Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "jit/arm64/CodeGenerator-arm64.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "jsnum.h"
#include "jit/CodeGenerator.h"
#include "jit/InlineScriptTree.h"
#include "jit/JitRuntime.h"
#include "jit/MIR-wasm.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"
#include "jit/ReciprocalMulConstants.h"
#include "vm/JSContext.h"
#include "vm/Realm.h"
#include "vm/Shape.h"
#include "jit/shared/CodeGenerator-shared-inl.h"
#include "vm/JSScript-inl.h"
using namespace js;
using namespace js::jit;
using JS::GenericNaN;
using mozilla::FloorLog2;
using mozilla::Maybe;
using mozilla::NegativeInfinity;
using mozilla::Nothing;
using mozilla::Some;
// shared
CodeGeneratorARM64::CodeGeneratorARM64(MIRGenerator* gen, LIRGraph* graph,
MacroAssembler* masm)
: CodeGeneratorShared(gen, graph, masm) {}
bool CodeGeneratorARM64::generateOutOfLineCode() {
AutoCreatedBy acb(masm, "CodeGeneratorARM64::generateOutOfLineCode");
if (!CodeGeneratorShared::generateOutOfLineCode()) {
return false;
}
if (deoptLabel_.used()) {
// All non-table-based bailouts will go here.
masm.bind(&deoptLabel_);
// Store the frame size, so the handler can recover the IonScript.
masm.push(Imm32(frameSize()));
TrampolinePtr handler = gen->jitRuntime()->getGenericBailoutHandler();
masm.jump(handler);
}
return !masm.oom();
}
void CodeGeneratorARM64::emitBranch(Assembler::Condition cond,
MBasicBlock* mirTrue,
MBasicBlock* mirFalse) {
if (isNextBlock(mirFalse->lir())) {
jumpToBlock(mirTrue, cond);
} else {
jumpToBlock(mirFalse, Assembler::InvertCondition(cond));
jumpToBlock(mirTrue);
}
}
void OutOfLineBailout::accept(CodeGeneratorARM64* codegen) {
codegen->visitOutOfLineBailout(this);
}
void CodeGeneratorARM64::bailoutIf(Assembler::Condition condition,
LSnapshot* snapshot) {
encode(snapshot);
InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
OutOfLineBailout* ool = new (alloc()) OutOfLineBailout(snapshot);
addOutOfLineCode(ool,
new (alloc()) BytecodeSite(tree, tree->script()->code()));
masm.B(ool->entry(), condition);
}
void CodeGeneratorARM64::bailoutFrom(Label* label, LSnapshot* snapshot) {
MOZ_ASSERT_IF(!masm.oom(), label->used());
MOZ_ASSERT_IF(!masm.oom(), !label->bound());
encode(snapshot);
InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
OutOfLineBailout* ool = new (alloc()) OutOfLineBailout(snapshot);
addOutOfLineCode(ool,
new (alloc()) BytecodeSite(tree, tree->script()->code()));
masm.retarget(label, ool->entry());
}
void CodeGeneratorARM64::bailout(LSnapshot* snapshot) {
Label label;
masm.b(&label);
bailoutFrom(&label, snapshot);
}
void CodeGeneratorARM64::visitOutOfLineBailout(OutOfLineBailout* ool) {
masm.push(Imm32(ool->snapshot()->snapshotOffset()));
masm.B(&deoptLabel_);
}
void CodeGenerator::visitMinMaxD(LMinMaxD* ins) {
ARMFPRegister lhs(ToFloatRegister(ins->first()), 64);
ARMFPRegister rhs(ToFloatRegister(ins->second()), 64);
ARMFPRegister output(ToFloatRegister(ins->output()), 64);
if (ins->mir()->isMax()) {
masm.Fmax(output, lhs, rhs);
} else {
masm.Fmin(output, lhs, rhs);
}
}
void CodeGenerator::visitMinMaxF(LMinMaxF* ins) {
ARMFPRegister lhs(ToFloatRegister(ins->first()), 32);
ARMFPRegister rhs(ToFloatRegister(ins->second()), 32);
ARMFPRegister output(ToFloatRegister(ins->output()), 32);
if (ins->mir()->isMax()) {
masm.Fmax(output, lhs, rhs);
} else {
masm.Fmin(output, lhs, rhs);
}
}
template <typename T>
static ARMRegister toWRegister(const T* a) {
return ARMRegister(ToRegister(a), 32);
}
template <typename T>
static ARMRegister toXRegister(const T* a) {
return ARMRegister(ToRegister(a), 64);
}
static Operand toWOperand(const LAllocation* a) {
if (a->isConstant()) {
return Operand(ToInt32(a));
}
return Operand(toWRegister(a));
}
void CodeGenerator::visitAddI(LAddI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
// Platforms with three-operand arithmetic ops don't need recovery.
MOZ_ASSERT(!ins->recoversInput());
if (ins->snapshot()) {
masm.Adds(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
bailoutIf(Assembler::Overflow, ins->snapshot());
} else {
masm.Add(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
}
}
void CodeGenerator::visitSubI(LSubI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
// Platforms with three-operand arithmetic ops don't need recovery.
MOZ_ASSERT(!ins->recoversInput());
if (ins->snapshot()) {
masm.Subs(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
bailoutIf(Assembler::Overflow, ins->snapshot());
} else {
masm.Sub(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
}
}
void CodeGenerator::visitMulI(LMulI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
MMul* mul = ins->mir();
MOZ_ASSERT_IF(mul->mode() == MMul::Integer,
!mul->canBeNegativeZero() && !mul->canOverflow());
Register lhsreg = ToRegister(lhs);
const ARMRegister lhsreg32 = ARMRegister(lhsreg, 32);
Register destreg = ToRegister(dest);
const ARMRegister destreg32 = ARMRegister(destreg, 32);
if (rhs->isConstant()) {
// Bailout on -0.0.
int32_t constant = ToInt32(rhs);
if (mul->canBeNegativeZero() && constant <= 0) {
Assembler::Condition bailoutCond =
(constant == 0) ? Assembler::LessThan : Assembler::Equal;
masm.Cmp(toWRegister(lhs), Operand(0));
bailoutIf(bailoutCond, ins->snapshot());
}
switch (constant) {
case -1:
masm.Negs(destreg32, Operand(lhsreg32));
break; // Go to overflow check.
case 0:
masm.Mov(destreg32, wzr);
return; // Avoid overflow check.
case 1:
if (destreg != lhsreg) {
masm.Mov(destreg32, lhsreg32);
}
return; // Avoid overflow check.
case 2:
if (!mul->canOverflow()) {
masm.Add(destreg32, lhsreg32, Operand(lhsreg32));
return; // Avoid overflow check.
}
masm.Adds(destreg32, lhsreg32, Operand(lhsreg32));
break; // Go to overflow check.
default:
// Use shift if cannot overflow and constant is a power of 2
if (!mul->canOverflow() && constant > 0) {
int32_t shift = FloorLog2(constant);
if ((1 << shift) == constant) {
masm.Lsl(destreg32, lhsreg32, shift);
return;
}
}
// Otherwise, just multiply. We have to check for overflow.
// Negative zero was handled above.
Label bailout;
Label* onOverflow = mul->canOverflow() ? &bailout : nullptr;
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const Register scratch = temps.AcquireW().asUnsized();
masm.move32(Imm32(constant), scratch);
masm.mul32(lhsreg, scratch, destreg, onOverflow);
if (onOverflow) {
MOZ_ASSERT(lhsreg != destreg);
bailoutFrom(&bailout, ins->snapshot());
}
return;
}
// Overflow check.
if (mul->canOverflow()) {
bailoutIf(Assembler::Overflow, ins->snapshot());
}
} else {
Register rhsreg = ToRegister(rhs);
const ARMRegister rhsreg32 = ARMRegister(rhsreg, 32);
Label bailout;
Label* onOverflow = mul->canOverflow() ? &bailout : nullptr;
if (mul->canBeNegativeZero()) {
// The product of two integer operands is negative zero iff one
// operand is zero, and the other is negative. Therefore, the
// sum of the two operands will also be negative (specifically,
// it will be the non-zero operand). If the result of the
// multiplication is 0, we can check the sign of the sum to
// determine whether we should bail out.
// This code can bailout, so lowering guarantees that the input
// operands are not overwritten.
MOZ_ASSERT(destreg != lhsreg);
MOZ_ASSERT(destreg != rhsreg);
// Do the multiplication.
masm.mul32(lhsreg, rhsreg, destreg, onOverflow);
// Set Zero flag if destreg is 0.
masm.test32(destreg, destreg);
// ccmn is 'conditional compare negative'.
// If the Zero flag is set:
// perform a compare negative (compute lhs+rhs and set flags)
// else:
// clear flags
masm.Ccmn(lhsreg32, rhsreg32, vixl::NoFlag, Assembler::Zero);
// Bails out if (lhs * rhs == 0) && (lhs + rhs < 0):
bailoutIf(Assembler::LessThan, ins->snapshot());
} else {
masm.mul32(lhsreg, rhsreg, destreg, onOverflow);
}
if (onOverflow) {
bailoutFrom(&bailout, ins->snapshot());
}
}
}
void CodeGenerator::visitDivI(LDivI* ins) {
const Register lhs = ToRegister(ins->lhs());
const Register rhs = ToRegister(ins->rhs());
const Register output = ToRegister(ins->output());
const ARMRegister lhs32 = toWRegister(ins->lhs());
const ARMRegister rhs32 = toWRegister(ins->rhs());
const ARMRegister temp32 = toWRegister(ins->getTemp(0));
const ARMRegister output32 = toWRegister(ins->output());
MDiv* mir = ins->mir();
Label done;
// Handle division by zero.
if (mir->canBeDivideByZero()) {
masm.test32(rhs, rhs);
if (mir->trapOnError()) {
Label nonZero;
masm.j(Assembler::NonZero, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else if (mir->canTruncateInfinities()) {
// Truncated division by zero is zero: (Infinity|0 = 0).
Label nonZero;
masm.j(Assembler::NonZero, &nonZero);
masm.Mov(output32, wzr);
masm.jump(&done);
masm.bind(&nonZero);
} else {
MOZ_ASSERT(mir->fallible());
bailoutIf(Assembler::Zero, ins->snapshot());
}
}
// Handle an integer overflow from (INT32_MIN / -1).
// The integer division gives INT32_MIN, but should be -(double)INT32_MIN.
if (mir->canBeNegativeOverflow()) {
Label notOverflow;
// Branch to handle the non-overflow cases.
masm.branch32(Assembler::NotEqual, lhs, Imm32(INT32_MIN), ¬Overflow);
masm.branch32(Assembler::NotEqual, rhs, Imm32(-1), ¬Overflow);
// Handle overflow.
if (mir->trapOnError()) {
masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset());
} else if (mir->canTruncateOverflow()) {
// (-INT32_MIN)|0 == INT32_MIN, which is already in lhs.
masm.move32(lhs, output);
masm.jump(&done);
} else {
MOZ_ASSERT(mir->fallible());
bailout(ins->snapshot());
}
masm.bind(¬Overflow);
}
// Handle negative zero: lhs == 0 && rhs < 0.
if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) {
Label nonZero;
masm.branch32(Assembler::NotEqual, lhs, Imm32(0), &nonZero);
masm.cmp32(rhs, Imm32(0));
bailoutIf(Assembler::LessThan, ins->snapshot());
masm.bind(&nonZero);
}
// Perform integer division.
if (mir->canTruncateRemainder()) {
masm.Sdiv(output32, lhs32, rhs32);
} else {
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
ARMRegister scratch32 = temps.AcquireW();
// ARM does not automatically calculate the remainder.
// The ISR suggests multiplication to determine whether a remainder exists.
masm.Sdiv(scratch32, lhs32, rhs32);
masm.Mul(temp32, scratch32, rhs32);
masm.Cmp(lhs32, temp32);
bailoutIf(Assembler::NotEqual, ins->snapshot());
masm.Mov(output32, scratch32);
}
masm.bind(&done);
}
void CodeGenerator::visitDivPowTwoI(LDivPowTwoI* ins) {
const Register numerator = ToRegister(ins->numerator());
const ARMRegister numerator32 = toWRegister(ins->numerator());
const ARMRegister output32 = toWRegister(ins->output());
int32_t shift = ins->shift();
bool negativeDivisor = ins->negativeDivisor();
MDiv* mir = ins->mir();
if (!mir->isTruncated() && negativeDivisor) {
// 0 divided by a negative number returns a -0 double.
bailoutTest32(Assembler::Zero, numerator, numerator, ins->snapshot());
}
if (shift) {
if (!mir->isTruncated()) {
// If the remainder is != 0, bailout since this must be a double.
bailoutTest32(Assembler::NonZero, numerator,
Imm32(UINT32_MAX >> (32 - shift)), ins->snapshot());
}
if (mir->isUnsigned()) {
// shift right
masm.Lsr(output32, numerator32, shift);
} else {
ARMRegister temp32 = numerator32;
// Adjust the value so that shifting produces a correctly
// rounded result when the numerator is negative. See 10-1
// "Signed Division by a Known Power of 2" in Henry
// S. Warren, Jr.'s Hacker's Delight.
if (mir->canBeNegativeDividend() && mir->isTruncated()) {
if (shift > 1) {
// Copy the sign bit of the numerator. (= (2^32 - 1) or 0)
masm.Asr(output32, numerator32, 31);
temp32 = output32;
}
// Divide by 2^(32 - shift)
// i.e. (= (2^32 - 1) / 2^(32 - shift) or 0)
// i.e. (= (2^shift - 1) or 0)
masm.Lsr(output32, temp32, 32 - shift);
// If signed, make any 1 bit below the shifted bits to bubble up, such
// that once shifted the value would be rounded towards 0.
masm.Add(output32, output32, numerator32);
temp32 = output32;
}
masm.Asr(output32, temp32, shift);
if (negativeDivisor) {
masm.Neg(output32, output32);
}
}
return;
}
if (negativeDivisor) {
// INT32_MIN / -1 overflows.
if (!mir->isTruncated()) {
masm.Negs(output32, numerator32);
bailoutIf(Assembler::Overflow, ins->snapshot());
} else if (mir->trapOnError()) {
Label ok;
masm.Negs(output32, numerator32);
masm.branch(Assembler::NoOverflow, &ok);
masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset());
masm.bind(&ok);
} else {
// Do not set condition flags.
masm.Neg(output32, numerator32);
}
} else {
if (mir->isUnsigned() && !mir->isTruncated()) {
// Copy and set flags.
masm.Adds(output32, numerator32, 0);
// Unsigned division by 1 can overflow if output is not truncated, as we
// do not have an Unsigned type for MIR instructions.
bailoutIf(Assembler::Signed, ins->snapshot());
} else {
// Copy the result.
masm.Mov(output32, numerator32);
}
}
}
void CodeGenerator::visitDivConstantI(LDivConstantI* ins) {
const ARMRegister lhs32 = toWRegister(ins->numerator());
const ARMRegister lhs64 = toXRegister(ins->numerator());
const ARMRegister const32 = toWRegister(ins->temp());
const ARMRegister output32 = toWRegister(ins->output());
const ARMRegister output64 = toXRegister(ins->output());
int32_t d = ins->denominator();
// The absolute value of the denominator isn't a power of 2.
using mozilla::Abs;
MOZ_ASSERT((Abs(d) & (Abs(d) - 1)) != 0);
// We will first divide by Abs(d), and negate the answer if d is negative.
// If desired, this can be avoided by generalizing computeDivisionConstants.
auto rmc = ReciprocalMulConstants::computeSignedDivisionConstants(Abs(d));
// We first compute (M * n) >> 32, where M = rmc.multiplier.
masm.Mov(const32, int32_t(rmc.multiplier));
if (rmc.multiplier > INT32_MAX) {
MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 32));
// We actually compute (int32_t(M) * n) instead, without the upper bit.
// Thus, (M * n) = (int32_t(M) * n) + n << 32.
//
// ((int32_t(M) * n) + n << 32) can't overflow, as both operands have
// opposite signs because int32_t(M) is negative.
masm.Lsl(output64, lhs64, 32);
// Store (M * n) in output64.
masm.Smaddl(output64, const32, lhs32, output64);
} else {
// Store (M * n) in output64.
masm.Smull(output64, const32, lhs32);
}
// (M * n) >> (32 + shift) is the truncated division answer if n is
// non-negative, as proved in the comments of computeDivisionConstants. We
// must add 1 later if n is negative to get the right answer in all cases.
masm.Asr(output64, output64, 32 + rmc.shiftAmount);
// We'll subtract -1 instead of adding 1, because (n < 0 ? -1 : 0) can be
// computed with just a sign-extending shift of 31 bits.
if (ins->canBeNegativeDividend()) {
masm.Asr(const32, lhs32, 31);
masm.Sub(output32, output32, const32);
}
// After this, output32 contains the correct truncated division result.
if (d < 0) {
masm.Neg(output32, output32);
}
if (!ins->mir()->isTruncated()) {
// This is a division op. Multiply the obtained value by d to check if
// the correct answer is an integer. This cannot overflow, since |d| > 1.
masm.Mov(const32, d);
masm.Msub(const32, output32, const32, lhs32);
// bailout if (lhs - output * d != 0)
masm.Cmp(const32, wzr);
auto bailoutCond = Assembler::NonZero;
// If lhs is zero and the divisor is negative, the answer should have
// been -0.
if (d < 0) {
// or bailout if (lhs == 0).
// ^ ^
// | '-- masm.Ccmp(lhs32, lhs32, .., ..)
// '-- masm.Ccmp(.., .., vixl::ZFlag, ! bailoutCond)
masm.Ccmp(lhs32, wzr, vixl::ZFlag, Assembler::Zero);
bailoutCond = Assembler::Zero;
}
// bailout if (lhs - output * d != 0) or (d < 0 && lhs == 0)
bailoutIf(bailoutCond, ins->snapshot());
}
}
void CodeGenerator::visitUDivConstantI(LUDivConstantI* ins) {
const ARMRegister lhs32 = toWRegister(ins->numerator());
const ARMRegister lhs64 = toXRegister(ins->numerator());
const ARMRegister const32 = toWRegister(ins->temp());
const ARMRegister output32 = toWRegister(ins->output());
const ARMRegister output64 = toXRegister(ins->output());
uint32_t d = ins->denominator();
if (d == 0) {
if (ins->mir()->isTruncated()) {
if (ins->mir()->trapOnError()) {
masm.wasmTrap(wasm::Trap::IntegerDivideByZero,
ins->mir()->bytecodeOffset());
} else {
masm.Mov(output32, wzr);
}
} else {
bailout(ins->snapshot());
}
return;
}
// The denominator isn't a power of 2 (see LDivPowTwoI).
MOZ_ASSERT((d & (d - 1)) != 0);
auto rmc = ReciprocalMulConstants::computeUnsignedDivisionConstants(d);
// We first compute (M * n), where M = rmc.multiplier.
masm.Mov(const32, int32_t(rmc.multiplier));
masm.Umull(output64, const32, lhs32);
if (rmc.multiplier > UINT32_MAX) {
// M >= 2^32 and shift == 0 is impossible, as d >= 2 implies that
// ((M * n) >> (32 + shift)) >= n > floor(n/d) whenever n >= d,
// contradicting the proof of correctness in computeDivisionConstants.
MOZ_ASSERT(rmc.shiftAmount > 0);
MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 33));
// We actually compute (uint32_t(M) * n) instead, without the upper bit.
// Thus, (M * n) = (uint32_t(M) * n) + n << 32.
//
// ((uint32_t(M) * n) + n << 32) can overflow. Hacker's Delight explains a
// trick to avoid this overflow case, but we can avoid it by computing the
// addition on 64 bits registers.
//
// Compute ((uint32_t(M) * n) >> 32 + n)
masm.Add(output64, lhs64, Operand(output64, vixl::LSR, 32));
// (M * n) >> (32 + shift) is the truncated division answer.
masm.Lsr(output64, output64, rmc.shiftAmount);
} else {
// (M * n) >> (32 + shift) is the truncated division answer.
masm.Lsr(output64, output64, 32 + rmc.shiftAmount);
}
// We now have the truncated division value. We are checking whether the
// division resulted in an integer, we multiply the obtained value by d and
// check the remainder of the division.
if (!ins->mir()->isTruncated()) {
masm.Mov(const32, d);
masm.Msub(const32, output32, const32, lhs32);
// bailout if (lhs - output * d != 0)
masm.Cmp(const32, const32);
bailoutIf(Assembler::NonZero, ins->snapshot());
}
}
void CodeGenerator::visitModI(LModI* ins) {
ARMRegister lhs = toWRegister(ins->lhs());
ARMRegister rhs = toWRegister(ins->rhs());
ARMRegister output = toWRegister(ins->output());
Label done;
MMod* mir = ins->mir();
// Prevent divide by zero.
if (mir->canBeDivideByZero()) {
if (mir->isTruncated()) {
if (mir->trapOnError()) {
Label nonZero;
masm.Cbnz(rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else {
// Truncated division by zero yields integer zero.
masm.Mov(output, rhs);
masm.Cbz(rhs, &done);
}
} else {
// Non-truncated division by zero produces a non-integer.
MOZ_ASSERT(!gen->compilingWasm());
masm.Cmp(rhs, Operand(0));
bailoutIf(Assembler::Equal, ins->snapshot());
}
}
// Signed division.
masm.Sdiv(output, lhs, rhs);
// Compute the remainder: output = lhs - (output * rhs).
masm.Msub(output, output, rhs, lhs);
if (mir->canBeNegativeDividend() && !mir->isTruncated()) {
// If output == 0 and lhs < 0, then the result should be double -0.0.
// Note that this guard handles lhs == INT_MIN and rhs == -1:
// output = INT_MIN - (INT_MIN / -1) * -1
// = INT_MIN - INT_MIN
// = 0
masm.Cbnz(output, &done);
bailoutCmp32(Assembler::LessThan, lhs, Imm32(0), ins->snapshot());
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitModPowTwoI(LModPowTwoI* ins) {
Register lhs = ToRegister(ins->getOperand(0));
ARMRegister lhsw = toWRegister(ins->getOperand(0));
ARMRegister outw = toWRegister(ins->output());
int32_t shift = ins->shift();
bool canBeNegative =
!ins->mir()->isUnsigned() && ins->mir()->canBeNegativeDividend();
Label negative;
if (canBeNegative) {
// Switch based on sign of the lhs.
// Positive numbers are just a bitmask.
masm.branchTest32(Assembler::Signed, lhs, lhs, &negative);
}
masm.And(outw, lhsw, Operand((uint32_t(1) << shift) - 1));
if (canBeNegative) {
Label done;
masm.jump(&done);
// Negative numbers need a negate, bitmask, negate.
masm.bind(&negative);
masm.Neg(outw, Operand(lhsw));
masm.And(outw, outw, Operand((uint32_t(1) << shift) - 1));
// Since a%b has the same sign as b, and a is negative in this branch,
// an answer of 0 means the correct result is actually -0. Bail out.
if (!ins->mir()->isTruncated()) {
masm.Negs(outw, Operand(outw));
bailoutIf(Assembler::Zero, ins->snapshot());
} else {
masm.Neg(outw, Operand(outw));
}
masm.bind(&done);
}
}
void CodeGenerator::visitModMaskI(LModMaskI* ins) {
MMod* mir = ins->mir();
int32_t shift = ins->shift();
const Register src = ToRegister(ins->getOperand(0));
const Register dest = ToRegister(ins->getDef(0));
const Register hold = ToRegister(ins->getTemp(0));
const Register remain = ToRegister(ins->getTemp(1));
const ARMRegister src32 = ARMRegister(src, 32);
const ARMRegister dest32 = ARMRegister(dest, 32);
const ARMRegister remain32 = ARMRegister(remain, 32);
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const ARMRegister scratch32 = temps.AcquireW();
const Register scratch = scratch32.asUnsized();
// We wish to compute x % (1<<y) - 1 for a known constant, y.
//
// 1. Let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit dividend as
// a number in base b, namely c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n
//
// 2. Since both addition and multiplication commute with modulus:
// x % C == (c_0 + c_1*b + ... + c_n*b^n) % C ==
// (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)...
//
// 3. Since b == C + 1, b % C == 1, and b^n % C == 1 the whole thing
// simplifies to: c_0 + c_1 + c_2 ... c_n % C
//
// Each c_n can easily be computed by a shift/bitextract, and the modulus
// can be maintained by simply subtracting by C whenever the number gets
// over C.
int32_t mask = (1 << shift) - 1;
Label loop;
// Register 'hold' holds -1 if the value was negative, 1 otherwise.
// The remain reg holds the remaining bits that have not been processed.
// The scratch reg serves as a temporary location to store extracted bits.
// The dest reg is the accumulator, becoming final result.
//
// Move the whole value into the remain.
masm.Mov(remain32, src32);
// Zero out the dest.
masm.Mov(dest32, wzr);
// Set the hold appropriately.
{
Label negative;
masm.branch32(Assembler::Signed, remain, Imm32(0), &negative);
masm.move32(Imm32(1), hold);
masm.jump(&loop);
masm.bind(&negative);
masm.move32(Imm32(-1), hold);
masm.neg32(remain);
}
// Begin the main loop.
masm.bind(&loop);
{
// Extract the bottom bits into scratch.
masm.And(scratch32, remain32, Operand(mask));
// Add those bits to the accumulator.
masm.Add(dest32, dest32, scratch32);
// Do a trial subtraction. This functions as a cmp but remembers the result.
masm.Subs(scratch32, dest32, Operand(mask));
// If (sum - C) > 0, store sum - C back into sum, thus performing a modulus.
{
Label sumSigned;
masm.branch32(Assembler::Signed, scratch, scratch, &sumSigned);
masm.Mov(dest32, scratch32);
masm.bind(&sumSigned);
}
// Get rid of the bits that we extracted before.
masm.Lsr(remain32, remain32, shift);
// If the shift produced zero, finish, otherwise, continue in the loop.
masm.branchTest32(Assembler::NonZero, remain, remain, &loop);
}
// Check the hold to see if we need to negate the result.
{
Label done;
// If the hold was non-zero, negate the result to match JS expectations.
masm.branchTest32(Assembler::NotSigned, hold, hold, &done);
if (mir->canBeNegativeDividend() && !mir->isTruncated()) {
// Bail in case of negative zero hold.
bailoutTest32(Assembler::Zero, hold, hold, ins->snapshot());
}
masm.neg32(dest);
masm.bind(&done);
}
}
void CodeGeneratorARM64::emitBigIntPtrDiv(LBigIntPtrDiv* ins, Register dividend,
Register divisor, Register output) {
// Callers handle division by zero and integer overflow.
const ARMRegister dividend64(dividend, 64);
const ARMRegister divisor64(divisor, 64);
const ARMRegister output64(output, 64);
masm.Sdiv(/* result= */ output64, dividend64, divisor64);
}
void CodeGeneratorARM64::emitBigIntPtrMod(LBigIntPtrMod* ins, Register dividend,
Register divisor, Register output) {
// Callers handle division by zero and integer overflow.
const ARMRegister dividend64(dividend, 64);
const ARMRegister divisor64(divisor, 64);
const ARMRegister output64(output, 64);
// Signed division.
masm.Sdiv(output64, dividend64, divisor64);
// Compute the remainder: output = dividend - (output * divisor).
masm.Msub(/* result= */ output64, output64, divisor64, dividend64);
}
void CodeGenerator::visitBitNotI(LBitNotI* ins) {
const LAllocation* input = ins->getOperand(0);
const LDefinition* output = ins->getDef(0);
masm.Mvn(toWRegister(output), toWOperand(input));
}
void CodeGenerator::visitBitNotI64(LBitNotI64* ins) {
Register input = ToRegister(ins->input());
Register output = ToRegister(ins->output());
masm.Mvn(vixl::Register(output, 64), vixl::Register(input, 64));
}
void CodeGenerator::visitBitOpI(LBitOpI* ins) {
const ARMRegister lhs = toWRegister(ins->getOperand(0));
const Operand rhs = toWOperand(ins->getOperand(1));
const ARMRegister dest = toWRegister(ins->getDef(0));
switch (ins->bitop()) {
case JSOp::BitOr:
masm.Orr(dest, lhs, rhs);
break;
case JSOp::BitXor:
masm.Eor(dest, lhs, rhs);
break;
case JSOp::BitAnd:
masm.And(dest, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected binary opcode");
}
}
void CodeGenerator::visitShiftI(LShiftI* ins) {
const ARMRegister lhs = toWRegister(ins->lhs());
const LAllocation* rhs = ins->rhs();
const ARMRegister dest = toWRegister(ins->output());
if (rhs->isConstant()) {
int32_t shift = ToInt32(rhs) & 0x1F;
switch (ins->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, shift);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, shift);
break;
case JSOp::Ursh:
if (shift) {
masm.Lsr(dest, lhs, shift);
} else if (ins->mir()->toUrsh()->fallible()) {
// x >>> 0 can overflow.
masm.Ands(dest, lhs, Operand(0xFFFFFFFF));
bailoutIf(Assembler::Signed, ins->snapshot());
} else {
masm.Mov(dest, lhs);
}
break;
default:
MOZ_CRASH("Unexpected shift op");
}
} else {
const ARMRegister rhsreg = toWRegister(rhs);
switch (ins->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, rhsreg);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, rhsreg);
break;
case JSOp::Ursh:
masm.Lsr(dest, lhs, rhsreg);
if (ins->mir()->toUrsh()->fallible()) {
/// x >>> 0 can overflow.
masm.Cmp(dest, Operand(0));
bailoutIf(Assembler::LessThan, ins->snapshot());
}
break;
default:
MOZ_CRASH("Unexpected shift op");
}
}
}
void CodeGenerator::visitUrshD(LUrshD* ins) {
const ARMRegister lhs = toWRegister(ins->lhs());
const LAllocation* rhs = ins->rhs();
const FloatRegister out = ToFloatRegister(ins->output());
const Register temp = ToRegister(ins->temp());
const ARMRegister temp32 = toWRegister(ins->temp());
if (rhs->isConstant()) {
int32_t shift = ToInt32(rhs) & 0x1F;
if (shift) {
masm.Lsr(temp32, lhs, shift);
masm.convertUInt32ToDouble(temp, out);
} else {
masm.convertUInt32ToDouble(ToRegister(ins->lhs()), out);
}
} else {
masm.And(temp32, toWRegister(rhs), Operand(0x1F));
masm.Lsr(temp32, lhs, temp32);
masm.convertUInt32ToDouble(temp, out);
}
}
void CodeGenerator::visitPowHalfD(LPowHalfD* ins) {
FloatRegister input = ToFloatRegister(ins->input());
FloatRegister output = ToFloatRegister(ins->output());
ScratchDoubleScope scratch(masm);
Label done, sqrt;
if (!ins->mir()->operandIsNeverNegativeInfinity()) {
// Branch if not -Infinity.
masm.loadConstantDouble(NegativeInfinity<double>(), scratch);
Assembler::DoubleCondition cond = Assembler::DoubleNotEqualOrUnordered;
if (ins->mir()->operandIsNeverNaN()) {
cond = Assembler::DoubleNotEqual;
}
masm.branchDouble(cond, input, scratch, &sqrt);
// Math.pow(-Infinity, 0.5) == Infinity.
masm.zeroDouble(output);
masm.subDouble(scratch, output);
masm.jump(&done);
masm.bind(&sqrt);
}
if (!ins->mir()->operandIsNeverNegativeZero()) {
// Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5).
// Adding 0 converts any -0 to 0.
masm.zeroDouble(scratch);
masm.addDouble(input, scratch);
masm.sqrtDouble(scratch, output);
} else {
masm.sqrtDouble(input, output);
}
masm.bind(&done);
}
MoveOperand CodeGeneratorARM64::toMoveOperand(const LAllocation a) const {
if (a.isGeneralReg()) {
return MoveOperand(ToRegister(a));
}
if (a.isFloatReg()) {
return MoveOperand(ToFloatRegister(a));
}
MoveOperand::Kind kind = a.isStackArea() ? MoveOperand::Kind::EffectiveAddress
: MoveOperand::Kind::Memory;
return MoveOperand(ToAddress(a), kind);
}
class js::jit::OutOfLineTableSwitch
: public OutOfLineCodeBase<CodeGeneratorARM64> {
MTableSwitch* mir_;
CodeLabel jumpLabel_;
void accept(CodeGeneratorARM64* codegen) override {
codegen->visitOutOfLineTableSwitch(this);
}
public:
explicit OutOfLineTableSwitch(MTableSwitch* mir) : mir_(mir) {}
MTableSwitch* mir() const { return mir_; }
CodeLabel* jumpLabel() { return &jumpLabel_; }
};
void CodeGeneratorARM64::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) {
MTableSwitch* mir = ool->mir();
// Prevent nop and pools sequences to appear in the jump table.
AutoForbidPoolsAndNops afp(
&masm, (mir->numCases() + 1) * (sizeof(void*) / vixl::kInstructionSize));
masm.haltingAlign(sizeof(void*));
masm.bind(ool->jumpLabel());
masm.addCodeLabel(*ool->jumpLabel());
for (size_t i = 0; i < mir->numCases(); i++) {
LBlock* caseblock = skipTrivialBlocks(mir->getCase(i))->lir();
Label* caseheader = caseblock->label();
uint32_t caseoffset = caseheader->offset();
// The entries of the jump table need to be absolute addresses,
// and thus must be patched after codegen is finished.
CodeLabel cl;
masm.writeCodePointer(&cl);
cl.target()->bind(caseoffset);
masm.addCodeLabel(cl);
}
}
void CodeGeneratorARM64::emitTableSwitchDispatch(MTableSwitch* mir,
Register index,
Register base) {
Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
// Let the lowest table entry be indexed at 0.
if (mir->low() != 0) {
masm.sub32(Imm32(mir->low()), index);
}
// Jump to the default case if input is out of range.
int32_t cases = mir->numCases();
masm.branch32(Assembler::AboveOrEqual, index, Imm32(cases), defaultcase);
// Because the target code has not yet been generated, we cannot know the
// instruction offsets for use as jump targets. Therefore we construct
// an OutOfLineTableSwitch that winds up holding the jump table.
//
// Because the jump table is generated as part of out-of-line code,
// it is generated after all the regular codegen, so the jump targets
// are guaranteed to exist when generating the jump table.
OutOfLineTableSwitch* ool = new (alloc()) OutOfLineTableSwitch(mir);
addOutOfLineCode(ool, mir);
// Use the index to get the address of the jump target from the table.
masm.mov(ool->jumpLabel(), base);
BaseIndex pointer(base, index, ScalePointer);
// Load the target from the jump table and branch to it.
masm.branchToComputedAddress(pointer);
}
void CodeGenerator::visitMathD(LMathD* math) {
ARMFPRegister lhs(ToFloatRegister(math->lhs()), 64);
ARMFPRegister rhs(ToFloatRegister(math->rhs()), 64);
ARMFPRegister output(ToFloatRegister(math->output()), 64);
switch (math->jsop()) {
case JSOp::Add:
masm.Fadd(output, lhs, rhs);
break;
case JSOp::Sub:
masm.Fsub(output, lhs, rhs);
break;
case JSOp::Mul:
masm.Fmul(output, lhs, rhs);
break;
case JSOp::Div:
masm.Fdiv(output, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected opcode");
}
}
void CodeGenerator::visitMathF(LMathF* math) {
ARMFPRegister lhs(ToFloatRegister(math->lhs()), 32);
ARMFPRegister rhs(ToFloatRegister(math->rhs()), 32);
ARMFPRegister output(ToFloatRegister(math->output()), 32);
switch (math->jsop()) {
case JSOp::Add:
masm.Fadd(output, lhs, rhs);
break;
case JSOp::Sub:
masm.Fsub(output, lhs, rhs);
break;
case JSOp::Mul:
masm.Fmul(output, lhs, rhs);
break;
case JSOp::Div:
masm.Fdiv(output, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected opcode");
}
}
void CodeGenerator::visitTruncateDToInt32(LTruncateDToInt32* ins) {
emitTruncateDouble(ToFloatRegister(ins->input()), ToRegister(ins->output()),
ins->mir());
}
void CodeGenerator::visitNearbyInt(LNearbyInt* lir) {
FloatRegister input = ToFloatRegister(lir->input());
FloatRegister output = ToFloatRegister(lir->output());
RoundingMode roundingMode = lir->mir()->roundingMode();
masm.nearbyIntDouble(roundingMode, input, output);
}
void CodeGenerator::visitNearbyIntF(LNearbyIntF* lir) {
FloatRegister input = ToFloatRegister(lir->input());
FloatRegister output = ToFloatRegister(lir->output());
RoundingMode roundingMode = lir->mir()->roundingMode();
masm.nearbyIntFloat32(roundingMode, input, output);
}
void CodeGenerator::visitWasmBuiltinTruncateDToInt32(
LWasmBuiltinTruncateDToInt32* lir) {
emitTruncateDouble(ToFloatRegister(lir->getOperand(0)),
ToRegister(lir->getDef(0)), lir->mir());
}
void CodeGenerator::visitTruncateFToInt32(LTruncateFToInt32* ins) {
emitTruncateFloat32(ToFloatRegister(ins->input()), ToRegister(ins->output()),
ins->mir());
}
void CodeGenerator::visitWasmBuiltinTruncateFToInt32(
LWasmBuiltinTruncateFToInt32* lir) {
emitTruncateFloat32(ToFloatRegister(lir->getOperand(0)),
ToRegister(lir->getDef(0)), lir->mir());
}
ValueOperand CodeGeneratorARM64::ToValue(LInstruction* ins, size_t pos) {
return ValueOperand(ToRegister(ins->getOperand(pos)));
}
ValueOperand CodeGeneratorARM64::ToTempValue(LInstruction* ins, size_t pos) {
MOZ_CRASH("CodeGeneratorARM64::ToTempValue");
}
void CodeGenerator::visitBox(LBox* box) {
const LAllocation* in = box->getOperand(0);
ValueOperand result = ToOutValue(box);
masm.moveValue(TypedOrValueRegister(box->type(), ToAnyRegister(in)), result);
}
void CodeGenerator::visitUnbox(LUnbox* unbox) {
MUnbox* mir = unbox->mir();
Register result = ToRegister(unbox->output());
if (mir->fallible()) {
const ValueOperand value = ToValue(unbox, LUnbox::Input);
Label bail;
switch (mir->type()) {
case MIRType::Int32:
masm.fallibleUnboxInt32(value, result, &bail);
break;
case MIRType::Boolean:
masm.fallibleUnboxBoolean(value, result, &bail);
break;
case MIRType::Object:
masm.fallibleUnboxObject(value, result, &bail);
break;
case MIRType::String:
masm.fallibleUnboxString(value, result, &bail);
break;
case MIRType::Symbol:
masm.fallibleUnboxSymbol(value, result, &bail);
break;
case MIRType::BigInt:
masm.fallibleUnboxBigInt(value, result, &bail);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
bailoutFrom(&bail, unbox->snapshot());
return;
}
// Infallible unbox.
ValueOperand input = ToValue(unbox, LUnbox::Input);
#ifdef DEBUG
// Assert the types match.
JSValueTag tag = MIRTypeToTag(mir->type());
Label ok;
{
ScratchTagScope scratch(masm, input);
masm.splitTagForTest(input, scratch);
masm.cmpTag(scratch, ImmTag(tag));
}
masm.B(&ok, Assembler::Condition::Equal);
masm.assumeUnreachable("Infallible unbox type mismatch");
masm.bind(&ok);
#endif
switch (mir->type()) {
case MIRType::Int32:
masm.unboxInt32(input, result);
break;
case MIRType::Boolean:
masm.unboxBoolean(input, result);
break;
case MIRType::Object:
masm.unboxObject(input, result);
break;
case MIRType::String:
masm.unboxString(input, result);
break;
case MIRType::Symbol:
masm.unboxSymbol(input, result);
break;
case MIRType::BigInt:
masm.unboxBigInt(input, result);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
}
void CodeGenerator::visitTestDAndBranch(LTestDAndBranch* test) {
const LAllocation* opd = test->input();
MBasicBlock* ifTrue = test->ifTrue();
MBasicBlock* ifFalse = test->ifFalse();
masm.Fcmp(ARMFPRegister(ToFloatRegister(opd), 64), 0.0);
// If the compare set the 0 bit, then the result is definitely false.
jumpToBlock(ifFalse, Assembler::Zero);
// Overflow means one of the operands was NaN, which is also false.
jumpToBlock(ifFalse, Assembler::Overflow);
jumpToBlock(ifTrue);
}
void CodeGenerator::visitTestFAndBranch(LTestFAndBranch* test) {
const LAllocation* opd = test->input();
MBasicBlock* ifTrue = test->ifTrue();
MBasicBlock* ifFalse = test->ifFalse();
masm.Fcmp(ARMFPRegister(ToFloatRegister(opd), 32), 0.0);
// If the compare set the 0 bit, then the result is definitely false.
jumpToBlock(ifFalse, Assembler::Zero);
// Overflow means one of the operands was NaN, which is also false.
jumpToBlock(ifFalse, Assembler::Overflow);
jumpToBlock(ifTrue);
}
void CodeGenerator::visitCompareD(LCompareD* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
ARMRegister output = toWRegister(comp->output());
Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
masm.compareDouble(cond, left, right);
masm.cset(output, Assembler::ConditionFromDoubleCondition(cond));
}
void CodeGenerator::visitCompareF(LCompareF* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
ARMRegister output = toWRegister(comp->output());
Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
masm.compareFloat(cond, left, right);
masm.cset(output, Assembler::ConditionFromDoubleCondition(cond));
}
void CodeGenerator::visitCompareDAndBranch(LCompareDAndBranch* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
Assembler::DoubleCondition doubleCond =
JSOpToDoubleCondition(comp->cmpMir()->jsop());
Assembler::Condition cond =
Assembler::ConditionFromDoubleCondition(doubleCond);
masm.compareDouble(doubleCond, left, right);
emitBranch(cond, comp->ifTrue(), comp->ifFalse());
}
void CodeGenerator::visitCompareFAndBranch(LCompareFAndBranch* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
Assembler::DoubleCondition doubleCond =
JSOpToDoubleCondition(comp->cmpMir()->jsop());
Assembler::Condition cond =
Assembler::ConditionFromDoubleCondition(doubleCond);
masm.compareFloat(doubleCond, left, right);
emitBranch(cond, comp->ifTrue(), comp->ifFalse());
}
void CodeGenerator::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) {
masm.convertUInt32ToDouble(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
void CodeGenerator::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) {
masm.convertUInt32ToFloat32(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
// NZCV
// NAN -> 0011
// == -> 0110
// < -> 1000
// > -> 0010
void CodeGenerator::visitNotD(LNotD* ins) {
ARMFPRegister input(ToFloatRegister(ins->input()), 64);
ARMRegister output = toWRegister(ins->output());
// Set output to 1 if input compares equal to 0.0, else 0.
masm.Fcmp(input, 0.0);
masm.Cset(output, Assembler::Equal);
// Comparison with NaN sets V in the NZCV register.
// If the input was NaN, output must now be zero, so it can be incremented.
// The instruction is read: "output = if NoOverflow then output else 0+1".
masm.Csinc(output, output, ZeroRegister32, Assembler::NoOverflow);
}
void CodeGenerator::visitNotF(LNotF* ins) {
ARMFPRegister input(ToFloatRegister(ins->input()), 32);
ARMRegister output = toWRegister(ins->output());
// Set output to 1 input compares equal to 0.0, else 0.
masm.Fcmp(input, 0.0);
masm.Cset(output, Assembler::Equal);
// Comparison with NaN sets V in the NZCV register.
// If the input was NaN, output must now be zero, so it can be incremented.
// The instruction is read: "output = if NoOverflow then output else 0+1".
masm.Csinc(output, output, ZeroRegister32, Assembler::NoOverflow);
}
void CodeGeneratorARM64::generateInvalidateEpilogue() {
// Ensure that there is enough space in the buffer for the OsiPoint patching
// to occur. Otherwise, we could overwrite the invalidation epilogue.
for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) {
masm.nop();
}
masm.bind(&invalidate_);
// Push the return address of the point that we bailout out onto the stack.
masm.push(lr);
// Push the Ion script onto the stack (when we determine what that pointer
// is).
invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1)));
// Jump to the invalidator which will replace the current frame.
TrampolinePtr thunk = gen->jitRuntime()->getInvalidationThunk();
masm.jump(thunk);
}
template <class U>
Register getBase(U* mir) {
switch (mir->base()) {
case U::Heap:
return HeapReg;
}
return InvalidReg;
}
void CodeGenerator::visitAsmJSLoadHeap(LAsmJSLoadHeap* ins) {
const MAsmJSLoadHeap* mir = ins->mir();
MOZ_ASSERT(!mir->hasMemoryBase());
const LAllocation* ptr = ins->ptr();
const LAllocation* boundsCheckLimit = ins->boundsCheckLimit();
Register ptrReg = ToRegister(ptr);
Scalar::Type accessType = mir->accessType();
bool isFloat = accessType == Scalar::Float32 || accessType == Scalar::Float64;
Label done;
if (mir->needsBoundsCheck()) {
Label boundsCheckPassed;
Register boundsCheckLimitReg = ToRegister(boundsCheckLimit);
masm.wasmBoundsCheck32(Assembler::Below, ptrReg, boundsCheckLimitReg,
&boundsCheckPassed);
// Return a default value in case of a bounds-check failure.
if (isFloat) {
if (accessType == Scalar::Float32) {
masm.loadConstantFloat32(GenericNaN(), ToFloatRegister(ins->output()));
} else {
masm.loadConstantDouble(GenericNaN(), ToFloatRegister(ins->output()));
}
} else {
masm.Mov(ARMRegister(ToRegister(ins->output()), 64), 0);
}
masm.jump(&done);
masm.bind(&boundsCheckPassed);
}
MemOperand addr(ARMRegister(HeapReg, 64), ARMRegister(ptrReg, 64));
switch (accessType) {
case Scalar::Int8:
masm.Ldrb(toWRegister(ins->output()), addr);
masm.Sxtb(toWRegister(ins->output()), toWRegister(ins->output()));
break;
case Scalar::Uint8:
masm.Ldrb(toWRegister(ins->output()), addr);
break;
case Scalar::Int16:
masm.Ldrh(toWRegister(ins->output()), addr);
masm.Sxth(toWRegister(ins->output()), toWRegister(ins->output()));
break;
case Scalar::Uint16:
masm.Ldrh(toWRegister(ins->output()), addr);
break;
case Scalar::Int32:
case Scalar::Uint32:
masm.Ldr(toWRegister(ins->output()), addr);
break;
case Scalar::Float64:
masm.Ldr(ARMFPRegister(ToFloatRegister(ins->output()), 64), addr);
break;
case Scalar::Float32:
masm.Ldr(ARMFPRegister(ToFloatRegister(ins->output()), 32), addr);
break;
default:
MOZ_CRASH("unexpected array type");
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitAsmJSStoreHeap(LAsmJSStoreHeap* ins) {
const MAsmJSStoreHeap* mir = ins->mir();
MOZ_ASSERT(!mir->hasMemoryBase());
const LAllocation* ptr = ins->ptr();
const LAllocation* boundsCheckLimit = ins->boundsCheckLimit();
Register ptrReg = ToRegister(ptr);
Label done;
if (mir->needsBoundsCheck()) {
Register boundsCheckLimitReg = ToRegister(boundsCheckLimit);
masm.wasmBoundsCheck32(Assembler::AboveOrEqual, ptrReg, boundsCheckLimitReg,
&done);
}
MemOperand addr(ARMRegister(HeapReg, 64), ARMRegister(ptrReg, 64));
switch (mir->accessType()) {
case Scalar::Int8:
case Scalar::Uint8:
masm.Strb(toWRegister(ins->value()), addr);
break;
case Scalar::Int16:
case Scalar::Uint16:
masm.Strh(toWRegister(ins->value()), addr);
break;
case Scalar::Int32:
case Scalar::Uint32:
masm.Str(toWRegister(ins->value()), addr);
break;
case Scalar::Float64:
masm.Str(ARMFPRegister(ToFloatRegister(ins->value()), 64), addr);
break;
case Scalar::Float32:
masm.Str(ARMFPRegister(ToFloatRegister(ins->value()), 32), addr);
break;
default:
MOZ_CRASH("unexpected array type");
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitWasmCompareExchangeHeap(
LWasmCompareExchangeHeap* ins) {
MWasmCompareExchangeHeap* mir = ins->mir();
Register memoryBase = ToRegister(ins->memoryBase());
Register ptr = ToRegister(ins->ptr());
Register oldval = ToRegister(ins->oldValue());
Register newval = ToRegister(ins->newValue());
Register out = ToRegister(ins->output());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
BaseIndex srcAddr(memoryBase, ptr, TimesOne, mir->access().offset32());
if (mir->access().type() == Scalar::Int64) {
masm.wasmCompareExchange64(mir->access(), srcAddr, Register64(oldval),
Register64(newval), Register64(out));
} else {
masm.wasmCompareExchange(mir->access(), srcAddr, oldval, newval, out);
}
}
void CodeGenerator::visitWasmAtomicExchangeHeap(LWasmAtomicExchangeHeap* ins) {
MWasmAtomicExchangeHeap* mir = ins->mir();
Register memoryBase = ToRegister(ins->memoryBase());
Register ptr = ToRegister(ins->ptr());
Register oldval = ToRegister(ins->value());
Register out = ToRegister(ins->output());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
BaseIndex srcAddr(memoryBase, ptr, TimesOne, mir->access().offset32());
if (mir->access().type() == Scalar::Int64) {
masm.wasmAtomicExchange64(mir->access(), srcAddr, Register64(oldval),
Register64(out));
} else {
masm.wasmAtomicExchange(mir->access(), srcAddr, oldval, out);
}
}
void CodeGenerator::visitWasmAtomicBinopHeap(LWasmAtomicBinopHeap* ins) {
MWasmAtomicBinopHeap* mir = ins->mir();
MOZ_ASSERT(mir->hasUses());
Register memoryBase = ToRegister(ins->memoryBase());
Register ptr = ToRegister(ins->ptr());
Register value = ToRegister(ins->value());
Register flagTemp = ToRegister(ins->flagTemp());
Register out = ToRegister(ins->output());
MOZ_ASSERT(ins->temp()->isBogusTemp());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
BaseIndex srcAddr(memoryBase, ptr, TimesOne, mir->access().offset32());
AtomicOp op = mir->operation();
if (mir->access().type() == Scalar::Int64) {
masm.wasmAtomicFetchOp64(mir->access(), op, Register64(value), srcAddr,
Register64(flagTemp), Register64(out));
} else {
masm.wasmAtomicFetchOp(mir->access(), op, value, srcAddr, flagTemp, out);
}
}
void CodeGenerator::visitWasmAtomicBinopHeapForEffect(
LWasmAtomicBinopHeapForEffect* ins) {
MWasmAtomicBinopHeap* mir = ins->mir();
MOZ_ASSERT(!mir->hasUses());
Register memoryBase = ToRegister(ins->memoryBase());
Register ptr = ToRegister(ins->ptr());
Register value = ToRegister(ins->value());
Register flagTemp = ToRegister(ins->flagTemp());
MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
BaseIndex srcAddr(memoryBase, ptr, TimesOne, mir->access().offset32());
AtomicOp op = mir->operation();
if (mir->access().type() == Scalar::Int64) {
masm.wasmAtomicEffectOp64(mir->access(), op, Register64(value), srcAddr,
Register64(flagTemp));
} else {
masm.wasmAtomicEffectOp(mir->access(), op, value, srcAddr, flagTemp);
}
}
void CodeGenerator::visitWasmStackArg(LWasmStackArg* ins) {
const MWasmStackArg* mir = ins->mir();
Address dst(masm.getStackPointer(), mir->spOffset());
if (ins->arg()->isConstant()) {
masm.storePtr(ImmWord(ToInt32(ins->arg())), dst);
} else if (ins->arg()->isGeneralReg()) {
masm.storePtr(ToRegister(ins->arg()), dst);
} else {
switch (mir->input()->type()) {
case MIRType::Double:
masm.storeDouble(ToFloatRegister(ins->arg()), dst);
return;
case MIRType::Float32:
masm.storeFloat32(ToFloatRegister(ins->arg()), dst);
return;
#ifdef ENABLE_WASM_SIMD
case MIRType::Simd128:
masm.storeUnalignedSimd128(ToFloatRegister(ins->arg()), dst);
return;
#endif
default:
break;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE(
"unexpected mir type in WasmStackArg");
}
}
void CodeGenerator::visitUDiv(LUDiv* ins) {
MDiv* mir = ins->mir();
Register lhs = ToRegister(ins->lhs());
Register rhs = ToRegister(ins->rhs());
Register output = ToRegister(ins->output());
ARMRegister lhs32 = ARMRegister(lhs, 32);
ARMRegister rhs32 = ARMRegister(rhs, 32);
ARMRegister output32 = ARMRegister(output, 32);
// Prevent divide by zero.
if (mir->canBeDivideByZero()) {
if (mir->isTruncated()) {
if (mir->trapOnError()) {
Label nonZero;
masm.branchTest32(Assembler::NonZero, rhs, rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else {
// ARM64 UDIV instruction will return 0 when divided by 0.
// No need for extra tests.
}
} else {
bailoutTest32(Assembler::Zero, rhs, rhs, ins->snapshot());
}
}
// Unsigned division.
masm.Udiv(output32, lhs32, rhs32);
// If the remainder is > 0, bailout since this must be a double.
if (!mir->canTruncateRemainder()) {
Register remainder = ToRegister(ins->remainder());
ARMRegister remainder32 = ARMRegister(remainder, 32);
// Compute the remainder: remainder = lhs - (output * rhs).
masm.Msub(remainder32, output32, rhs32, lhs32);
bailoutTest32(Assembler::NonZero, remainder, remainder, ins->snapshot());
}
// Unsigned div can return a value that's not a signed int32.
// If our users aren't expecting that, bail.
if (!mir->isTruncated()) {
bailoutTest32(Assembler::Signed, output, output, ins->snapshot());
}
}
void CodeGenerator::visitUMod(LUMod* ins) {
MMod* mir = ins->mir();
ARMRegister lhs = toWRegister(ins->lhs());
ARMRegister rhs = toWRegister(ins->rhs());
ARMRegister output = toWRegister(ins->output());
Label done;
if (mir->canBeDivideByZero()) {
if (mir->isTruncated()) {
if (mir->trapOnError()) {
Label nonZero;
masm.Cbnz(rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else {
// Truncated division by zero yields integer zero.
masm.Mov(output, rhs);
masm.Cbz(rhs, &done);
}
} else {
// Non-truncated division by zero produces a non-integer.
masm.Cmp(rhs, Operand(0));
bailoutIf(Assembler::Equal, ins->snapshot());
}
}
// Unsigned division.
masm.Udiv(output, lhs, rhs);
// Compute the remainder: output = lhs - (output * rhs).
masm.Msub(output, output, rhs, lhs);
if (!mir->isTruncated()) {
// Bail if the output would be negative.
//
// LUMod inputs may be Uint32, so care is taken to ensure the result
// is not unexpectedly signed.
bailoutCmp32(Assembler::LessThan, output, Imm32(0), ins->snapshot());
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitEffectiveAddress(LEffectiveAddress* ins) {
const MEffectiveAddress* mir = ins->mir();
const ARMRegister base = toWRegister(ins->base());
const ARMRegister index = toWRegister(ins->index());
const ARMRegister output = toWRegister(ins->output());
masm.Add(output, base, Operand(index, vixl::LSL, mir->scale()));
masm.Add(output, output, Operand(mir->displacement()));
}
void CodeGenerator::visitNegI(LNegI* ins) {
const ARMRegister input = toWRegister(ins->input());
const ARMRegister output = toWRegister(ins->output());
masm.Neg(output, input);
}
void CodeGenerator::visitNegI64(LNegI64* ins) {
const ARMRegister input = toXRegister(ins->input());
const ARMRegister output = toXRegister(ins->output());
masm.Neg(output, input);
}
void CodeGenerator::visitNegD(LNegD* ins) {
const ARMFPRegister input(ToFloatRegister(ins->input()), 64);
const ARMFPRegister output(ToFloatRegister(ins->output()), 64);
masm.Fneg(output, input);
}
void CodeGenerator::visitNegF(LNegF* ins) {
const ARMFPRegister input(ToFloatRegister(ins->input()), 32);
const ARMFPRegister output(ToFloatRegister(ins->output()), 32);
masm.Fneg(output, input);
}
void CodeGenerator::visitCompareExchangeTypedArrayElement(
LCompareExchangeTypedArrayElement* lir) {
Register elements = ToRegister(lir->elements());
AnyRegister output = ToAnyRegister(lir->output());
Register temp =
lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
Register oldval = ToRegister(lir->oldval());
Register newval = ToRegister(lir->newval());
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
newval, temp, output);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
newval, temp, output);
}
}
void CodeGenerator::visitAtomicExchangeTypedArrayElement(
LAtomicExchangeTypedArrayElement* lir) {
Register elements = ToRegister(lir->elements());
AnyRegister output = ToAnyRegister(lir->output());
Register temp =
lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
Register value = ToRegister(lir->value());
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
output);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
output);
}
}
void CodeGenerator::visitAtomicLoad64(LAtomicLoad64* lir) {
Register elements = ToRegister(lir->elements());
Register64 out = ToOutRegister64(lir);
const MLoadUnboxedScalar* mir = lir->mir();
Scalar::Type storageType = mir->storageType();
// NOTE: the generated code must match the assembly code in gen_load in
// GenerateAtomicOperations.py
auto sync = Synchronization::Load();
masm.memoryBarrierBefore(sync);
if (lir->index()->isConstant()) {
Address source =
ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment());
masm.load64(source, out);
} else {
BaseIndex source(elements, ToRegister(lir->index()),
ScaleFromScalarType(storageType), mir->offsetAdjustment());
masm.load64(source, out);
}
masm.memoryBarrierAfter(sync);
}
void CodeGenerator::visitAtomicStore64(LAtomicStore64* lir) {
Register elements = ToRegister(lir->elements());
Register64 value = ToRegister64(lir->value());
Scalar::Type writeType = lir->mir()->writeType();
// NOTE: the generated code must match the assembly code in gen_store in
// GenerateAtomicOperations.py
auto sync = Synchronization::Store();
masm.memoryBarrierBefore(sync);
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), writeType);
masm.store64(value, dest);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(writeType));
masm.store64(value, dest);
}
masm.memoryBarrierAfter(sync);
}
void CodeGenerator::visitCompareExchangeTypedArrayElement64(
LCompareExchangeTypedArrayElement64* lir) {
Register elements = ToRegister(lir->elements());
Register64 oldval = ToRegister64(lir->oldval());
Register64 newval = ToRegister64(lir->newval());
Register64 out = ToOutRegister64(lir);
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.compareExchange64(Synchronization::Full(), dest, oldval, newval, out);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.compareExchange64(Synchronization::Full(), dest, oldval, newval, out);
}
}
void CodeGenerator::visitAtomicExchangeTypedArrayElement64(
LAtomicExchangeTypedArrayElement64* lir) {
Register elements = ToRegister(lir->elements());
Register64 value = ToRegister64(lir->value());
Register64 out = ToOutRegister64(lir);
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.atomicExchange64(Synchronization::Full(), dest, value, out);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicExchange64(Synchronization::Full(), dest, value, out);
}
}
void CodeGenerator::visitAtomicTypedArrayElementBinop64(
LAtomicTypedArrayElementBinop64* lir) {
MOZ_ASSERT(!lir->mir()->isForEffect());
Register elements = ToRegister(lir->elements());
Register64 value = ToRegister64(lir->value());
Register64 temp = ToRegister64(lir->temp());
Register64 out = ToOutRegister64(lir);
Scalar::Type arrayType = lir->mir()->arrayType();
AtomicOp atomicOp = lir->mir()->operation();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.atomicFetchOp64(Synchronization::Full(), atomicOp, value, dest, temp,
out);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicFetchOp64(Synchronization::Full(), atomicOp, value, dest, temp,
out);
}
}
void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect64(
LAtomicTypedArrayElementBinopForEffect64* lir) {
MOZ_ASSERT(lir->mir()->isForEffect());
Register elements = ToRegister(lir->elements());
Register64 value = ToRegister64(lir->value());
Register64 temp = ToRegister64(lir->temp());
Scalar::Type arrayType = lir->mir()->arrayType();
AtomicOp atomicOp = lir->mir()->operation();
if (lir->index()->isConstant()) {
Address dest = ToAddress(elements, lir->index(), arrayType);
masm.atomicEffectOp64(Synchronization::Full(), atomicOp, value, dest, temp);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicEffectOp64(Synchronization::Full(), atomicOp, value, dest, temp);
}
}
void CodeGeneratorARM64::emitSimpleBinaryI64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* lir, JSOp op) {
const ARMRegister dest = ARMRegister(ToOutRegister64(lir).reg, 64);
const ARMRegister lhs =
ARMRegister(ToRegister64(lir->getInt64Operand(0)).reg, 64);
const LInt64Allocation rhsAlloc = lir->getInt64Operand(INT64_PIECES);
Operand rhs;
if (IsConstant(rhsAlloc)) {
rhs = Operand(ToInt64(rhsAlloc));
} else {
rhs = Operand(ARMRegister(ToRegister64(rhsAlloc).reg, 64));
}
switch (op) {
case JSOp::Add:
masm.Add(dest, lhs, rhs);
break;
case JSOp::Sub:
masm.Sub(dest, lhs, rhs);
break;
case JSOp::BitOr:
masm.Orr(dest, lhs, rhs);
break;
case JSOp::BitXor:
masm.Eor(dest, lhs, rhs);
break;
case JSOp::BitAnd:
masm.And(dest, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected binary opcode");
}
}
void CodeGenerator::visitAddI64(LAddI64* lir) {
emitSimpleBinaryI64(lir, JSOp::Add);
}
void CodeGenerator::visitMulI64(LMulI64* lir) {
const LInt64Allocation lhs = lir->getInt64Operand(LMulI64::Lhs);
const LInt64Allocation rhs = lir->getInt64Operand(LMulI64::Rhs);
const Register64 output = ToOutRegister64(lir);
if (IsConstant(rhs)) {
int64_t constant = ToInt64(rhs);
// Ad-hoc strength reduction, cf the x64 code as well as the 32-bit code
// constant folding pass, or to lowering.
//
// This is for wasm integers only, so no input guards or overflow checking
// are needed.
switch (constant) {
case -1:
masm.Neg(ARMRegister(output.reg, 64),
ARMRegister(ToRegister64(lhs).reg, 64));
break;
case 0:
masm.Mov(ARMRegister(output.reg, 64), xzr);
break;
case 1:
if (ToRegister64(lhs) != output) {
masm.move64(ToRegister64(lhs), output);
}
break;
case 2:
masm.Add(ARMRegister(output.reg, 64),
ARMRegister(ToRegister64(lhs).reg, 64),
ARMRegister(ToRegister64(lhs).reg, 64));
break;
default:
// Use shift if constant is nonnegative power of 2.
if (constant > 0) {
int32_t shift = mozilla::FloorLog2(constant);
if (int64_t(1) << shift == constant) {
masm.Lsl(ARMRegister(output.reg, 64),
ARMRegister(ToRegister64(lhs).reg, 64), shift);
break;
}
}
masm.mul64(Imm64(constant), ToRegister64(lhs), output);
break;
}
} else {
masm.mul64(ToRegister64(lhs), ToRegister64(rhs), output);
}
}
void CodeGenerator::visitSubI64(LSubI64* lir) {
emitSimpleBinaryI64(lir, JSOp::Sub);
}
void CodeGenerator::visitBitOpI64(LBitOpI64* lir) {
emitSimpleBinaryI64(lir, lir->bitop());
}
void CodeGenerator::visitShiftI64(LShiftI64* lir) {
ARMRegister lhs(ToRegister64(lir->getInt64Operand(LShiftI64::Lhs)).reg, 64);
LAllocation* rhsAlloc = lir->getOperand(LShiftI64::Rhs);
ARMRegister dest(ToOutRegister64(lir).reg, 64);
if (rhsAlloc->isConstant()) {
int32_t shift = int32_t(rhsAlloc->toConstant()->toInt64() & 0x3F);
if (shift == 0) {
if (lhs.code() != dest.code()) {
masm.Mov(dest, lhs);
}
} else {
switch (lir->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, shift);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, shift);
break;
case JSOp::Ursh:
masm.Lsr(dest, lhs, shift);
break;
default:
MOZ_CRASH("Unexpected shift op");
}
}
} else {
ARMRegister rhs(ToRegister(rhsAlloc), 64);
switch (lir->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, rhs);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, rhs);
break;
case JSOp::Ursh:
masm.Lsr(dest, lhs, rhs);
break;
default:
MOZ_CRASH("Unexpected shift op");
}
}
}
// If we have a constant base ptr, try to add the offset to it, to generate
// better code when the full address is known. The addition may overflow past
// 32 bits because the front end does nothing special if the base is a large
// constant and base+offset overflows; sidestep this by performing the addition
// anyway, overflowing to 64-bit.
static Maybe<uint64_t> IsAbsoluteAddress(const LAllocation* ptr,
const wasm::MemoryAccessDesc& access) {
if (ptr->isConstantValue()) {
const MConstant* c = ptr->toConstant();
uint64_t base_address = c->type() == MIRType::Int32
? uint64_t(uint32_t(c->toInt32()))
: uint64_t(c->toInt64());
uint64_t offset = access.offset32();
return Some(base_address + offset);
}
return Nothing();
}
void CodeGenerator::visitWasmLoad(LWasmLoad* lir) {
const MWasmLoad* mir = lir->mir();
if (Maybe<uint64_t> absAddr = IsAbsoluteAddress(lir->ptr(), mir->access())) {
masm.wasmLoadAbsolute(mir->access(), ToRegister(lir->memoryBase()),
absAddr.value(), ToAnyRegister(lir->output()),
Register64::Invalid());
return;
}
// ptr is a GPR and is either a 32-bit value zero-extended to 64-bit, or a
// true 64-bit value.
masm.wasmLoad(mir->access(), ToRegister(lir->memoryBase()),
ToRegister(lir->ptr()), ToAnyRegister(lir->output()));
}
void CodeGenerator::visitCopySignD(LCopySignD* ins) {
MOZ_ASSERT(ins->getTemp(0)->isBogusTemp());
MOZ_ASSERT(ins->getTemp(1)->isBogusTemp());
masm.copySignDouble(ToFloatRegister(ins->getOperand(0)),
ToFloatRegister(ins->getOperand(1)),
ToFloatRegister(ins->getDef(0)));
}
void CodeGenerator::visitCopySignF(LCopySignF* ins) {
MOZ_ASSERT(ins->getTemp(0)->isBogusTemp());
MOZ_ASSERT(ins->getTemp(1)->isBogusTemp());
masm.copySignFloat32(ToFloatRegister(ins->getOperand(0)),
ToFloatRegister(ins->getOperand(1)),
ToFloatRegister(ins->getDef(0)));
}
void CodeGenerator::visitRotateI64(LRotateI64* lir) {
bool rotateLeft = lir->mir()->isLeftRotate();
Register64 input = ToRegister64(lir->input());
Register64 output = ToOutRegister64(lir);
const LAllocation* count = lir->count();
if (count->isConstant()) {
int32_t c = int32_t(count->toConstant()->toInt64() & 0x3F);
if (c == 0) {
if (input != output) {
masm.move64(input, output);
return;
}
}
if (rotateLeft) {
masm.rotateLeft64(Imm32(c), input, output, InvalidReg);
} else {
masm.rotateRight64(Imm32(c), input, output, InvalidReg);
}
} else {
Register c = ToRegister(count);
if (rotateLeft) {
masm.rotateLeft64(c, input, output, InvalidReg);
} else {
masm.rotateRight64(c, input, output, InvalidReg);
}
}
}
void CodeGenerator::visitWasmStore(LWasmStore* lir) {
const MWasmStore* mir = lir->mir();
if (Maybe<uint64_t> absAddr = IsAbsoluteAddress(lir->ptr(), mir->access())) {
masm.wasmStoreAbsolute(mir->access(), ToAnyRegister(lir->value()),
Register64::Invalid(), ToRegister(lir->memoryBase()),
absAddr.value());
return;
}
masm.wasmStore(mir->access(), ToAnyRegister(lir->value()),
ToRegister(lir->memoryBase()), ToRegister(lir->ptr()));
}
void CodeGenerator::visitWasmSelect(LWasmSelect* lir) {
MIRType mirType = lir->mir()->type();
Register condReg = ToRegister(lir->condExpr());
masm.test32(condReg, condReg);
switch (mirType) {
case MIRType::Int32:
case MIRType::WasmAnyRef:
case MIRType::WasmArrayData: {
Register outReg = ToRegister(lir->output());
Register trueReg = ToRegister(lir->trueExpr());
Register falseReg = ToRegister(lir->falseExpr());
if (mirType == MIRType::Int32) {
masm.Csel(ARMRegister(outReg, 32), ARMRegister(trueReg, 32),
ARMRegister(falseReg, 32), Assembler::NonZero);
} else {
masm.Csel(ARMRegister(outReg, 64), ARMRegister(trueReg, 64),
ARMRegister(falseReg, 64), Assembler::NonZero);
}
break;
}
case MIRType::Float32:
case MIRType::Double:
case MIRType::Simd128: {
FloatRegister outReg = ToFloatRegister(lir->output());
FloatRegister trueReg = ToFloatRegister(lir->trueExpr());
FloatRegister falseReg = ToFloatRegister(lir->falseExpr());
switch (mirType) {
case MIRType::Float32:
masm.Fcsel(ARMFPRegister(outReg, 32), ARMFPRegister(trueReg, 32),
ARMFPRegister(falseReg, 32), Assembler::NonZero);
break;
case MIRType::Double:
masm.Fcsel(ARMFPRegister(outReg, 64), ARMFPRegister(trueReg, 64),
ARMFPRegister(falseReg, 64), Assembler::NonZero);
break;
#ifdef ENABLE_WASM_SIMD
case MIRType::Simd128: {
MOZ_ASSERT(outReg == trueReg);
Label done;
masm.j(Assembler::NonZero, &done);
masm.moveSimd128(falseReg, outReg);
masm.bind(&done);
break;
}
#endif
default:
MOZ_CRASH();
}
break;
}
default: {
MOZ_CRASH("unhandled type in visitWasmSelect!");
}
}
}
// We expect to handle the cases: compare is {{U,}Int32, {U,}Int64}, Float32,
// Double}, and select is {{U,}Int32, {U,}Int64}, Float32, Double},
// independently.
void CodeGenerator::visitWasmCompareAndSelect(LWasmCompareAndSelect* ins) {
MCompare::CompareType compTy = ins->compareType();
// Set flag.
if (compTy == MCompare::Compare_Int32 || compTy == MCompare::Compare_UInt32) {
Register lhs = ToRegister(ins->leftExpr());
if (ins->rightExpr()->isConstant()) {
masm.cmp32(lhs, Imm32(ins->rightExpr()->toConstant()->toInt32()));
} else {
masm.cmp32(lhs, ToRegister(ins->rightExpr()));
}
} else if (compTy == MCompare::Compare_Int64 ||
compTy == MCompare::Compare_UInt64) {
Register lhs = ToRegister(ins->leftExpr());
if (ins->rightExpr()->isConstant()) {
masm.cmpPtr(lhs, Imm64(ins->rightExpr()->toConstant()->toInt64()));
} else {
masm.cmpPtr(lhs, ToRegister(ins->rightExpr()));
}
} else if (compTy == MCompare::Compare_Float32) {
masm.compareFloat(JSOpToDoubleCondition(ins->jsop()),
ToFloatRegister(ins->leftExpr()),
ToFloatRegister(ins->rightExpr()));
} else if (compTy == MCompare::Compare_Double) {
masm.compareDouble(JSOpToDoubleCondition(ins->jsop()),
ToFloatRegister(ins->leftExpr()),
ToFloatRegister(ins->rightExpr()));
} else {
// Ref types not supported yet; v128 is not yet observed to be worth
// optimizing.
MOZ_CRASH("CodeGenerator::visitWasmCompareAndSelect: unexpected type (1)");
}
// Act on flag.
Assembler::Condition cond;
if (compTy == MCompare::Compare_Float32 ||
compTy == MCompare::Compare_Double) {
cond = Assembler::ConditionFromDoubleCondition(
JSOpToDoubleCondition(ins->jsop()));
} else {
cond = JSOpToCondition(compTy, ins->jsop());
}
MIRType insTy = ins->mir()->type();
if (insTy == MIRType::Int32 || insTy == MIRType::Int64) {
Register destReg = ToRegister(ins->output());
Register trueReg = ToRegister(ins->ifTrueExpr());
Register falseReg = ToRegister(ins->ifFalseExpr());
size_t size = insTy == MIRType::Int32 ? 32 : 64;
masm.Csel(ARMRegister(destReg, size), ARMRegister(trueReg, size),
ARMRegister(falseReg, size), cond);
} else if (insTy == MIRType::Float32 || insTy == MIRType::Double) {
FloatRegister destReg = ToFloatRegister(ins->output());
FloatRegister trueReg = ToFloatRegister(ins->ifTrueExpr());
FloatRegister falseReg = ToFloatRegister(ins->ifFalseExpr());
size_t size = MIRTypeToSize(insTy) * 8;
masm.Fcsel(ARMFPRegister(destReg, size), ARMFPRegister(trueReg, size),
ARMFPRegister(falseReg, size), cond);
} else {
// See above.
MOZ_CRASH("CodeGenerator::visitWasmCompareAndSelect: unexpected type (2)");
}
}
void CodeGenerator::visitWasmLoadI64(LWasmLoadI64* lir) {
const MWasmLoad* mir = lir->mir();
if (Maybe<uint64_t> absAddr = IsAbsoluteAddress(lir->ptr(), mir->access())) {
masm.wasmLoadAbsolute(mir->access(), ToRegister(lir->memoryBase()),
absAddr.value(), AnyRegister(), ToOutRegister64(lir));
return;
}
masm.wasmLoadI64(mir->access(), ToRegister(lir->memoryBase()),
ToRegister(lir->ptr()), ToOutRegister64(lir));
}
void CodeGenerator::visitWasmStoreI64(LWasmStoreI64* lir) {
const MWasmStore* mir = lir->mir();
if (Maybe<uint64_t> absAddr = IsAbsoluteAddress(lir->ptr(), mir->access())) {
masm.wasmStoreAbsolute(mir->access(), AnyRegister(),
ToRegister64(lir->value()),
ToRegister(lir->memoryBase()), absAddr.value());
return;
}
masm.wasmStoreI64(mir->access(), ToRegister64(lir->value()),
ToRegister(lir->memoryBase()), ToRegister(lir->ptr()));
}
void CodeGenerator::visitWasmAddOffset(LWasmAddOffset* lir) {
MWasmAddOffset* mir = lir->mir();
Register base = ToRegister(lir->base());
Register out = ToRegister(lir->output());
masm.Adds(ARMRegister(out, 32), ARMRegister(base, 32),
Operand(mir->offset()));
OutOfLineAbortingWasmTrap* ool = new (alloc())
OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
addOutOfLineCode(ool, mir);
masm.j(Assembler::CarrySet, ool->entry());
}
void CodeGenerator::visitWasmAddOffset64(LWasmAddOffset64* lir) {
MWasmAddOffset* mir = lir->mir();
Register64 base = ToRegister64(lir->base());
Register64 out = ToOutRegister64(lir);
masm.Adds(ARMRegister(out.reg, 64), ARMRegister(base.reg, 64),
Operand(mir->offset()));
OutOfLineAbortingWasmTrap* ool = new (alloc())
OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
addOutOfLineCode(ool, mir);
masm.j(Assembler::CarrySet, ool->entry());
}
void CodeGenerator::visitWasmSelectI64(LWasmSelectI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
Register condReg = ToRegister(lir->condExpr());
Register64 trueReg = ToRegister64(lir->trueExpr());
Register64 falseReg = ToRegister64(lir->falseExpr());
Register64 outReg = ToOutRegister64(lir);
masm.test32(condReg, condReg);
masm.Csel(ARMRegister(outReg.reg, 64), ARMRegister(trueReg.reg, 64),
ARMRegister(falseReg.reg, 64), Assembler::NonZero);
}
void CodeGenerator::visitSignExtendInt64(LSignExtendInt64* ins) {
Register64 input = ToRegister64(ins->getInt64Operand(0));
Register64 output = ToOutRegister64(ins);
switch (ins->mode()) {
case MSignExtendInt64::Byte:
masm.move8To64SignExtend(input.reg, output);
break;
case MSignExtendInt64::Half:
masm.move16To64SignExtend(input.reg, output);
break;
case MSignExtendInt64::Word:
masm.move32To64SignExtend(input.reg, output);
break;
}
}
void CodeGenerator::visitWasmReinterpret(LWasmReinterpret* lir) {
MOZ_ASSERT(gen->compilingWasm());
MWasmReinterpret* ins = lir->mir();
MIRType to = ins->type();
mozilla::DebugOnly<MIRType> from = ins->input()->type();
switch (to) {
case MIRType::Int32:
MOZ_ASSERT(from == MIRType::Float32);
masm.moveFloat32ToGPR(ToFloatRegister(lir->input()),
ToRegister(lir->output()));
break;
case MIRType::Float32:
MOZ_ASSERT(from == MIRType::Int32);
masm.moveGPRToFloat32(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
break;
case MIRType::Double:
case MIRType::Int64:
MOZ_CRASH("not handled by this LIR opcode");
default:
MOZ_CRASH("unexpected WasmReinterpret");
}
}
void CodeGenerator::visitWasmStackArgI64(LWasmStackArgI64* ins) {
const MWasmStackArg* mir = ins->mir();
Address dst(masm.getStackPointer(), mir->spOffset());
if (IsConstant(ins->arg())) {
masm.store64(Imm64(ToInt64(ins->arg())), dst);
} else {
masm.store64(ToRegister64(ins->arg()), dst);
}
}
void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) {
const LAllocation* input = lir->getOperand(0);
Register output = ToRegister(lir->output());
if (lir->mir()->bottomHalf()) {
if (input->isMemory()) {
masm.load32(ToAddress(input), output);
} else {
// Really this is a 64-bit input register and we could use move64To32.
masm.Mov(ARMRegister(output, 32), ARMRegister(ToRegister(input), 32));
}
} else {
MOZ_CRASH("Not implemented.");
}
}
void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) {
Register input = ToRegister(lir->getOperand(0));
Register64 output = ToOutRegister64(lir);
if (lir->mir()->isUnsigned()) {
masm.move32To64ZeroExtend(input, output);
} else {
masm.move32To64SignExtend(input, output);
}
}
void CodeGenerator::visitWasmExtendU32Index(LWasmExtendU32Index* lir) {
// Generates no code on this platform because the input is assumed to have
// canonical form.
Register output = ToRegister(lir->output());
MOZ_ASSERT(ToRegister(lir->input()) == output);
masm.debugAssertCanonicalInt32(output);
}
void CodeGenerator::visitWasmWrapU32Index(LWasmWrapU32Index* lir) {
// Generates no code on this platform because the input is assumed to have
// canonical form.
Register output = ToRegister(lir->output());
MOZ_ASSERT(ToRegister(lir->input()) == output);
masm.debugAssertCanonicalInt32(output);
}
void CodeGenerator::visitWasmTruncateToInt32(LWasmTruncateToInt32* lir) {
auto input = ToFloatRegister(lir->input());
auto output = ToRegister(lir->output());
MWasmTruncateToInt32* mir = lir->mir();
MIRType fromType = mir->input()->type();
MOZ_ASSERT(fromType == MIRType::Double || fromType == MIRType::Float32);
auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input, output);
addOutOfLineCode(ool, mir);
Label* oolEntry = ool->entry();
if (mir->isUnsigned()) {
if (fromType == MIRType::Double) {
masm.wasmTruncateDoubleToUInt32(input, output, mir->isSaturating(),
oolEntry);
} else if (fromType == MIRType::Float32) {
masm.wasmTruncateFloat32ToUInt32(input, output, mir->isSaturating(),
oolEntry);
} else {
MOZ_CRASH("unexpected type");
}
masm.bind(ool->rejoin());
return;
}
if (fromType == MIRType::Double) {
masm.wasmTruncateDoubleToInt32(input, output, mir->isSaturating(),
oolEntry);
} else if (fromType == MIRType::Float32) {
masm.wasmTruncateFloat32ToInt32(input, output, mir->isSaturating(),
oolEntry);
} else {
MOZ_CRASH("unexpected type");
}
masm.bind(ool->rejoin());
}
void CodeGenerator::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) {
FloatRegister input = ToFloatRegister(lir->input());
Register64 output = ToOutRegister64(lir);
MWasmTruncateToInt64* mir = lir->mir();
MIRType fromType = mir->input()->type();
MOZ_ASSERT(fromType == MIRType::Double || fromType == MIRType::Float32);
auto* ool = new (alloc()) OutOfLineWasmTruncateCheck(mir, input, output);
addOutOfLineCode(ool, mir);
Label* oolEntry = ool->entry();
Label* oolRejoin = ool->rejoin();
bool isSaturating = mir->isSaturating();
if (fromType == MIRType::Double) {
if (mir->isUnsigned()) {
masm.wasmTruncateDoubleToUInt64(input, output, isSaturating, oolEntry,
oolRejoin, InvalidFloatReg);
} else {
masm.wasmTruncateDoubleToInt64(input, output, isSaturating, oolEntry,
oolRejoin, InvalidFloatReg);
}
} else {
if (mir->isUnsigned()) {
masm.wasmTruncateFloat32ToUInt64(input, output, isSaturating, oolEntry,
oolRejoin, InvalidFloatReg);
} else {
masm.wasmTruncateFloat32ToInt64(input, output, isSaturating, oolEntry,
oolRejoin, InvalidFloatReg);
}
}
}
void CodeGeneratorARM64::visitOutOfLineWasmTruncateCheck(
OutOfLineWasmTruncateCheck* ool) {
FloatRegister input = ool->input();
Register output = ool->output();
Register64 output64 = ool->output64();
MIRType fromType = ool->fromType();
MIRType toType = ool->toType();
Label* oolRejoin = ool->rejoin();
TruncFlags flags = ool->flags();
wasm::BytecodeOffset off = ool->bytecodeOffset();
if (fromType == MIRType::Float32) {
if (toType == MIRType::Int32) {
masm.oolWasmTruncateCheckF32ToI32(input, output, flags, off, oolRejoin);
} else if (toType == MIRType::Int64) {
masm.oolWasmTruncateCheckF32ToI64(input, output64, flags, off, oolRejoin);
} else {
MOZ_CRASH("unexpected type");
}
} else if (fromType == MIRType::Double) {
if (toType == MIRType::Int32) {
masm.oolWasmTruncateCheckF64ToI32(input, output, flags, off, oolRejoin);
} else if (toType == MIRType::Int64) {
masm.oolWasmTruncateCheckF64ToI64(input, output64, flags, off, oolRejoin);
} else {
MOZ_CRASH("unexpected type");
}
} else {
MOZ_CRASH("unexpected type");
}
}
void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double);
masm.moveDoubleToGPR64(ToFloatRegister(lir->input()), ToOutRegister64(lir));
}
void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) {
MOZ_ASSERT(lir->mir()->type() == MIRType::Double);
MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64);
masm.moveGPR64ToDouble(
ToRegister64(lir->getInt64Operand(LWasmReinterpretFromI64::Input)),
ToFloatRegister(lir->output()));
}
void CodeGenerator::visitAtomicTypedArrayElementBinop(
LAtomicTypedArrayElementBinop* lir) {
MOZ_ASSERT(!lir->mir()->isForEffect());
AnyRegister output = ToAnyRegister(lir->output());
Register elements = ToRegister(lir->elements());
Register flagTemp = ToRegister(lir->temp1());
Register outTemp =
lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2());
Register value = ToRegister(lir->value());
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address mem = ToAddress(elements, lir->index(), arrayType);
masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp, outTemp,
output);
} else {
BaseIndex mem(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp, outTemp,
output);
}
}
void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect(
LAtomicTypedArrayElementBinopForEffect* lir) {
MOZ_ASSERT(lir->mir()->isForEffect());
Register elements = ToRegister(lir->elements());
Register flagTemp = ToRegister(lir->flagTemp());
Register value = ToRegister(lir->value());
Scalar::Type arrayType = lir->mir()->arrayType();
if (lir->index()->isConstant()) {
Address mem = ToAddress(elements, lir->index(), arrayType);
masm.atomicEffectOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp);
} else {
BaseIndex mem(elements, ToRegister(lir->index()),
ScaleFromScalarType(arrayType));
masm.atomicEffectOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp);
}
}
void CodeGenerator::visitInt64ToFloatingPoint(LInt64ToFloatingPoint* lir) {
Register64 input = ToRegister64(lir->getInt64Operand(0));
FloatRegister output = ToFloatRegister(lir->output());
MIRType outputType = lir->mir()->type();
MOZ_ASSERT(outputType == MIRType::Double || outputType == MIRType::Float32);
if (outputType == MIRType::Double) {
if (lir->mir()->isUnsigned()) {
masm.convertUInt64ToDouble(input, output, Register::Invalid());
} else {
masm.convertInt64ToDouble(input, output);
}
} else {
if (lir->mir()->isUnsigned()) {
masm.convertUInt64ToFloat32(input, output, Register::Invalid());
} else {
masm.convertInt64ToFloat32(input, output);
}
}
}
void CodeGenerator::visitDivOrModI64(LDivOrModI64* lir) {
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
Register output = ToRegister(lir->output());
Label done;
// Handle divide by zero.
if (lir->canBeDivideByZero()) {
Label isNotDivByZero;
masm.Cbnz(ARMRegister(rhs, 64), &isNotDivByZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
masm.bind(&isNotDivByZero);
}
// Handle an integer overflow exception from INT64_MIN / -1.
if (lir->canBeNegativeOverflow()) {
Label noOverflow;
masm.branchPtr(Assembler::NotEqual, lhs, ImmWord(INT64_MIN), &noOverflow);
masm.branchPtr(Assembler::NotEqual, rhs, ImmWord(-1), &noOverflow);
if (lir->mir()->isMod()) {
masm.movePtr(ImmWord(0), output);
} else {
masm.wasmTrap(wasm::Trap::IntegerOverflow, lir->bytecodeOffset());
}
masm.jump(&done);
masm.bind(&noOverflow);
}
masm.Sdiv(ARMRegister(output, 64), ARMRegister(lhs, 64),
ARMRegister(rhs, 64));
if (lir->mir()->isMod()) {
masm.Msub(ARMRegister(output, 64), ARMRegister(output, 64),
ARMRegister(rhs, 64), ARMRegister(lhs, 64));
}
masm.bind(&done);
}
void CodeGenerator::visitUDivOrModI64(LUDivOrModI64* lir) {
Register lhs = ToRegister(lir->lhs());
Register rhs = ToRegister(lir->rhs());
Register output = ToRegister(lir->output());
Label done;
// Handle divide by zero.
if (lir->canBeDivideByZero()) {
Label isNotDivByZero;
masm.Cbnz(ARMRegister(rhs, 64), &isNotDivByZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
masm.bind(&isNotDivByZero);
}
masm.Udiv(ARMRegister(output, 64), ARMRegister(lhs, 64),
ARMRegister(rhs, 64));
if (lir->mir()->isMod()) {
masm.Msub(ARMRegister(output, 64), ARMRegister(output, 64),
ARMRegister(rhs, 64), ARMRegister(lhs, 64));
}
masm.bind(&done);
}
void CodeGenerator::visitSimd128(LSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
const LDefinition* out = ins->getDef(0);
masm.loadConstantSimd128(ins->simd128(), ToFloatRegister(out));
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmTernarySimd128(LWasmTernarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
switch (ins->simdOp()) {
case wasm::SimdOp::V128Bitselect: {
FloatRegister lhs = ToFloatRegister(ins->v0());
FloatRegister rhs = ToFloatRegister(ins->v1());
FloatRegister controlDest = ToFloatRegister(ins->v2());
masm.bitwiseSelectSimd128(lhs, rhs, controlDest);
break;
}
case wasm::SimdOp::F32x4RelaxedMadd:
masm.fmaFloat32x4(ToFloatRegister(ins->v0()), ToFloatRegister(ins->v1()),
ToFloatRegister(ins->v2()));
break;
case wasm::SimdOp::F32x4RelaxedNmadd:
masm.fnmaFloat32x4(ToFloatRegister(ins->v0()), ToFloatRegister(ins->v1()),
ToFloatRegister(ins->v2()));
break;
case wasm::SimdOp::F64x2RelaxedMadd:
masm.fmaFloat64x2(ToFloatRegister(ins->v0()), ToFloatRegister(ins->v1()),
ToFloatRegister(ins->v2()));
break;
case wasm::SimdOp::F64x2RelaxedNmadd:
masm.fnmaFloat64x2(ToFloatRegister(ins->v0()), ToFloatRegister(ins->v1()),
ToFloatRegister(ins->v2()));
break;
case wasm::SimdOp::I8x16RelaxedLaneSelect:
case wasm::SimdOp::I16x8RelaxedLaneSelect:
case wasm::SimdOp::I32x4RelaxedLaneSelect:
case wasm::SimdOp::I64x2RelaxedLaneSelect: {
FloatRegister lhs = ToFloatRegister(ins->v0());
FloatRegister rhs = ToFloatRegister(ins->v1());
FloatRegister maskDest = ToFloatRegister(ins->v2());
masm.laneSelectSimd128(maskDest, lhs, rhs, maskDest);
break;
}
case wasm::SimdOp::I32x4DotI8x16I7x16AddS:
masm.dotInt8x16Int7x16ThenAdd(
ToFloatRegister(ins->v0()), ToFloatRegister(ins->v1()),
ToFloatRegister(ins->v2()), ToFloatRegister(ins->temp()));
break;
default:
MOZ_CRASH("NYI");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmBinarySimd128(LWasmBinarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister lhs = ToFloatRegister(ins->lhs());
FloatRegister rhs = ToFloatRegister(ins->rhs());
FloatRegister dest = ToFloatRegister(ins->output());
switch (ins->simdOp()) {
case wasm::SimdOp::V128And:
masm.bitwiseAndSimd128(lhs, rhs, dest);
break;
case wasm::SimdOp::V128Or:
masm.bitwiseOrSimd128(lhs, rhs, dest);
break;
case wasm::SimdOp::V128Xor:
masm.bitwiseXorSimd128(lhs, rhs, dest);
break;
case wasm::SimdOp::V128AndNot:
masm.bitwiseAndNotSimd128(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16AvgrU:
masm.unsignedAverageInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8AvgrU:
masm.unsignedAverageInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16Add:
masm.addInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16AddSatS:
masm.addSatInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16AddSatU:
masm.unsignedAddSatInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16Sub:
masm.subInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16SubSatS:
masm.subSatInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16SubSatU:
masm.unsignedSubSatInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16MinS:
masm.minInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16MinU:
masm.unsignedMinInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16MaxS:
masm.maxInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16MaxU:
masm.unsignedMaxInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Add:
masm.addInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8AddSatS:
masm.addSatInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8AddSatU:
masm.unsignedAddSatInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Sub:
masm.subInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8SubSatS:
masm.subSatInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8SubSatU:
masm.unsignedSubSatInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Mul:
masm.mulInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8MinS:
masm.minInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8MinU:
masm.unsignedMinInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8MaxS:
masm.maxInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8MaxU:
masm.unsignedMaxInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Add:
masm.addInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Sub:
masm.subInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Mul:
masm.mulInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4MinS:
masm.minInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4MinU:
masm.unsignedMinInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4MaxS:
masm.maxInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4MaxU:
masm.unsignedMaxInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Add:
masm.addInt64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Sub:
masm.subInt64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Mul: {
auto temp1 = ToFloatRegister(ins->getTemp(0));
auto temp2 = ToFloatRegister(ins->getTemp(1));
masm.mulInt64x2(lhs, rhs, dest, temp1, temp2);
break;
}
case wasm::SimdOp::F32x4Add:
masm.addFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Sub:
masm.subFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Mul:
masm.mulFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Div:
masm.divFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Min:
masm.minFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Max:
masm.maxFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Add:
masm.addFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Sub:
masm.subFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Mul:
masm.mulFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Div:
masm.divFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Min:
masm.minFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Max:
masm.maxFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16Swizzle:
masm.swizzleInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16RelaxedSwizzle:
masm.swizzleInt8x16Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16NarrowI16x8S:
masm.narrowInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16NarrowI16x8U:
masm.unsignedNarrowInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8NarrowI32x4S:
masm.narrowInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8NarrowI32x4U:
masm.unsignedNarrowInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16Eq:
masm.compareInt8x16(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16Ne:
masm.compareInt8x16(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16LtS:
masm.compareInt8x16(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16GtS:
masm.compareInt8x16(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16LeS:
masm.compareInt8x16(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16GeS:
masm.compareInt8x16(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16LtU:
masm.compareInt8x16(Assembler::Below, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16GtU:
masm.compareInt8x16(Assembler::Above, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16LeU:
masm.compareInt8x16(Assembler::BelowOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16GeU:
masm.compareInt8x16(Assembler::AboveOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Eq:
masm.compareInt16x8(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Ne:
masm.compareInt16x8(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8LtS:
masm.compareInt16x8(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8GtS:
masm.compareInt16x8(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8LeS:
masm.compareInt16x8(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8GeS:
masm.compareInt16x8(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8LtU:
masm.compareInt16x8(Assembler::Below, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8GtU:
masm.compareInt16x8(Assembler::Above, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8LeU:
masm.compareInt16x8(Assembler::BelowOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8GeU:
masm.compareInt16x8(Assembler::AboveOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Eq:
masm.compareInt32x4(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Ne:
masm.compareInt32x4(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4LtS:
masm.compareInt32x4(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4GtS:
masm.compareInt32x4(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4LeS:
masm.compareInt32x4(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4GeS:
masm.compareInt32x4(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4LtU:
masm.compareInt32x4(Assembler::Below, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4GtU:
masm.compareInt32x4(Assembler::Above, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4LeU:
masm.compareInt32x4(Assembler::BelowOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4GeU:
masm.compareInt32x4(Assembler::AboveOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Eq:
masm.compareInt64x2(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2LtS:
masm.compareInt64x2(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2GtS:
masm.compareInt64x2(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2LeS:
masm.compareInt64x2(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2GeS:
masm.compareInt64x2(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Ne:
masm.compareInt64x2(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Eq:
masm.compareFloat32x4(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Ne:
masm.compareFloat32x4(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Lt:
masm.compareFloat32x4(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Gt:
masm.compareFloat32x4(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Le:
masm.compareFloat32x4(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4Ge:
masm.compareFloat32x4(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Eq:
masm.compareFloat64x2(Assembler::Equal, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Ne:
masm.compareFloat64x2(Assembler::NotEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Lt:
masm.compareFloat64x2(Assembler::LessThan, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Gt:
masm.compareFloat64x2(Assembler::GreaterThan, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Le:
masm.compareFloat64x2(Assembler::LessThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2Ge:
masm.compareFloat64x2(Assembler::GreaterThanOrEqual, lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4PMax:
masm.pseudoMaxFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4PMin:
masm.pseudoMinFloat32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2PMax:
masm.pseudoMaxFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2PMin:
masm.pseudoMinFloat64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4DotI16x8S:
masm.widenDotInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ExtmulLowI8x16S:
masm.extMulLowInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ExtmulHighI8x16S:
masm.extMulHighInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ExtmulLowI8x16U:
masm.unsignedExtMulLowInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ExtmulHighI8x16U:
masm.unsignedExtMulHighInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ExtmulLowI16x8S:
masm.extMulLowInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ExtmulHighI16x8S:
masm.extMulHighInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ExtmulLowI16x8U:
masm.unsignedExtMulLowInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ExtmulHighI16x8U:
masm.unsignedExtMulHighInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ExtmulLowI32x4S:
masm.extMulLowInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ExtmulHighI32x4S:
masm.extMulHighInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ExtmulLowI32x4U:
masm.unsignedExtMulLowInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ExtmulHighI32x4U:
masm.unsignedExtMulHighInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Q15MulrSatS:
masm.q15MulrSatInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4RelaxedMin:
masm.minFloat32x4Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::F32x4RelaxedMax:
masm.maxFloat32x4Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2RelaxedMin:
masm.minFloat64x2Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::F64x2RelaxedMax:
masm.maxFloat64x2Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8RelaxedQ15MulrS:
masm.q15MulrInt16x8Relaxed(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8DotI8x16I7x16S:
masm.dotInt8x16Int7x16(lhs, rhs, dest);
break;
default:
MOZ_CRASH("Binary SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmBinarySimd128WithConstant(
LWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmVariableShiftSimd128(
LWasmVariableShiftSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister lhs = ToFloatRegister(ins->lhs());
Register rhs = ToRegister(ins->rhs());
FloatRegister dest = ToFloatRegister(ins->output());
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Shl:
masm.leftShiftInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16ShrS:
masm.rightShiftInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I8x16ShrU:
masm.unsignedRightShiftInt8x16(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8Shl:
masm.leftShiftInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ShrS:
masm.rightShiftInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I16x8ShrU:
masm.unsignedRightShiftInt16x8(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4Shl:
masm.leftShiftInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ShrS:
masm.rightShiftInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I32x4ShrU:
masm.unsignedRightShiftInt32x4(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2Shl:
masm.leftShiftInt64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ShrS:
masm.rightShiftInt64x2(lhs, rhs, dest);
break;
case wasm::SimdOp::I64x2ShrU:
masm.unsignedRightShiftInt64x2(lhs, rhs, dest);
break;
default:
MOZ_CRASH("Shift SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmConstantShiftSimd128(
LWasmConstantShiftSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
FloatRegister dest = ToFloatRegister(ins->output());
int32_t shift = ins->shift();
if (shift == 0) {
if (src != dest) {
masm.moveSimd128(src, dest);
}
return;
}
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Shl:
masm.leftShiftInt8x16(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I8x16ShrS:
masm.rightShiftInt8x16(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I8x16ShrU:
masm.unsignedRightShiftInt8x16(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I16x8Shl:
masm.leftShiftInt16x8(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I16x8ShrS:
masm.rightShiftInt16x8(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I16x8ShrU:
masm.unsignedRightShiftInt16x8(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I32x4Shl:
masm.leftShiftInt32x4(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I32x4ShrS:
masm.rightShiftInt32x4(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I32x4ShrU:
masm.unsignedRightShiftInt32x4(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I64x2Shl:
masm.leftShiftInt64x2(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I64x2ShrS:
masm.rightShiftInt64x2(Imm32(shift), src, dest);
break;
case wasm::SimdOp::I64x2ShrU:
masm.unsignedRightShiftInt64x2(Imm32(shift), src, dest);
break;
default:
MOZ_CRASH("Shift SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmSignReplicationSimd128(
LWasmSignReplicationSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmShuffleSimd128(LWasmShuffleSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister lhs = ToFloatRegister(ins->lhs());
FloatRegister rhs = ToFloatRegister(ins->rhs());
FloatRegister dest = ToFloatRegister(ins->output());
MOZ_ASSERT(ins->temp()->isBogusTemp());
SimdConstant control = ins->control();
switch (ins->op()) {
case SimdShuffleOp::BLEND_8x16: {
masm.blendInt8x16(reinterpret_cast<const uint8_t*>(control.asInt8x16()),
lhs, rhs, dest);
break;
}
case SimdShuffleOp::BLEND_16x8: {
masm.blendInt16x8(reinterpret_cast<const uint16_t*>(control.asInt16x8()),
lhs, rhs, dest);
break;
}
case SimdShuffleOp::CONCAT_RIGHT_SHIFT_8x16: {
int8_t count = 16 - control.asInt8x16()[0];
MOZ_ASSERT(count > 0, "Should have been a MOVE operation");
masm.concatAndRightShiftSimd128(lhs, rhs, dest, count);
break;
}
case SimdShuffleOp::INTERLEAVE_HIGH_8x16: {
masm.interleaveHighInt8x16(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_HIGH_16x8: {
masm.interleaveHighInt16x8(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_HIGH_32x4: {
masm.interleaveHighInt32x4(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_HIGH_64x2: {
masm.interleaveHighInt64x2(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_LOW_8x16: {
masm.interleaveLowInt8x16(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_LOW_16x8: {
masm.interleaveLowInt16x8(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_LOW_32x4: {
masm.interleaveLowInt32x4(lhs, rhs, dest);
break;
}
case SimdShuffleOp::INTERLEAVE_LOW_64x2: {
masm.interleaveLowInt64x2(lhs, rhs, dest);
break;
}
case SimdShuffleOp::SHUFFLE_BLEND_8x16: {
masm.shuffleInt8x16(reinterpret_cast<const uint8_t*>(control.asInt8x16()),
lhs, rhs, dest);
break;
}
default: {
MOZ_CRASH("Unsupported SIMD shuffle operation");
}
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmPermuteSimd128(LWasmPermuteSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
FloatRegister dest = ToFloatRegister(ins->output());
SimdConstant control = ins->control();
switch (ins->op()) {
case SimdPermuteOp::BROADCAST_8x16: {
const SimdConstant::I8x16& mask = control.asInt8x16();
int8_t source = mask[0];
masm.splatX16(source, src, dest);
break;
}
case SimdPermuteOp::BROADCAST_16x8: {
const SimdConstant::I16x8& mask = control.asInt16x8();
int16_t source = mask[0];
masm.splatX8(source, src, dest);
break;
}
case SimdPermuteOp::MOVE: {
masm.moveSimd128(src, dest);
break;
}
case SimdPermuteOp::PERMUTE_8x16: {
const SimdConstant::I8x16& mask = control.asInt8x16();
# ifdef DEBUG
mozilla::DebugOnly<int> i;
for (i = 0; i < 16 && mask[i] == i; i++) {
}
MOZ_ASSERT(i < 16, "Should have been a MOVE operation");
# endif
masm.permuteInt8x16(reinterpret_cast<const uint8_t*>(mask), src, dest);
break;
}
case SimdPermuteOp::PERMUTE_16x8: {
const SimdConstant::I16x8& mask = control.asInt16x8();
# ifdef DEBUG
mozilla::DebugOnly<int> i;
for (i = 0; i < 8 && mask[i] == i; i++) {
}
MOZ_ASSERT(i < 8, "Should have been a MOVE operation");
# endif
masm.permuteInt16x8(reinterpret_cast<const uint16_t*>(mask), src, dest);
break;
}
case SimdPermuteOp::PERMUTE_32x4: {
const SimdConstant::I32x4& mask = control.asInt32x4();
# ifdef DEBUG
mozilla::DebugOnly<int> i;
for (i = 0; i < 4 && mask[i] == i; i++) {
}
MOZ_ASSERT(i < 4, "Should have been a MOVE operation");
# endif
masm.permuteInt32x4(reinterpret_cast<const uint32_t*>(mask), src, dest);
break;
}
case SimdPermuteOp::ROTATE_RIGHT_8x16: {
int8_t count = control.asInt8x16()[0];
MOZ_ASSERT(count > 0, "Should have been a MOVE operation");
masm.rotateRightSimd128(src, dest, count);
break;
}
case SimdPermuteOp::SHIFT_LEFT_8x16: {
int8_t count = control.asInt8x16()[0];
MOZ_ASSERT(count > 0, "Should have been a MOVE operation");
masm.leftShiftSimd128(Imm32(count), src, dest);
break;
}
case SimdPermuteOp::SHIFT_RIGHT_8x16: {
int8_t count = control.asInt8x16()[0];
MOZ_ASSERT(count > 0, "Should have been a MOVE operation");
masm.rightShiftSimd128(Imm32(count), src, dest);
break;
}
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_16x8:
masm.zeroExtend8x16To16x8(src, dest);
break;
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_32x4:
masm.zeroExtend8x16To32x4(src, dest);
break;
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_64x2:
masm.zeroExtend8x16To64x2(src, dest);
break;
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_32x4:
masm.zeroExtend16x8To32x4(src, dest);
break;
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_64x2:
masm.zeroExtend16x8To64x2(src, dest);
break;
case SimdPermuteOp::ZERO_EXTEND_32x4_TO_64x2:
masm.zeroExtend32x4To64x2(src, dest);
break;
case SimdPermuteOp::REVERSE_16x8:
masm.reverseInt16x8(src, dest);
break;
case SimdPermuteOp::REVERSE_32x4:
masm.reverseInt32x4(src, dest);
break;
case SimdPermuteOp::REVERSE_64x2:
masm.reverseInt64x2(src, dest);
break;
default: {
MOZ_CRASH("Unsupported SIMD permutation operation");
}
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmReplaceLaneSimd128(LWasmReplaceLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_ASSERT(ToFloatRegister(ins->lhs()) == ToFloatRegister(ins->output()));
FloatRegister lhsDest = ToFloatRegister(ins->lhs());
const LAllocation* rhs = ins->rhs();
uint32_t laneIndex = ins->laneIndex();
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16ReplaceLane:
masm.replaceLaneInt8x16(laneIndex, ToRegister(rhs), lhsDest);
break;
case wasm::SimdOp::I16x8ReplaceLane:
masm.replaceLaneInt16x8(laneIndex, ToRegister(rhs), lhsDest);
break;
case wasm::SimdOp::I32x4ReplaceLane:
masm.replaceLaneInt32x4(laneIndex, ToRegister(rhs), lhsDest);
break;
case wasm::SimdOp::F32x4ReplaceLane:
masm.replaceLaneFloat32x4(laneIndex, ToFloatRegister(rhs), lhsDest);
break;
case wasm::SimdOp::F64x2ReplaceLane:
masm.replaceLaneFloat64x2(laneIndex, ToFloatRegister(rhs), lhsDest);
break;
default:
MOZ_CRASH("ReplaceLane SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmReplaceInt64LaneSimd128(
LWasmReplaceInt64LaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
MOZ_RELEASE_ASSERT(ins->simdOp() == wasm::SimdOp::I64x2ReplaceLane);
MOZ_ASSERT(ToFloatRegister(ins->lhs()) == ToFloatRegister(ins->output()));
masm.replaceLaneInt64x2(ins->laneIndex(), ToRegister64(ins->rhs()),
ToFloatRegister(ins->lhs()));
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmScalarToSimd128(LWasmScalarToSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister dest = ToFloatRegister(ins->output());
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Splat:
masm.splatX16(ToRegister(ins->src()), dest);
break;
case wasm::SimdOp::I16x8Splat:
masm.splatX8(ToRegister(ins->src()), dest);
break;
case wasm::SimdOp::I32x4Splat:
masm.splatX4(ToRegister(ins->src()), dest);
break;
case wasm::SimdOp::F32x4Splat:
masm.splatX4(ToFloatRegister(ins->src()), dest);
break;
case wasm::SimdOp::F64x2Splat:
masm.splatX2(ToFloatRegister(ins->src()), dest);
break;
default:
MOZ_CRASH("ScalarToSimd128 SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmInt64ToSimd128(LWasmInt64ToSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
Register64 src = ToRegister64(ins->src());
FloatRegister dest = ToFloatRegister(ins->output());
switch (ins->simdOp()) {
case wasm::SimdOp::I64x2Splat:
masm.splatX2(src, dest);
break;
case wasm::SimdOp::V128Load8x8S:
masm.moveGPR64ToDouble(src, dest);
masm.widenLowInt8x16(dest, dest);
break;
case wasm::SimdOp::V128Load8x8U:
masm.moveGPR64ToDouble(src, dest);
masm.unsignedWidenLowInt8x16(dest, dest);
break;
case wasm::SimdOp::V128Load16x4S:
masm.moveGPR64ToDouble(src, dest);
masm.widenLowInt16x8(dest, dest);
break;
case wasm::SimdOp::V128Load16x4U:
masm.moveGPR64ToDouble(src, dest);
masm.unsignedWidenLowInt16x8(dest, dest);
break;
case wasm::SimdOp::V128Load32x2S:
masm.moveGPR64ToDouble(src, dest);
masm.widenLowInt32x4(dest, dest);
break;
case wasm::SimdOp::V128Load32x2U:
masm.moveGPR64ToDouble(src, dest);
masm.unsignedWidenLowInt32x4(dest, dest);
break;
default:
MOZ_CRASH("Int64ToSimd128 SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmUnarySimd128(LWasmUnarySimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
FloatRegister dest = ToFloatRegister(ins->output());
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16Neg:
masm.negInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8Neg:
masm.negInt16x8(src, dest);
break;
case wasm::SimdOp::I16x8ExtendLowI8x16S:
masm.widenLowInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8ExtendHighI8x16S:
masm.widenHighInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8ExtendLowI8x16U:
masm.unsignedWidenLowInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8ExtendHighI8x16U:
masm.unsignedWidenHighInt8x16(src, dest);
break;
case wasm::SimdOp::I32x4Neg:
masm.negInt32x4(src, dest);
break;
case wasm::SimdOp::I32x4ExtendLowI16x8S:
masm.widenLowInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4ExtendHighI16x8S:
masm.widenHighInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4ExtendLowI16x8U:
masm.unsignedWidenLowInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4ExtendHighI16x8U:
masm.unsignedWidenHighInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4TruncSatF32x4S:
masm.truncSatFloat32x4ToInt32x4(src, dest);
break;
case wasm::SimdOp::I32x4TruncSatF32x4U:
masm.unsignedTruncSatFloat32x4ToInt32x4(src, dest);
break;
case wasm::SimdOp::I64x2Neg:
masm.negInt64x2(src, dest);
break;
case wasm::SimdOp::I64x2ExtendLowI32x4S:
masm.widenLowInt32x4(src, dest);
break;
case wasm::SimdOp::I64x2ExtendHighI32x4S:
masm.widenHighInt32x4(src, dest);
break;
case wasm::SimdOp::I64x2ExtendLowI32x4U:
masm.unsignedWidenLowInt32x4(src, dest);
break;
case wasm::SimdOp::I64x2ExtendHighI32x4U:
masm.unsignedWidenHighInt32x4(src, dest);
break;
case wasm::SimdOp::F32x4Abs:
masm.absFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4Neg:
masm.negFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4Sqrt:
masm.sqrtFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4ConvertI32x4S:
masm.convertInt32x4ToFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4ConvertI32x4U:
masm.unsignedConvertInt32x4ToFloat32x4(src, dest);
break;
case wasm::SimdOp::F64x2Abs:
masm.absFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2Neg:
masm.negFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2Sqrt:
masm.sqrtFloat64x2(src, dest);
break;
case wasm::SimdOp::V128Not:
masm.bitwiseNotSimd128(src, dest);
break;
case wasm::SimdOp::I8x16Abs:
masm.absInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8Abs:
masm.absInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4Abs:
masm.absInt32x4(src, dest);
break;
case wasm::SimdOp::I64x2Abs:
masm.absInt64x2(src, dest);
break;
case wasm::SimdOp::F32x4Ceil:
masm.ceilFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4Floor:
masm.floorFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4Trunc:
masm.truncFloat32x4(src, dest);
break;
case wasm::SimdOp::F32x4Nearest:
masm.nearestFloat32x4(src, dest);
break;
case wasm::SimdOp::F64x2Ceil:
masm.ceilFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2Floor:
masm.floorFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2Trunc:
masm.truncFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2Nearest:
masm.nearestFloat64x2(src, dest);
break;
case wasm::SimdOp::F32x4DemoteF64x2Zero:
masm.convertFloat64x2ToFloat32x4(src, dest);
break;
case wasm::SimdOp::F64x2PromoteLowF32x4:
masm.convertFloat32x4ToFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2ConvertLowI32x4S:
masm.convertInt32x4ToFloat64x2(src, dest);
break;
case wasm::SimdOp::F64x2ConvertLowI32x4U:
masm.unsignedConvertInt32x4ToFloat64x2(src, dest);
break;
case wasm::SimdOp::I32x4TruncSatF64x2SZero:
masm.truncSatFloat64x2ToInt32x4(src, dest, ToFloatRegister(ins->temp()));
break;
case wasm::SimdOp::I32x4TruncSatF64x2UZero:
masm.unsignedTruncSatFloat64x2ToInt32x4(src, dest,
ToFloatRegister(ins->temp()));
break;
case wasm::SimdOp::I16x8ExtaddPairwiseI8x16S:
masm.extAddPairwiseInt8x16(src, dest);
break;
case wasm::SimdOp::I16x8ExtaddPairwiseI8x16U:
masm.unsignedExtAddPairwiseInt8x16(src, dest);
break;
case wasm::SimdOp::I32x4ExtaddPairwiseI16x8S:
masm.extAddPairwiseInt16x8(src, dest);
break;
case wasm::SimdOp::I32x4ExtaddPairwiseI16x8U:
masm.unsignedExtAddPairwiseInt16x8(src, dest);
break;
case wasm::SimdOp::I8x16Popcnt:
masm.popcntInt8x16(src, dest);
break;
case wasm::SimdOp::I32x4RelaxedTruncF32x4S:
masm.truncFloat32x4ToInt32x4Relaxed(src, dest);
break;
case wasm::SimdOp::I32x4RelaxedTruncF32x4U:
masm.unsignedTruncFloat32x4ToInt32x4Relaxed(src, dest);
break;
case wasm::SimdOp::I32x4RelaxedTruncF64x2SZero:
masm.truncFloat64x2ToInt32x4Relaxed(src, dest);
break;
case wasm::SimdOp::I32x4RelaxedTruncF64x2UZero:
masm.unsignedTruncFloat64x2ToInt32x4Relaxed(src, dest);
break;
default:
MOZ_CRASH("Unary SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmReduceSimd128(LWasmReduceSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
const LDefinition* dest = ins->output();
uint32_t imm = ins->imm();
FloatRegister temp = ToTempFloatRegisterOrInvalid(ins->getTemp(0));
switch (ins->simdOp()) {
case wasm::SimdOp::V128AnyTrue:
masm.anyTrueSimd128(src, ToRegister(dest));
break;
case wasm::SimdOp::I8x16AllTrue:
masm.allTrueInt8x16(src, ToRegister(dest));
break;
case wasm::SimdOp::I16x8AllTrue:
masm.allTrueInt16x8(src, ToRegister(dest));
break;
case wasm::SimdOp::I32x4AllTrue:
masm.allTrueInt32x4(src, ToRegister(dest));
break;
case wasm::SimdOp::I64x2AllTrue:
masm.allTrueInt64x2(src, ToRegister(dest));
break;
case wasm::SimdOp::I8x16Bitmask:
masm.bitmaskInt8x16(src, ToRegister(dest), temp);
break;
case wasm::SimdOp::I16x8Bitmask:
masm.bitmaskInt16x8(src, ToRegister(dest), temp);
break;
case wasm::SimdOp::I32x4Bitmask:
masm.bitmaskInt32x4(src, ToRegister(dest), temp);
break;
case wasm::SimdOp::I64x2Bitmask:
masm.bitmaskInt64x2(src, ToRegister(dest), temp);
break;
case wasm::SimdOp::I8x16ExtractLaneS:
masm.extractLaneInt8x16(imm, src, ToRegister(dest));
break;
case wasm::SimdOp::I8x16ExtractLaneU:
masm.unsignedExtractLaneInt8x16(imm, src, ToRegister(dest));
break;
case wasm::SimdOp::I16x8ExtractLaneS:
masm.extractLaneInt16x8(imm, src, ToRegister(dest));
break;
case wasm::SimdOp::I16x8ExtractLaneU:
masm.unsignedExtractLaneInt16x8(imm, src, ToRegister(dest));
break;
case wasm::SimdOp::I32x4ExtractLane:
masm.extractLaneInt32x4(imm, src, ToRegister(dest));
break;
case wasm::SimdOp::F32x4ExtractLane:
masm.extractLaneFloat32x4(imm, src, ToFloatRegister(dest));
break;
case wasm::SimdOp::F64x2ExtractLane:
masm.extractLaneFloat64x2(imm, src, ToFloatRegister(dest));
break;
default:
MOZ_CRASH("Reduce SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmReduceAndBranchSimd128(
LWasmReduceAndBranchSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
ScratchSimd128Scope scratch(masm);
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const Register test = temps.AcquireX().asUnsized();
switch (ins->simdOp()) {
case wasm::SimdOp::V128AnyTrue:
masm.Addp(Simd1D(scratch), Simd2D(src));
masm.Umov(ARMRegister(test, 64), Simd1D(scratch), 0);
masm.branch64(Assembler::Equal, Register64(test), Imm64(0),
getJumpLabelForBranch(ins->ifFalse()));
jumpToBlock(ins->ifTrue());
break;
case wasm::SimdOp::I8x16AllTrue:
case wasm::SimdOp::I16x8AllTrue:
case wasm::SimdOp::I32x4AllTrue:
case wasm::SimdOp::I64x2AllTrue: {
// Compare all lanes to zero.
switch (ins->simdOp()) {
case wasm::SimdOp::I8x16AllTrue:
masm.Cmeq(Simd16B(scratch), Simd16B(src), 0);
break;
case wasm::SimdOp::I16x8AllTrue:
masm.Cmeq(Simd8H(scratch), Simd8H(src), 0);
break;
case wasm::SimdOp::I32x4AllTrue:
masm.Cmeq(Simd4S(scratch), Simd4S(src), 0);
break;
case wasm::SimdOp::I64x2AllTrue:
masm.Cmeq(Simd2D(scratch), Simd2D(src), 0);
break;
default:
MOZ_CRASH();
}
masm.Addp(Simd1D(scratch), Simd2D(scratch));
masm.Umov(ARMRegister(test, 64), Simd1D(scratch), 0);
masm.branch64(Assembler::NotEqual, Register64(test), Imm64(0),
getJumpLabelForBranch(ins->ifFalse()));
jumpToBlock(ins->ifTrue());
break;
}
default:
MOZ_CRASH("Reduce-and-branch SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmReduceSimd128ToInt64(
LWasmReduceSimd128ToInt64* ins) {
#ifdef ENABLE_WASM_SIMD
FloatRegister src = ToFloatRegister(ins->src());
Register64 dest = ToOutRegister64(ins);
uint32_t imm = ins->imm();
switch (ins->simdOp()) {
case wasm::SimdOp::I64x2ExtractLane:
masm.extractLaneInt64x2(imm, src, dest);
break;
default:
MOZ_CRASH("Reduce SimdOp not implemented");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
static inline wasm::MemoryAccessDesc DeriveMemoryAccessDesc(
const wasm::MemoryAccessDesc& access, Scalar::Type type) {
return wasm::MemoryAccessDesc(access.memoryIndex(), type, access.align(),
access.offset32(), access.trapOffset(),
access.isHugeMemory());
}
void CodeGenerator::visitWasmLoadLaneSimd128(LWasmLoadLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
// Forward loading to wasmLoad, and use replaceLane after that.
const MWasmLoadLaneSimd128* mir = ins->mir();
Register memoryBase = ToRegister(ins->memoryBase());
Register temp = ToRegister(ins->temp());
FloatRegister src = ToFloatRegister(ins->src());
FloatRegister dest = ToFloatRegister(ins->output());
// replaceLane takes an lhsDest argument.
masm.moveSimd128(src, dest);
switch (ins->laneSize()) {
case 1: {
masm.wasmLoad(DeriveMemoryAccessDesc(mir->access(), Scalar::Int8),
memoryBase, ToRegister(ins->ptr()), AnyRegister(temp));
masm.replaceLaneInt8x16(ins->laneIndex(), temp, dest);
break;
}
case 2: {
masm.wasmLoad(DeriveMemoryAccessDesc(mir->access(), Scalar::Int16),
memoryBase, ToRegister(ins->ptr()), AnyRegister(temp));
masm.replaceLaneInt16x8(ins->laneIndex(), temp, dest);
break;
}
case 4: {
masm.wasmLoad(DeriveMemoryAccessDesc(mir->access(), Scalar::Int32),
memoryBase, ToRegister(ins->ptr()), AnyRegister(temp));
masm.replaceLaneInt32x4(ins->laneIndex(), temp, dest);
break;
}
case 8: {
masm.wasmLoadI64(DeriveMemoryAccessDesc(mir->access(), Scalar::Int64),
memoryBase, ToRegister(ins->ptr()), Register64(temp));
masm.replaceLaneInt64x2(ins->laneIndex(), Register64(temp), dest);
break;
}
default:
MOZ_CRASH("Unsupported load lane size");
}
#else
MOZ_CRASH("No SIMD");
#endif
}
void CodeGenerator::visitWasmStoreLaneSimd128(LWasmStoreLaneSimd128* ins) {
#ifdef ENABLE_WASM_SIMD
// Forward storing to wasmStore for the result of extractLane.
const MWasmStoreLaneSimd128* mir = ins->mir();
Register memoryBase = ToRegister(ins->memoryBase());
Register temp = ToRegister(ins->temp());
FloatRegister src = ToFloatRegister(ins->src());
switch (ins->laneSize()) {
case 1: {
masm.extractLaneInt8x16(ins->laneIndex(), src, temp);
masm.wasmStore(DeriveMemoryAccessDesc(mir->access(), Scalar::Int8),
AnyRegister(temp), memoryBase, ToRegister(ins->ptr()));
break;
}
case 2: {
masm.extractLaneInt16x8(ins->laneIndex(), src, temp);
masm.wasmStore(DeriveMemoryAccessDesc(mir->access(), Scalar::Int16),
AnyRegister(temp), memoryBase, ToRegister(ins->ptr()));
break;
}
case 4: {
masm.extractLaneInt32x4(ins->laneIndex(), src, temp);
masm.wasmStore(DeriveMemoryAccessDesc(mir->access(), Scalar::Int32),
AnyRegister(temp), memoryBase, ToRegister(ins->ptr()));
break;
}
case 8: {
masm.extractLaneInt64x2(ins->laneIndex(), src, Register64(temp));
masm.wasmStoreI64(DeriveMemoryAccessDesc(mir->access(), Scalar::Int64),
Register64(temp), memoryBase, ToRegister(ins->ptr()));
break;
}
default:
MOZ_CRASH("Unsupported store lane size");
}
#else
MOZ_CRASH("No SIMD");
#endif
}