Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/ShuffleAnalysis.h"
#include "mozilla/MathAlgorithms.h"
#include "jit/MIR-wasm.h"
#include "jit/MIR.h"
#include "wasm/WasmFeatures.h"
using namespace js;
using namespace jit;
using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;
#ifdef ENABLE_WASM_SIMD
// Specialization analysis for SIMD operations. This is still x86-centric but
// generalizes fairly easily to other architectures.
// Optimization of v8x16.shuffle. The general byte shuffle+blend is very
// expensive (equivalent to at least a dozen instructions), and we want to avoid
// that if we can. So look for special cases - there are many.
//
// The strategy is to sort the operation into one of three buckets depending
// on the shuffle pattern and inputs:
//
// - single operand; shuffles on these values are rotations, reversals,
// transpositions, and general permutations
// - single-operand-with-interesting-constant (especially zero); shuffles on
// these values are often byte shift or scatter operations
// - dual operand; shuffles on these operations are blends, catenated
// shifts, and (in the worst case) general shuffle+blends
//
// We're not trying to solve the general problem, only to lower reasonably
// expressed patterns that express common operations. Producers that produce
// dense and convoluted patterns will end up with the general byte shuffle.
// Producers that produce simpler patterns that easily map to hardware will
// get faster code.
//
// In particular, these matchers do not try to combine transformations, so a
// shuffle that optimally is lowered to rotate + permute32x4 + rotate, say, is
// usually going to end up as a general byte shuffle.
// Reduce a 0..31 byte mask to a 0..15 word mask if possible and if so return
// true, updating *control.
static bool ByteMaskToWordMask(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
int16_t controlWords[8];
for (int i = 0; i < 16; i += 2) {
if (!((lanes[i] & 1) == 0 && lanes[i + 1] == lanes[i] + 1)) {
return false;
}
controlWords[i / 2] = int16_t(lanes[i] / 2);
}
*control = SimdConstant::CreateX8(controlWords);
return true;
}
// Reduce a 0..31 byte mask to a 0..7 dword mask if possible and if so return
// true, updating *control.
static bool ByteMaskToDWordMask(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
int32_t controlDWords[4];
for (int i = 0; i < 16; i += 4) {
if (!((lanes[i] & 3) == 0 && lanes[i + 1] == lanes[i] + 1 &&
lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3)) {
return false;
}
controlDWords[i / 4] = lanes[i] / 4;
}
*control = SimdConstant::CreateX4(controlDWords);
return true;
}
// Reduce a 0..31 byte mask to a 0..3 qword mask if possible and if so return
// true, updating *control.
static bool ByteMaskToQWordMask(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
int64_t controlQWords[2];
for (int i = 0; i < 16; i += 8) {
if (!((lanes[i] & 7) == 0 && lanes[i + 1] == lanes[i] + 1 &&
lanes[i + 2] == lanes[i] + 2 && lanes[i + 3] == lanes[i] + 3 &&
lanes[i + 4] == lanes[i] + 4 && lanes[i + 5] == lanes[i] + 5 &&
lanes[i + 6] == lanes[i] + 6 && lanes[i + 7] == lanes[i] + 7)) {
return false;
}
controlQWords[i / 8] = lanes[i] / 8;
}
*control = SimdConstant::CreateX2(controlQWords);
return true;
}
// Skip across consecutive values in lanes starting at i, returning the index
// after the last element. Lane values must be <= len-1 ("masked").
//
// Since every element is a 1-element run, the return value is never the same as
// the starting i.
template <typename T>
static int ScanIncreasingMasked(const T* lanes, int i) {
int len = int(16 / sizeof(T));
MOZ_ASSERT(i < len);
MOZ_ASSERT(lanes[i] <= len - 1);
i++;
while (i < len && lanes[i] == lanes[i - 1] + 1) {
MOZ_ASSERT(lanes[i] <= len - 1);
i++;
}
return i;
}
// Skip across consecutive values in lanes starting at i, returning the index
// after the last element. Lane values must be <= len*2-1 ("unmasked"); the
// values len-1 and len are not considered consecutive.
//
// Since every element is a 1-element run, the return value is never the same as
// the starting i.
template <typename T>
static int ScanIncreasingUnmasked(const T* lanes, int i) {
int len = int(16 / sizeof(T));
MOZ_ASSERT(i < len);
if (lanes[i] < len) {
i++;
while (i < len && lanes[i] < len && lanes[i - 1] == lanes[i] - 1) {
i++;
}
} else {
i++;
while (i < len && lanes[i] >= len && lanes[i - 1] == lanes[i] - 1) {
i++;
}
}
return i;
}
// Skip lanes that equal v starting at i, returning the index just beyond the
// last of those. There is no requirement that the initial lanes[i] == v.
template <typename T>
static int ScanConstant(const T* lanes, int v, int i) {
int len = int(16 / sizeof(T));
MOZ_ASSERT(i <= len);
while (i < len && lanes[i] == v) {
i++;
}
return i;
}
// Mask lane values denoting rhs elements into lhs elements.
template <typename T>
static void MaskLanes(T* result, const T* input) {
int len = int(16 / sizeof(T));
for (int i = 0; i < len; i++) {
result[i] = input[i] & (len - 1);
}
}
// Apply a transformation to each lane value.
template <typename T>
static void MapLanes(T* result, const T* input, int (*f)(int)) {
// Hazard analysis trips on "IndirectCall: f" error.
// Suppress the check -- `f` is expected to be trivial here.
JS::AutoSuppressGCAnalysis nogc;
int len = int(16 / sizeof(T));
for (int i = 0; i < len; i++) {
result[i] = f(input[i]);
}
}
// Recognize an identity permutation, assuming lanes is masked.
template <typename T>
static bool IsIdentity(const T* lanes) {
return ScanIncreasingMasked(lanes, 0) == int(16 / sizeof(T));
}
// Recognize part of an identity permutation starting at start, with
// the first value of the permutation expected to be bias.
template <typename T>
static bool IsIdentity(const T* lanes, int start, int len, int bias) {
if (lanes[start] != bias) {
return false;
}
for (int i = start + 1; i < start + len; i++) {
if (lanes[i] != lanes[i - 1] + 1) {
return false;
}
}
return true;
}
// We can permute by dwords if the mask is reducible to a dword mask, and in
// this case a single PSHUFD is enough.
static bool TryPermute32x4(SimdConstant* control) {
SimdConstant tmp = *control;
if (!ByteMaskToDWordMask(&tmp)) {
return false;
}
*control = tmp;
return true;
}
// Can we perform a byte rotate right? We can use PALIGNR. The shift count is
// just lanes[0], and *control is unchanged.
static bool TryRotateRight8x16(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
// Look for the end of the first run of consecutive bytes.
int i = ScanIncreasingMasked(lanes, 0);
// First run must start at a value s.t. we have a rotate if all remaining
// bytes are a run.
if (lanes[0] != 16 - i) {
return false;
}
// If we reached the end of the vector, we're done.
if (i == 16) {
return true;
}
// Second run must start at source lane zero.
if (lanes[i] != 0) {
return false;
}
// Second run must end at the end of the lane vector.
return ScanIncreasingMasked(lanes, i) == 16;
}
// We can permute by words if the mask is reducible to a word mask.
static bool TryPermute16x8(SimdConstant* control) {
SimdConstant tmp = *control;
if (!ByteMaskToWordMask(&tmp)) {
return false;
}
*control = tmp;
return true;
}
// A single word lane is copied into all the other lanes: PSHUF*W + PSHUFD.
static bool TryBroadcast16x8(SimdConstant* control) {
SimdConstant tmp = *control;
if (!ByteMaskToWordMask(&tmp)) {
return false;
}
const SimdConstant::I16x8& lanes = tmp.asInt16x8();
if (ScanConstant(lanes, lanes[0], 0) < 8) {
return false;
}
*control = tmp;
return true;
}
// A single byte lane is copied int all the other lanes: PUNPCK*BW + PSHUF*W +
// PSHUFD.
static bool TryBroadcast8x16(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
return ScanConstant(lanes, lanes[0], 0) >= 16;
}
template <int N>
static bool TryReverse(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
for (int i = 0; i < 16; i++) {
if (lanes[i] != (i ^ (N - 1))) {
return false;
}
}
return true;
}
// Look for permutations of a single operand.
static SimdPermuteOp AnalyzePermute(SimdConstant* control) {
// Lane indices are input-agnostic for single-operand permutations.
SimdConstant::I8x16 controlBytes;
MaskLanes(controlBytes, control->asInt8x16());
// Get rid of no-ops immediately, so nobody else needs to check.
if (IsIdentity(controlBytes)) {
return SimdPermuteOp::MOVE;
}
// Default control is the masked bytes.
*control = SimdConstant::CreateX16(controlBytes);
// Analysis order matters here and is architecture-dependent or even
// microarchitecture-dependent: ideally the cheapest implementation first.
// The Intel manual says that the cost of a PSHUFB is about five other
// operations, so make that our cutoff.
//
// Word, dword, and qword reversals are handled optimally by general permutes.
//
// Byte reversals are probably best left to PSHUFB, no alternative rendition
// seems to reliably go below five instructions. (Discuss.)
//
// Word swaps within doublewords and dword swaps within quadwords are handled
// optimally by general permutes.
//
// Dword and qword broadcasts are handled by dword permute.
if (TryPermute32x4(control)) {
return SimdPermuteOp::PERMUTE_32x4;
}
if (TryRotateRight8x16(control)) {
return SimdPermuteOp::ROTATE_RIGHT_8x16;
}
if (TryBroadcast16x8(control)) {
return SimdPermuteOp::BROADCAST_16x8;
}
if (TryPermute16x8(control)) {
return SimdPermuteOp::PERMUTE_16x8;
}
if (TryBroadcast8x16(control)) {
return SimdPermuteOp::BROADCAST_8x16;
}
if (TryReverse<2>(control)) {
return SimdPermuteOp::REVERSE_16x8;
}
if (TryReverse<4>(control)) {
return SimdPermuteOp::REVERSE_32x4;
}
if (TryReverse<8>(control)) {
return SimdPermuteOp::REVERSE_64x2;
}
// TODO: (From v8) Unzip and transpose generally have renditions that slightly
// beat a general permute (three or four instructions)
//
// TODO: (From MacroAssemblerX86Shared::ShuffleX4): MOVLHPS and MOVHLPS can be
// used when merging two values.
// The default operation is to permute bytes with the default control.
return SimdPermuteOp::PERMUTE_8x16;
}
// Can we shift the bytes left or right by a constant? A shift is a run of
// lanes from the rhs (which is zero) on one end and a run of values from the
// lhs on the other end.
static Maybe<SimdPermuteOp> TryShift8x16(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
// Represent all zero lanes by 16
SimdConstant::I8x16 zeroesMasked;
MapLanes(zeroesMasked, lanes, [](int x) -> int { return x >= 16 ? 16 : x; });
int i = ScanConstant(zeroesMasked, 16, 0);
int shiftLeft = i;
if (shiftLeft > 0 && lanes[shiftLeft] != 0) {
return Nothing();
}
i = ScanIncreasingUnmasked(zeroesMasked, i);
int shiftRight = 16 - i;
if (shiftRight > 0 && lanes[i - 1] != 15) {
return Nothing();
}
i = ScanConstant(zeroesMasked, 16, i);
if (i < 16 || (shiftRight > 0 && shiftLeft > 0) ||
(shiftRight == 0 && shiftLeft == 0)) {
return Nothing();
}
if (shiftRight) {
*control = SimdConstant::SplatX16((int8_t)shiftRight);
return Some(SimdPermuteOp::SHIFT_RIGHT_8x16);
}
*control = SimdConstant::SplatX16((int8_t)shiftLeft);
return Some(SimdPermuteOp::SHIFT_LEFT_8x16);
}
// Check if it is unsigned integer extend operation.
static Maybe<SimdPermuteOp> TryZeroExtend(SimdConstant* control) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
// Find fragment of sequantial lanes indices that starts from 0.
uint32_t i = 0;
for (; i <= 4 && lanes[i] == int8_t(i); i++) {
}
// The length of the fragment has to be a power of 2, and next item is zero.
if (!mozilla::IsPowerOfTwo(i) || lanes[i] < 16) {
return Nothing();
}
MOZ_ASSERT(i > 0 && i <= 4);
uint32_t fromLen = i;
// Skip items that will be zero'ed.
for (; i <= 8 && lanes[i] >= 16; i++) {
}
// The length of the entire fragment of zero and non-zero items
// needs to be power of 2.
if (!mozilla::IsPowerOfTwo(i)) {
return Nothing();
}
MOZ_ASSERT(i > fromLen && i <= 8);
uint32_t toLen = i;
// The sequence will repeat every toLen elements: in which first
// fromLen items are sequential lane indices, and the rest are zeros.
int8_t current = int8_t(fromLen);
for (; i < 16; i++) {
if ((i % toLen) >= fromLen) {
// Expect the item be a zero.
if (lanes[i] < 16) {
return Nothing();
}
} else {
// Check the item is in ascending sequence.
if (lanes[i] != current) {
return Nothing();
}
current++;
}
}
switch (fromLen) {
case 1:
switch (toLen) {
case 2:
return Some(SimdPermuteOp::ZERO_EXTEND_8x16_TO_16x8);
case 4:
return Some(SimdPermuteOp::ZERO_EXTEND_8x16_TO_32x4);
case 8:
return Some(SimdPermuteOp::ZERO_EXTEND_8x16_TO_64x2);
}
break;
case 2:
switch (toLen) {
case 4:
return Some(SimdPermuteOp::ZERO_EXTEND_16x8_TO_32x4);
case 8:
return Some(SimdPermuteOp::ZERO_EXTEND_16x8_TO_64x2);
}
break;
case 4:
switch (toLen) {
case 8:
return Some(SimdPermuteOp::ZERO_EXTEND_32x4_TO_64x2);
}
break;
}
MOZ_CRASH("Invalid TryZeroExtend match");
}
static Maybe<SimdPermuteOp> AnalyzeShuffleWithZero(SimdConstant* control) {
Maybe<SimdPermuteOp> op;
op = TryShift8x16(control);
if (op) {
return op;
}
op = TryZeroExtend(control);
if (op) {
return op;
}
// TODO: Optimization opportunity? A byte-blend-with-zero is just a CONST;
// PAND. This may beat the general byte blend code below.
return Nothing();
}
// Concat: if the result is the suffix (high bytes) of the rhs in front of a
// prefix (low bytes) of the lhs then this is PALIGNR; ditto if the operands are
// swapped.
static Maybe<SimdShuffleOp> TryConcatRightShift8x16(SimdConstant* control,
bool* swapOperands) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
int i = ScanIncreasingUnmasked(lanes, 0);
MOZ_ASSERT(i < 16, "Single-operand run should have been handled elswhere");
// First run must end with 15 % 16
if ((lanes[i - 1] & 15) != 15) {
return Nothing();
}
// Second run must start with 0 % 16
if ((lanes[i] & 15) != 0) {
return Nothing();
}
// The two runs must come from different inputs
if ((lanes[i] & 16) == (lanes[i - 1] & 16)) {
return Nothing();
}
int suffixLength = i;
i = ScanIncreasingUnmasked(lanes, i);
// Must end at the left end
if (i != 16) {
return Nothing();
}
// If the suffix is from the lhs then swap the operands
if (lanes[0] < 16) {
*swapOperands = !*swapOperands;
}
*control = SimdConstant::SplatX16((int8_t)suffixLength);
return Some(SimdShuffleOp::CONCAT_RIGHT_SHIFT_8x16);
}
// Blend words: if we pick words from both operands without a pattern but all
// the input words stay in their position then this is PBLENDW (immediate mask);
// this also handles all larger sizes on x64.
static Maybe<SimdShuffleOp> TryBlendInt16x8(SimdConstant* control) {
SimdConstant tmp(*control);
if (!ByteMaskToWordMask(&tmp)) {
return Nothing();
}
SimdConstant::I16x8 masked;
MaskLanes(masked, tmp.asInt16x8());
if (!IsIdentity(masked)) {
return Nothing();
}
SimdConstant::I16x8 mapped;
MapLanes(mapped, tmp.asInt16x8(),
[](int x) -> int { return x < 8 ? 0 : -1; });
*control = SimdConstant::CreateX8(mapped);
return Some(SimdShuffleOp::BLEND_16x8);
}
// Blend bytes: if we pick bytes ditto then this is a byte blend, which can be
// handled with a CONST, PAND, PANDNOT, and POR.
//
// TODO: Optimization opportunity? If we pick all but one lanes from one with at
// most one from the other then it could be a MOV + PEXRB + PINSRB (also if this
// element is not in its source location).
static Maybe<SimdShuffleOp> TryBlendInt8x16(SimdConstant* control) {
SimdConstant::I8x16 masked;
MaskLanes(masked, control->asInt8x16());
if (!IsIdentity(masked)) {
return Nothing();
}
SimdConstant::I8x16 mapped;
MapLanes(mapped, control->asInt8x16(),
[](int x) -> int { return x < 16 ? 0 : -1; });
*control = SimdConstant::CreateX16(mapped);
return Some(SimdShuffleOp::BLEND_8x16);
}
template <typename T>
static bool MatchInterleave(const T* lanes, int lhs, int rhs, int len) {
for (int i = 0; i < len; i++) {
if (lanes[i * 2] != lhs + i || lanes[i * 2 + 1] != rhs + i) {
return false;
}
}
return true;
}
// Unpack/interleave:
// - if we interleave the low (bytes/words/doublewords) of the inputs into
// the output then this is UNPCKL*W (possibly with a swap of operands).
// - if we interleave the high ditto then it is UNPCKH*W (ditto)
template <typename T>
static Maybe<SimdShuffleOp> TryInterleave(const T* lanes, int lhs, int rhs,
bool* swapOperands,
SimdShuffleOp lowOp,
SimdShuffleOp highOp) {
int len = int(32 / (sizeof(T) * 4));
if (MatchInterleave(lanes, lhs, rhs, len)) {
return Some(lowOp);
}
if (MatchInterleave(lanes, rhs, lhs, len)) {
*swapOperands = !*swapOperands;
return Some(lowOp);
}
if (MatchInterleave(lanes, lhs + len, rhs + len, len)) {
return Some(highOp);
}
if (MatchInterleave(lanes, rhs + len, lhs + len, len)) {
*swapOperands = !*swapOperands;
return Some(highOp);
}
return Nothing();
}
static Maybe<SimdShuffleOp> TryInterleave64x2(SimdConstant* control,
bool* swapOperands) {
SimdConstant tmp = *control;
if (!ByteMaskToQWordMask(&tmp)) {
return Nothing();
}
const SimdConstant::I64x2& lanes = tmp.asInt64x2();
return TryInterleave(lanes, 0, 2, swapOperands,
SimdShuffleOp::INTERLEAVE_LOW_64x2,
SimdShuffleOp::INTERLEAVE_HIGH_64x2);
}
static Maybe<SimdShuffleOp> TryInterleave32x4(SimdConstant* control,
bool* swapOperands) {
SimdConstant tmp = *control;
if (!ByteMaskToDWordMask(&tmp)) {
return Nothing();
}
const SimdConstant::I32x4& lanes = tmp.asInt32x4();
return TryInterleave(lanes, 0, 4, swapOperands,
SimdShuffleOp::INTERLEAVE_LOW_32x4,
SimdShuffleOp::INTERLEAVE_HIGH_32x4);
}
static Maybe<SimdShuffleOp> TryInterleave16x8(SimdConstant* control,
bool* swapOperands) {
SimdConstant tmp = *control;
if (!ByteMaskToWordMask(&tmp)) {
return Nothing();
}
const SimdConstant::I16x8& lanes = tmp.asInt16x8();
return TryInterleave(lanes, 0, 8, swapOperands,
SimdShuffleOp::INTERLEAVE_LOW_16x8,
SimdShuffleOp::INTERLEAVE_HIGH_16x8);
}
static Maybe<SimdShuffleOp> TryInterleave8x16(SimdConstant* control,
bool* swapOperands) {
const SimdConstant::I8x16& lanes = control->asInt8x16();
return TryInterleave(lanes, 0, 16, swapOperands,
SimdShuffleOp::INTERLEAVE_LOW_8x16,
SimdShuffleOp::INTERLEAVE_HIGH_8x16);
}
static SimdShuffleOp AnalyzeTwoArgShuffle(SimdConstant* control,
bool* swapOperands) {
Maybe<SimdShuffleOp> op;
op = TryConcatRightShift8x16(control, swapOperands);
if (!op) {
op = TryBlendInt16x8(control);
}
if (!op) {
op = TryBlendInt8x16(control);
}
if (!op) {
op = TryInterleave64x2(control, swapOperands);
}
if (!op) {
op = TryInterleave32x4(control, swapOperands);
}
if (!op) {
op = TryInterleave16x8(control, swapOperands);
}
if (!op) {
op = TryInterleave8x16(control, swapOperands);
}
if (!op) {
op = Some(SimdShuffleOp::SHUFFLE_BLEND_8x16);
}
return *op;
}
// Reorder the operands if that seems useful, notably, move a constant to the
// right hand side. Rewrites the control to account for any move.
static bool MaybeReorderShuffleOperands(MDefinition** lhs, MDefinition** rhs,
SimdConstant* control) {
if ((*lhs)->isWasmFloatConstant()) {
MDefinition* tmp = *lhs;
*lhs = *rhs;
*rhs = tmp;
int8_t controlBytes[16];
const SimdConstant::I8x16& lanes = control->asInt8x16();
for (unsigned i = 0; i < 16; i++) {
controlBytes[i] = int8_t(lanes[i] ^ 16);
}
*control = SimdConstant::CreateX16(controlBytes);
return true;
}
return false;
}
# ifdef DEBUG
static const SimdShuffle& ReportShuffleSpecialization(const SimdShuffle& s) {
switch (s.opd) {
case SimdShuffle::Operand::BOTH:
case SimdShuffle::Operand::BOTH_SWAPPED:
switch (*s.shuffleOp) {
case SimdShuffleOp::SHUFFLE_BLEND_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> shuffle+blend 8x16");
break;
case SimdShuffleOp::BLEND_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> blend 8x16");
break;
case SimdShuffleOp::BLEND_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> blend 16x8");
break;
case SimdShuffleOp::CONCAT_RIGHT_SHIFT_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> concat+shift-right 8x16");
break;
case SimdShuffleOp::INTERLEAVE_HIGH_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 8x16");
break;
case SimdShuffleOp::INTERLEAVE_HIGH_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 16x8");
break;
case SimdShuffleOp::INTERLEAVE_HIGH_32x4:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 32x4");
break;
case SimdShuffleOp::INTERLEAVE_HIGH_64x2:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-high 64x2");
break;
case SimdShuffleOp::INTERLEAVE_LOW_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 8x16");
break;
case SimdShuffleOp::INTERLEAVE_LOW_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 16x8");
break;
case SimdShuffleOp::INTERLEAVE_LOW_32x4:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 32x4");
break;
case SimdShuffleOp::INTERLEAVE_LOW_64x2:
js::wasm::ReportSimdAnalysis("shuffle -> interleave-low 64x2");
break;
default:
MOZ_CRASH("Unexpected shuffle op");
}
break;
case SimdShuffle::Operand::LEFT:
case SimdShuffle::Operand::RIGHT:
switch (*s.permuteOp) {
case SimdPermuteOp::BROADCAST_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> broadcast 8x16");
break;
case SimdPermuteOp::BROADCAST_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> broadcast 16x8");
break;
case SimdPermuteOp::MOVE:
js::wasm::ReportSimdAnalysis("shuffle -> move");
break;
case SimdPermuteOp::REVERSE_16x8:
js::wasm::ReportSimdAnalysis(
"shuffle -> reverse bytes in 16-bit lanes");
break;
case SimdPermuteOp::REVERSE_32x4:
js::wasm::ReportSimdAnalysis(
"shuffle -> reverse bytes in 32-bit lanes");
break;
case SimdPermuteOp::REVERSE_64x2:
js::wasm::ReportSimdAnalysis(
"shuffle -> reverse bytes in 64-bit lanes");
break;
case SimdPermuteOp::PERMUTE_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> permute 8x16");
break;
case SimdPermuteOp::PERMUTE_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> permute 16x8");
break;
case SimdPermuteOp::PERMUTE_32x4:
js::wasm::ReportSimdAnalysis("shuffle -> permute 32x4");
break;
case SimdPermuteOp::ROTATE_RIGHT_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> rotate-right 8x16");
break;
case SimdPermuteOp::SHIFT_LEFT_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> shift-left 8x16");
break;
case SimdPermuteOp::SHIFT_RIGHT_8x16:
js::wasm::ReportSimdAnalysis("shuffle -> shift-right 8x16");
break;
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_16x8:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 8x16 to 16x8");
break;
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_32x4:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 8x16 to 32x4");
break;
case SimdPermuteOp::ZERO_EXTEND_8x16_TO_64x2:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 8x16 to 64x2");
break;
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_32x4:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 16x8 to 32x4");
break;
case SimdPermuteOp::ZERO_EXTEND_16x8_TO_64x2:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 16x8 to 64x2");
break;
case SimdPermuteOp::ZERO_EXTEND_32x4_TO_64x2:
js::wasm::ReportSimdAnalysis("shuffle -> zero-extend 32x4 to 64x2");
break;
default:
MOZ_CRASH("Unexpected permute op");
}
break;
}
return s;
}
# endif // DEBUG
SimdShuffle jit::AnalyzeSimdShuffle(SimdConstant control, MDefinition* lhs,
MDefinition* rhs) {
# ifdef DEBUG
# define R(s) ReportShuffleSpecialization(s)
# else
# define R(s) (s)
# endif
// If only one of the inputs is used, determine which.
bool useLeft = true;
bool useRight = true;
if (lhs == rhs) {
useRight = false;
} else {
bool allAbove = true;
bool allBelow = true;
const SimdConstant::I8x16& lanes = control.asInt8x16();
for (int8_t i : lanes) {
allAbove = allAbove && i >= 16;
allBelow = allBelow && i < 16;
}
if (allAbove) {
useLeft = false;
} else if (allBelow) {
useRight = false;
}
}
// Deal with one-ignored-input.
if (!(useLeft && useRight)) {
SimdPermuteOp op = AnalyzePermute(&control);
return R(SimdShuffle::permute(
useLeft ? SimdShuffle::Operand::LEFT : SimdShuffle::Operand::RIGHT,
control, op));
}
// Move constants to rhs.
bool swapOperands = MaybeReorderShuffleOperands(&lhs, &rhs, &control);
// Deal with constant rhs.
if (rhs->isWasmFloatConstant()) {
SimdConstant rhsConstant = rhs->toWasmFloatConstant()->toSimd128();
if (rhsConstant.isZeroBits()) {
Maybe<SimdPermuteOp> op = AnalyzeShuffleWithZero(&control);
if (op) {
return R(SimdShuffle::permute(swapOperands ? SimdShuffle::Operand::RIGHT
: SimdShuffle::Operand::LEFT,
control, *op));
}
}
}
// Two operands both of which are used. If there's one constant operand it is
// now on the rhs.
SimdShuffleOp op = AnalyzeTwoArgShuffle(&control, &swapOperands);
return R(SimdShuffle::shuffle(swapOperands
? SimdShuffle::Operand::BOTH_SWAPPED
: SimdShuffle::Operand::BOTH,
control, op));
# undef R
}
#endif // ENABLE_WASM_SIMD