits()) {
case kBRegSize: return LDR_b;
case kHRegSize: return LDR_h;
case kSRegSize: return LDR_s;
case kDRegSize: return LDR_d;
default:
VIXL_ASSERT(rt.IsQ());
return LDR_q;
}
}
}
LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
VIXL_ASSERT(rt.IsValid());
if (rt.IsRegister()) {
return rt.Is64Bits() ? STR_x : STR_w;
} else {
VIXL_ASSERT(rt.IsVRegister());
switch (rt.SizeInBits()) {
case kBRegSize: return STR_b;
case kHRegSize: return STR_h;
case kSRegSize: return STR_s;
case kDRegSize: return STR_d;
default:
VIXL_ASSERT(rt.IsQ());
return STR_q;
}
}
}
LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? STP_x : STP_w;
} else {
VIXL_ASSERT(rt.IsVRegister());
switch (rt.SizeInBytes()) {
case kSRegSizeInBytes: return STP_s;
case kDRegSizeInBytes: return STP_d;
default:
VIXL_ASSERT(rt.IsQ());
return STP_q;
}
}
}
LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
const CPURegister& rt2) {
VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w);
return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
LoadStorePairLBit);
}
LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2) {
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
if (rt.IsRegister()) {
return rt.Is64Bits() ? STNP_x : STNP_w;
} else {
VIXL_ASSERT(rt.IsVRegister());
switch (rt.SizeInBytes()) {
case kSRegSizeInBytes: return STNP_s;
case kDRegSizeInBytes: return STNP_d;
default:
VIXL_ASSERT(rt.IsQ());
return STNP_q;
}
}
}
LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2) {
VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w);
return static_cast<LoadStorePairNonTemporalOp>(
StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit);
}
LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
if (rt.IsRegister()) {
return rt.IsX() ? LDR_x_lit : LDR_w_lit;
} else {
VIXL_ASSERT(rt.IsVRegister());
switch (rt.SizeInBytes()) {
case kSRegSizeInBytes: return LDR_s_lit;
case kDRegSizeInBytes: return LDR_d_lit;
default:
VIXL_ASSERT(rt.IsQ());
return LDR_q_lit;
}
}
}
bool Assembler::CPUHas(const CPURegister& rt) const {
// Core registers are available without any particular CPU features.
if (rt.IsRegister()) return true;
VIXL_ASSERT(rt.IsVRegister());
// The architecture does not allow FP and NEON to be implemented separately,
// but we can crudely categorise them based on register size, since FP only
// uses D, S and (occasionally) H registers.
if (rt.IsH() || rt.IsS() || rt.IsD()) {
return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON);
}
VIXL_ASSERT(rt.IsB() || rt.IsQ());
return CPUHas(CPUFeatures::kNEON);
}
bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const {
// This is currently only used for loads and stores, where rt and rt2 must
// have the same size and type. We could extend this to cover other cases if
// necessary, but for now we can avoid checking both registers.
VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
USE(rt2);
return CPUHas(rt);
}
bool Assembler::CPUHas(SystemRegister sysreg) const {
switch (sysreg) {
case RNDR:
case RNDRRS:
return CPUHas(CPUFeatures::kRNG);
case FPCR:
case NZCV:
break;
}
return true;
}
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
int number_of_valid_regs = 0;
int number_of_valid_fpregs = 0;
RegList unique_regs = 0;
RegList unique_fpregs = 0;
const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
if (regs[i].IsRegister()) {
number_of_valid_regs++;
unique_regs |= regs[i].Bit();
} else if (regs[i].IsVRegister()) {
number_of_valid_fpregs++;
unique_fpregs |= regs[i].Bit();
} else {
VIXL_ASSERT(!regs[i].IsValid());
}
}
int number_of_unique_regs = CountSetBits(unique_regs);
int number_of_unique_fpregs = CountSetBits(unique_fpregs);
VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs);
VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
return (number_of_valid_regs != number_of_unique_regs) ||
(number_of_valid_fpregs != number_of_unique_fpregs);
}
bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
VIXL_ASSERT(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
return match;
}
bool AreEven(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3,
const CPURegister& reg4,
const CPURegister& reg5,
const CPURegister& reg6,
const CPURegister& reg7,
const CPURegister& reg8) {
VIXL_ASSERT(reg1.IsValid());
bool even = (reg1.code() % 2) == 0;
even &= !reg2.IsValid() || ((reg2.code() % 2) == 0);
even &= !reg3.IsValid() || ((reg3.code() % 2) == 0);
even &= !reg4.IsValid() || ((reg4.code() % 2) == 0);
even &= !reg5.IsValid() || ((reg5.code() % 2) == 0);
even &= !reg6.IsValid() || ((reg6.code() % 2) == 0);
even &= !reg7.IsValid() || ((reg7.code() % 2) == 0);
even &= !reg8.IsValid() || ((reg8.code() % 2) == 0);
return even;
}
bool AreConsecutive(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3,
const CPURegister& reg4) {
VIXL_ASSERT(reg1.IsValid());
if (!reg2.IsValid()) {
return true;
} else if (reg2.code() != ((reg1.code() + 1) % kNumberOfRegisters)) {
return false;
}
if (!reg3.IsValid()) {
return true;
} else if (reg3.code() != ((reg2.code() + 1) % kNumberOfRegisters)) {
return false;
}
if (!reg4.IsValid()) {
return true;
} else if (reg4.code() != ((reg3.code() + 1) % kNumberOfRegisters)) {
return false;
}
return true;
}
bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3, const VRegister& reg4) {
VIXL_ASSERT(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() || reg2.IsSameFormat(reg1);
match &= !reg3.IsValid() || reg3.IsSameFormat(reg1);
match &= !reg4.IsValid() || reg4.IsSameFormat(reg1);
return match;
}
bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3, const VRegister& reg4) {
VIXL_ASSERT(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() ||
(reg2.code() == ((reg1.code() + 1) % kNumberOfVRegisters));
match &= !reg3.IsValid() ||
(reg3.code() == ((reg1.code() + 2) % kNumberOfVRegisters));
match &= !reg4.IsValid() ||
(reg4.code() == ((reg1.code() + 3) % kNumberOfVRegisters));
return match;
}
} // namespace vixl