Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "jit/RangeAnalysis.h"
#include "mozilla/MathAlgorithms.h"
#include <algorithm>
#include "jsmath.h"
#include "jit/CompileInfo.h"
#include "jit/IonAnalysis.h"
#include "jit/JitSpewer.h"
#include "jit/MIR-wasm.h"
#include "jit/MIR.h"
#include "jit/MIRGenerator.h"
#include "jit/MIRGraph.h"
#include "js/Conversions.h"
#include "js/ScalarType.h" // js::Scalar::Type
#include "util/CheckedArithmetic.h"
#include "util/Unicode.h"
#include "vm/ArgumentsObject.h"
#include "vm/Float16.h"
#include "vm/TypedArrayObject.h"
#include "vm/Uint8Clamped.h"
#include "vm/BytecodeUtil-inl.h"
using namespace js;
using namespace js::jit;
using JS::GenericNaN;
using JS::ToInt32;
using mozilla::Abs;
using mozilla::CountLeadingZeroes32;
using mozilla::ExponentComponent;
using mozilla::FloorLog2;
using mozilla::IsNegativeZero;
using mozilla::NegativeInfinity;
using mozilla::NumberEqualsInt32;
using mozilla::PositiveInfinity;
// [SMDOC] IonMonkey Range Analysis
//
// This algorithm is based on the paper "Eliminating Range Checks Using
// Static Single Assignment Form" by Gough and Klaren.
//
// We associate a range object with each SSA name, and the ranges are consulted
// in order to determine whether overflow is possible for arithmetic
// computations.
//
// An important source of range information that requires care to take
// advantage of is conditional control flow. Consider the code below:
//
// if (x < 0) {
// y = x + 2000000000;
// } else {
// if (x < 1000000000) {
// y = x * 2;
// } else {
// y = x - 3000000000;
// }
// }
//
// The arithmetic operations in this code cannot overflow, but it is not
// sufficient to simply associate each name with a range, since the information
// differs between basic blocks. The traditional dataflow approach would be
// associate ranges with (name, basic block) pairs. This solution is not
// satisfying, since we lose the benefit of SSA form: in SSA form, each
// definition has a unique name, so there is no need to track information about
// the control flow of the program.
//
// The approach used here is to add a new form of pseudo operation called a
// beta node, which associates range information with a value. These beta
// instructions take one argument and additionally have an auxiliary constant
// range associated with them. Operationally, beta nodes are just copies, but
// the invariant expressed by beta node copies is that the output will fall
// inside the range given by the beta node. Gough and Klaeren refer to SSA
// extended with these beta nodes as XSA form. The following shows the example
// code transformed into XSA form:
//
// if (x < 0) {
// x1 = Beta(x, [INT_MIN, -1]);
// y1 = x1 + 2000000000;
// } else {
// x2 = Beta(x, [0, INT_MAX]);
// if (x2 < 1000000000) {
// x3 = Beta(x2, [INT_MIN, 999999999]);
// y2 = x3*2;
// } else {
// x4 = Beta(x2, [1000000000, INT_MAX]);
// y3 = x4 - 3000000000;
// }
// y4 = Phi(y2, y3);
// }
// y = Phi(y1, y4);
//
// We insert beta nodes for the purposes of range analysis (they might also be
// usefully used for other forms of bounds check elimination) and remove them
// after range analysis is performed. The remaining compiler phases do not ever
// encounter beta nodes.
static bool IsDominatedUse(const MBasicBlock* block, const MUse* use) {
MNode* n = use->consumer();
bool isPhi = n->isDefinition() && n->toDefinition()->isPhi();
if (isPhi) {
MPhi* phi = n->toDefinition()->toPhi();
return block->dominates(phi->block()->getPredecessor(phi->indexOf(use)));
}
return block->dominates(n->block());
}
static inline void SpewRange(const MDefinition* def) {
#ifdef JS_JITSPEW
if (JitSpewEnabled(JitSpew_Range) && def->type() != MIRType::None &&
def->range()) {
JitSpewHeader(JitSpew_Range);
Fprinter& out = JitSpewPrinter();
out.printf(" ");
def->printName(out);
out.printf(" has range ");
def->range()->dump(out);
out.printf("\n");
}
#endif
}
#ifdef JS_JITSPEW
static const char* TruncateKindString(TruncateKind kind) {
switch (kind) {
case TruncateKind::NoTruncate:
return "NoTruncate";
case TruncateKind::TruncateAfterBailouts:
return "TruncateAfterBailouts";
case TruncateKind::IndirectTruncate:
return "IndirectTruncate";
case TruncateKind::Truncate:
return "Truncate";
default:
MOZ_CRASH("Unknown truncate kind.");
}
}
static inline void SpewTruncate(const MDefinition* def, TruncateKind kind,
bool shouldClone) {
if (JitSpewEnabled(JitSpew_Range)) {
JitSpewHeader(JitSpew_Range);
Fprinter& out = JitSpewPrinter();
out.printf(" ");
out.printf("truncating ");
def->printName(out);
out.printf(" (kind: %s, clone: %d)\n", TruncateKindString(kind),
shouldClone);
}
}
#else
static inline void SpewTruncate(MDefinition* def, TruncateKind kind,
bool shouldClone) {}
#endif
TempAllocator& RangeAnalysis::alloc() const { return graph_.alloc(); }
static void ReplaceDominatedUsesWith(const MDefinition* orig, MDefinition* dom,
const MBasicBlock* block) {
for (MUseIterator i(orig->usesBegin()); i != orig->usesEnd();) {
MUse* use = *i++;
if (use->consumer() != dom && IsDominatedUse(block, use)) {
use->replaceProducer(dom);
}
}
}
bool RangeAnalysis::addBetaNodes() {
JitSpew(JitSpew_Range, "Adding beta nodes");
for (PostorderIterator i(graph_.poBegin()); i != graph_.poEnd(); i++) {
MBasicBlock* block = *i;
JitSpew(JitSpew_Range, "Looking at block %u", block->id());
BranchDirection branch_dir;
MTest* test = block->immediateDominatorBranch(&branch_dir);
if (!test || !test->getOperand(0)->isCompare()) {
continue;
}
MCompare* compare = test->getOperand(0)->toCompare();
if (!compare->isNumericComparison()) {
continue;
}
// TODO: support unsigned comparisons
if (compare->compareType() == MCompare::Compare_UInt32) {
continue;
}
// isNumericComparison should return false for (U)IntPtr.
MOZ_ASSERT(compare->compareType() != MCompare::Compare_IntPtr &&
compare->compareType() != MCompare::Compare_UIntPtr);
MDefinition* left = compare->getOperand(0);
MDefinition* right = compare->getOperand(1);
double bound;
double conservativeLower = NegativeInfinity<double>();
double conservativeUpper = PositiveInfinity<double>();
MDefinition* val = nullptr;
JSOp jsop = compare->jsop();
if (branch_dir == FALSE_BRANCH) {
jsop = NegateCompareOp(jsop);
conservativeLower = GenericNaN();
conservativeUpper = GenericNaN();
}
MConstant* leftConst = left->maybeConstantValue();
MConstant* rightConst = right->maybeConstantValue();
if (leftConst && leftConst->isTypeRepresentableAsDouble()) {
bound = leftConst->numberToDouble();
val = right;
jsop = ReverseCompareOp(jsop);
} else if (rightConst && rightConst->isTypeRepresentableAsDouble()) {
bound = rightConst->numberToDouble();
val = left;
} else if (left->type() == MIRType::Int32 &&
right->type() == MIRType::Int32) {
MDefinition* smaller = nullptr;
MDefinition* greater = nullptr;
if (jsop == JSOp::Lt) {
smaller = left;
greater = right;
} else if (jsop == JSOp::Gt) {
smaller = right;
greater = left;
}
if (smaller && greater) {
if (!alloc().ensureBallast()) {
return false;
}
MBeta* beta;
beta = MBeta::New(
alloc(), smaller,
Range::NewInt32Range(alloc(), JSVAL_INT_MIN, JSVAL_INT_MAX - 1));
block->insertBefore(*block->begin(), beta);
ReplaceDominatedUsesWith(smaller, beta, block);
JitSpew(JitSpew_Range, " Adding beta node for smaller %u",
smaller->id());
beta = MBeta::New(
alloc(), greater,
Range::NewInt32Range(alloc(), JSVAL_INT_MIN + 1, JSVAL_INT_MAX));
block->insertBefore(*block->begin(), beta);
ReplaceDominatedUsesWith(greater, beta, block);
JitSpew(JitSpew_Range, " Adding beta node for greater %u",
greater->id());
}
continue;
} else {
continue;
}
// At this point, one of the operands if the compare is a constant, and
// val is the other operand.
MOZ_ASSERT(val);
Range comp;
switch (jsop) {
case JSOp::Le:
comp.setDouble(conservativeLower, bound);
break;
case JSOp::Lt:
// For integers, if x < c, the upper bound of x is c-1.
if (val->type() == MIRType::Int32) {
int32_t intbound;
if (NumberEqualsInt32(bound, &intbound) &&
SafeSub(intbound, 1, &intbound)) {
bound = intbound;
}
}
comp.setDouble(conservativeLower, bound);
// Negative zero is not less than zero.
if (bound == 0) {
comp.refineToExcludeNegativeZero();
}
break;
case JSOp::Ge:
comp.setDouble(bound, conservativeUpper);
break;
case JSOp::Gt:
// For integers, if x > c, the lower bound of x is c+1.
if (val->type() == MIRType::Int32) {
int32_t intbound;
if (NumberEqualsInt32(bound, &intbound) &&
SafeAdd(intbound, 1, &intbound)) {
bound = intbound;
}
}
comp.setDouble(bound, conservativeUpper);
// Negative zero is not greater than zero.
if (bound == 0) {
comp.refineToExcludeNegativeZero();
}
break;
case JSOp::StrictEq:
case JSOp::Eq:
comp.setDouble(bound, bound);
break;
case JSOp::StrictNe:
case JSOp::Ne:
// Negative zero is not not-equal to zero.
if (bound == 0) {
comp.refineToExcludeNegativeZero();
break;
}
continue; // well, we could have
// [-\inf, bound-1] U [bound+1, \inf] but we only use
// contiguous ranges.
default:
continue;
}
if (JitSpewEnabled(JitSpew_Range)) {
JitSpewHeader(JitSpew_Range);
Fprinter& out = JitSpewPrinter();
out.printf(" Adding beta node for %u with range ", val->id());
comp.dump(out);
out.printf("\n");
}
if (!alloc().ensureBallast()) {
return false;
}
MBeta* beta = MBeta::New(alloc(), val, new (alloc()) Range(comp));
block->insertBefore(*block->begin(), beta);
ReplaceDominatedUsesWith(val, beta, block);
}
return true;
}
bool RangeAnalysis::removeBetaNodes() {
JitSpew(JitSpew_Range, "Removing beta nodes");
for (PostorderIterator i(graph_.poBegin()); i != graph_.poEnd(); i++) {
MBasicBlock* block = *i;
for (MDefinitionIterator iter(*i); iter;) {
MDefinition* def = *iter++;
if (def->isBeta()) {
auto* beta = def->toBeta();
MDefinition* op = beta->input();
JitSpew(JitSpew_Range, " Removing beta node %u for %u", beta->id(),
op->id());
beta->justReplaceAllUsesWith(op);
block->discard(beta);
} else {
// We only place Beta nodes at the beginning of basic
// blocks, so if we see something else, we can move on
// to the next block.
break;
}
}
}
return true;
}
void SymbolicBound::dump(GenericPrinter& out) const {
if (loop) {
out.printf("[loop] ");
}
sum.dump(out);
}
void SymbolicBound::dump() const {
Fprinter out(stderr);
dump(out);
out.printf("\n");
out.finish();
}
// Test whether the given range's exponent tells us anything that its lower
// and upper bound values don't.
static bool IsExponentInteresting(const Range* r) {
// If it lacks either a lower or upper bound, the exponent is interesting.
if (!r->hasInt32Bounds()) {
return true;
}
// Otherwise if there's no fractional part, the lower and upper bounds,
// which are integers, are perfectly precise.
if (!r->canHaveFractionalPart()) {
return false;
}
// Otherwise, if the bounds are conservatively rounded across a power-of-two
// boundary, the exponent may imply a tighter range.
return FloorLog2(std::max(Abs(r->lower()), Abs(r->upper()))) > r->exponent();
}
void Range::dump(GenericPrinter& out) const {
assertInvariants();
// Floating-point or Integer subset.
if (canHaveFractionalPart_) {
out.printf("F");
} else {
out.printf("I");
}
out.printf("[");
if (!hasInt32LowerBound_) {
out.printf("?");
} else {
out.printf("%d", lower_);
}
if (symbolicLower_) {
out.printf(" {");
symbolicLower_->dump(out);
out.printf("}");
}
out.printf(", ");
if (!hasInt32UpperBound_) {
out.printf("?");
} else {
out.printf("%d", upper_);
}
if (symbolicUpper_) {
out.printf(" {");
symbolicUpper_->dump(out);
out.printf("}");
}
out.printf("]");
bool includesNaN = max_exponent_ == IncludesInfinityAndNaN;
bool includesNegativeInfinity =
max_exponent_ >= IncludesInfinity && !hasInt32LowerBound_;
bool includesPositiveInfinity =
max_exponent_ >= IncludesInfinity && !hasInt32UpperBound_;
bool includesNegativeZero = canBeNegativeZero_;
if (includesNaN || includesNegativeInfinity || includesPositiveInfinity ||
includesNegativeZero) {
out.printf(" (");
bool first = true;
if (includesNaN) {
if (first) {
first = false;
} else {
out.printf(" ");
}
out.printf("U NaN");
}
if (includesNegativeInfinity) {
if (first) {
first = false;
} else {
out.printf(" ");
}
out.printf("U -Infinity");
}
if (includesPositiveInfinity) {
if (first) {
first = false;
} else {
out.printf(" ");
}
out.printf("U Infinity");
}
if (includesNegativeZero) {
if (first) {
first = false;
} else {
out.printf(" ");
}
out.printf("U -0");
}
out.printf(")");
}
if (max_exponent_ < IncludesInfinity && IsExponentInteresting(this)) {
out.printf(" (< pow(2, %d+1))", max_exponent_);
}
}
void Range::dump() const {
Fprinter out(stderr);
dump(out);
out.printf("\n");
out.finish();
}
Range* Range::intersect(TempAllocator& alloc, const Range* lhs,
const Range* rhs, bool* emptyRange) {
*emptyRange = false;
if (!lhs && !rhs) {
return nullptr;
}
if (!lhs) {
return new (alloc) Range(*rhs);
}
if (!rhs) {
return new (alloc) Range(*lhs);
}
int32_t newLower = std::max(lhs->lower_, rhs->lower_);
int32_t newUpper = std::min(lhs->upper_, rhs->upper_);
// If upper < lower, then we have conflicting constraints. Consider:
//
// if (x < 0) {
// if (x > 0) {
// [Some code.]
// }
// }
//
// In this case, the block is unreachable.
if (newUpper < newLower) {
// If both ranges can be NaN, the result can still be NaN.
if (!lhs->canBeNaN() || !rhs->canBeNaN()) {
*emptyRange = true;
}
return nullptr;
}
bool newHasInt32LowerBound =
lhs->hasInt32LowerBound_ || rhs->hasInt32LowerBound_;
bool newHasInt32UpperBound =
lhs->hasInt32UpperBound_ || rhs->hasInt32UpperBound_;
FractionalPartFlag newCanHaveFractionalPart = FractionalPartFlag(
lhs->canHaveFractionalPart_ && rhs->canHaveFractionalPart_);
NegativeZeroFlag newMayIncludeNegativeZero =
NegativeZeroFlag(lhs->canBeNegativeZero_ && rhs->canBeNegativeZero_);
uint16_t newExponent = std::min(lhs->max_exponent_, rhs->max_exponent_);
// NaN is a special value which is neither greater than infinity or less than
// negative infinity. When we intersect two ranges like [?, 0] and [0, ?], we
// can end up thinking we have both a lower and upper bound, even though NaN
// is still possible. In this case, just be conservative, since any case where
// we can have NaN is not especially interesting.
if (newHasInt32LowerBound && newHasInt32UpperBound &&
newExponent == IncludesInfinityAndNaN) {
return nullptr;
}
// If one of the ranges has a fractional part and the other doesn't, it's
// possible that we will have computed a newExponent that's more precise
// than our newLower and newUpper. This is unusual, so we handle it here
// instead of in optimize().
//
// For example, consider the range F[0,1.5]. Range analysis represents the
// lower and upper bound as integers, so we'd actually have
// F[0,2] (< pow(2, 0+1)). In this case, the exponent gives us a slightly
// more precise upper bound than the integer upper bound.
//
// When intersecting such a range with an integer range, the fractional part
// of the range is dropped. The max exponent of 0 remains valid, so the
// upper bound needs to be adjusted to 1.
//
// When intersecting F[0,2] (< pow(2, 0+1)) with a range like F[2,4],
// the naive intersection is I[2,2], but since the max exponent tells us
// that the value is always less than 2, the intersection is actually empty.
if (lhs->canHaveFractionalPart() != rhs->canHaveFractionalPart() ||
(lhs->canHaveFractionalPart() && newHasInt32LowerBound &&
newHasInt32UpperBound && newLower == newUpper)) {
refineInt32BoundsByExponent(newExponent, &newLower, &newHasInt32LowerBound,
&newUpper, &newHasInt32UpperBound);
// If we're intersecting two ranges that don't overlap, this could also
// push the bounds past each other, since the actual intersection is
// the empty set.
if (newLower > newUpper) {
*emptyRange = true;
return nullptr;
}
}
return new (alloc)
Range(newLower, newHasInt32LowerBound, newUpper, newHasInt32UpperBound,
newCanHaveFractionalPart, newMayIncludeNegativeZero, newExponent);
}
void Range::unionWith(const Range* other) {
int32_t newLower = std::min(lower_, other->lower_);
int32_t newUpper = std::max(upper_, other->upper_);
bool newHasInt32LowerBound =
hasInt32LowerBound_ && other->hasInt32LowerBound_;
bool newHasInt32UpperBound =
hasInt32UpperBound_ && other->hasInt32UpperBound_;
FractionalPartFlag newCanHaveFractionalPart = FractionalPartFlag(
canHaveFractionalPart_ || other->canHaveFractionalPart_);
NegativeZeroFlag newMayIncludeNegativeZero =
NegativeZeroFlag(canBeNegativeZero_ || other->canBeNegativeZero_);
uint16_t newExponent = std::max(max_exponent_, other->max_exponent_);
rawInitialize(newLower, newHasInt32LowerBound, newUpper,
newHasInt32UpperBound, newCanHaveFractionalPart,
newMayIncludeNegativeZero, newExponent);
}
Range::Range(const MDefinition* def)
: symbolicLower_(nullptr), symbolicUpper_(nullptr) {
if (const Range* other = def->range()) {
// The instruction has range information; use it.
*this = *other;
// Simulate the effect of converting the value to its type.
// Note: we cannot clamp here, since ranges aren't allowed to shrink
// and truncation can increase range again. So doing wrapAround to
// mimick a possible truncation.
switch (def->type()) {
case MIRType::Int32:
// MToNumberInt32 cannot truncate. So we can safely clamp.
if (def->isToNumberInt32()) {
clampToInt32();
} else {
wrapAroundToInt32();
}
break;
case MIRType::Boolean:
wrapAroundToBoolean();
break;
case MIRType::None:
MOZ_CRASH("Asking for the range of an instruction with no value");
default:
break;
}
} else {
// Otherwise just use type information. We can trust the type here
// because we don't care what value the instruction actually produces,
// but what value we might get after we get past the bailouts.
switch (def->type()) {
case MIRType::Int32:
setInt32(JSVAL_INT_MIN, JSVAL_INT_MAX);
break;
case MIRType::Boolean:
setInt32(0, 1);
break;
case MIRType::None:
MOZ_CRASH("Asking for the range of an instruction with no value");
default:
setUnknown();
break;
}
}
// As a special case, MUrsh is permitted to claim a result type of
// MIRType::Int32 while actually returning values in [0,UINT32_MAX] without
// bailouts. If range analysis hasn't ruled out values in
// (INT32_MAX,UINT32_MAX], set the range to be conservatively correct for
// use as either a uint32 or an int32.
if (!hasInt32UpperBound() && def->isUrsh() &&
def->toUrsh()->bailoutsDisabled() && def->type() != MIRType::Int64) {
lower_ = INT32_MIN;
}
assertInvariants();
}
static uint16_t ExponentImpliedByDouble(double d) {
// Handle the special values.
if (std::isnan(d)) {
return Range::IncludesInfinityAndNaN;
}
if (std::isinf(d)) {
return Range::IncludesInfinity;
}
// Otherwise take the exponent part and clamp it at zero, since the Range
// class doesn't track fractional ranges.
return uint16_t(std::max(int_fast16_t(0), ExponentComponent(d)));
}
void Range::setDouble(double l, double h) {
MOZ_ASSERT(!(l > h));
// Infer lower_, upper_, hasInt32LowerBound_, and hasInt32UpperBound_.
if (l >= INT32_MIN && l <= INT32_MAX) {
lower_ = int32_t(::floor(l));
hasInt32LowerBound_ = true;
} else if (l >= INT32_MAX) {
lower_ = INT32_MAX;
hasInt32LowerBound_ = true;
} else {
lower_ = INT32_MIN;
hasInt32LowerBound_ = false;
}
if (h >= INT32_MIN && h <= INT32_MAX) {
upper_ = int32_t(::ceil(h));
hasInt32UpperBound_ = true;
} else if (h <= INT32_MIN) {
upper_ = INT32_MIN;
hasInt32UpperBound_ = true;
} else {
upper_ = INT32_MAX;
hasInt32UpperBound_ = false;
}
// Infer max_exponent_.
uint16_t lExp = ExponentImpliedByDouble(l);
uint16_t hExp = ExponentImpliedByDouble(h);
max_exponent_ = std::max(lExp, hExp);
canHaveFractionalPart_ = ExcludesFractionalParts;
canBeNegativeZero_ = ExcludesNegativeZero;
// Infer the canHaveFractionalPart_ setting. We can have a
// fractional part if the range crosses through the neighborhood of zero. We
// won't have a fractional value if the value is always beyond the point at
// which double precision can't represent fractional values.
uint16_t minExp = std::min(lExp, hExp);
bool includesNegative = std::isnan(l) || l < 0;
bool includesPositive = std::isnan(h) || h > 0;
bool crossesZero = includesNegative && includesPositive;
if (crossesZero || minExp < MaxTruncatableExponent) {
canHaveFractionalPart_ = IncludesFractionalParts;
}
// Infer the canBeNegativeZero_ setting. We can have a negative zero if
// either bound is zero.
if (!(l > 0) && !(h < 0)) {
canBeNegativeZero_ = IncludesNegativeZero;
}
optimize();
}
void Range::setDoubleSingleton(double d) {
setDouble(d, d);
// The above setDouble call is for comparisons, and treats negative zero
// as equal to zero. We're aiming for a minimum range, so we can clear the
// negative zero flag if the value isn't actually negative zero.
if (!IsNegativeZero(d)) {
canBeNegativeZero_ = ExcludesNegativeZero;
}
assertInvariants();
}
static inline bool MissingAnyInt32Bounds(const Range* lhs, const Range* rhs) {
return !lhs->hasInt32Bounds() || !rhs->hasInt32Bounds();
}
Range* Range::add(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
int64_t l = (int64_t)lhs->lower_ + (int64_t)rhs->lower_;
if (!lhs->hasInt32LowerBound() || !rhs->hasInt32LowerBound()) {
l = NoInt32LowerBound;
}
int64_t h = (int64_t)lhs->upper_ + (int64_t)rhs->upper_;
if (!lhs->hasInt32UpperBound() || !rhs->hasInt32UpperBound()) {
h = NoInt32UpperBound;
}
// The exponent is at most one greater than the greater of the operands'
// exponents, except for NaN and infinity cases.
uint16_t e = std::max(lhs->max_exponent_, rhs->max_exponent_);
if (e <= Range::MaxFiniteExponent) {
++e;
}
// Infinity + -Infinity is NaN.
if (lhs->canBeInfiniteOrNaN() && rhs->canBeInfiniteOrNaN()) {
e = Range::IncludesInfinityAndNaN;
}
return new (alloc) Range(
l, h,
FractionalPartFlag(lhs->canHaveFractionalPart() ||
rhs->canHaveFractionalPart()),
NegativeZeroFlag(lhs->canBeNegativeZero() && rhs->canBeNegativeZero()),
e);
}
Range* Range::sub(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
int64_t l = (int64_t)lhs->lower_ - (int64_t)rhs->upper_;
if (!lhs->hasInt32LowerBound() || !rhs->hasInt32UpperBound()) {
l = NoInt32LowerBound;
}
int64_t h = (int64_t)lhs->upper_ - (int64_t)rhs->lower_;
if (!lhs->hasInt32UpperBound() || !rhs->hasInt32LowerBound()) {
h = NoInt32UpperBound;
}
// The exponent is at most one greater than the greater of the operands'
// exponents, except for NaN and infinity cases.
uint16_t e = std::max(lhs->max_exponent_, rhs->max_exponent_);
if (e <= Range::MaxFiniteExponent) {
++e;
}
// Infinity - Infinity is NaN.
if (lhs->canBeInfiniteOrNaN() && rhs->canBeInfiniteOrNaN()) {
e = Range::IncludesInfinityAndNaN;
}
return new (alloc)
Range(l, h,
FractionalPartFlag(lhs->canHaveFractionalPart() ||
rhs->canHaveFractionalPart()),
NegativeZeroFlag(lhs->canBeNegativeZero() && rhs->canBeZero()), e);
}
Range* Range::and_(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
// If both numbers can be negative, result can be negative in the whole range
if (lhs->lower() < 0 && rhs->lower() < 0) {
return Range::NewInt32Range(alloc, INT32_MIN,
std::max(lhs->upper(), rhs->upper()));
}
// Only one of both numbers can be negative.
// - result can't be negative
// - Upper bound is minimum of both upper range,
int32_t lower = 0;
int32_t upper = std::min(lhs->upper(), rhs->upper());
// EXCEPT when upper bound of non negative number is max value,
// because negative value can return the whole max value.
// -1 & 5 = 5
if (lhs->lower() < 0) {
upper = rhs->upper();
}
if (rhs->lower() < 0) {
upper = lhs->upper();
}
return Range::NewInt32Range(alloc, lower, upper);
}
Range* Range::or_(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
// When one operand is always 0 or always -1, it's a special case where we
// can compute a fully precise result. Handling these up front also
// protects the code below from calling CountLeadingZeroes32 with a zero
// operand or from shifting an int32_t by 32.
if (lhs->lower() == lhs->upper()) {
if (lhs->lower() == 0) {
return new (alloc) Range(*rhs);
}
if (lhs->lower() == -1) {
return new (alloc) Range(*lhs);
}
}
if (rhs->lower() == rhs->upper()) {
if (rhs->lower() == 0) {
return new (alloc) Range(*lhs);
}
if (rhs->lower() == -1) {
return new (alloc) Range(*rhs);
}
}
// The code below uses CountLeadingZeroes32, which has undefined behavior
// if its operand is 0. We rely on the code above to protect it.
MOZ_ASSERT_IF(lhs->lower() >= 0, lhs->upper() != 0);
MOZ_ASSERT_IF(rhs->lower() >= 0, rhs->upper() != 0);
MOZ_ASSERT_IF(lhs->upper() < 0, lhs->lower() != -1);
MOZ_ASSERT_IF(rhs->upper() < 0, rhs->lower() != -1);
int32_t lower = INT32_MIN;
int32_t upper = INT32_MAX;
if (lhs->lower() >= 0 && rhs->lower() >= 0) {
// Both operands are non-negative, so the result won't be less than either.
lower = std::max(lhs->lower(), rhs->lower());
// The result will have leading zeros where both operands have leading
// zeros. CountLeadingZeroes32 of a non-negative int32 will at least be 1 to
// account for the bit of sign.
upper = int32_t(UINT32_MAX >> std::min(CountLeadingZeroes32(lhs->upper()),
CountLeadingZeroes32(rhs->upper())));
} else {
// The result will have leading ones where either operand has leading ones.
if (lhs->upper() < 0) {
unsigned leadingOnes = CountLeadingZeroes32(~lhs->lower());
lower = std::max(lower, ~int32_t(UINT32_MAX >> leadingOnes));
upper = -1;
}
if (rhs->upper() < 0) {
unsigned leadingOnes = CountLeadingZeroes32(~rhs->lower());
lower = std::max(lower, ~int32_t(UINT32_MAX >> leadingOnes));
upper = -1;
}
}
return Range::NewInt32Range(alloc, lower, upper);
}
Range* Range::xor_(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
int32_t lhsLower = lhs->lower();
int32_t lhsUpper = lhs->upper();
int32_t rhsLower = rhs->lower();
int32_t rhsUpper = rhs->upper();
bool invertAfter = false;
// If either operand is negative, bitwise-negate it, and arrange to negate
// the result; ~((~x)^y) == x^y. If both are negative the negations on the
// result cancel each other out; effectively this is (~x)^(~y) == x^y.
// These transformations reduce the number of cases we have to handle below.
if (lhsUpper < 0) {
lhsLower = ~lhsLower;
lhsUpper = ~lhsUpper;
std::swap(lhsLower, lhsUpper);
invertAfter = !invertAfter;
}
if (rhsUpper < 0) {
rhsLower = ~rhsLower;
rhsUpper = ~rhsUpper;
std::swap(rhsLower, rhsUpper);
invertAfter = !invertAfter;
}
// Handle cases where lhs or rhs is always zero specially, because they're
// easy cases where we can be perfectly precise, and because it protects the
// CountLeadingZeroes32 calls below from seeing 0 operands, which would be
// undefined behavior.
int32_t lower = INT32_MIN;
int32_t upper = INT32_MAX;
if (lhsLower == 0 && lhsUpper == 0) {
upper = rhsUpper;
lower = rhsLower;
} else if (rhsLower == 0 && rhsUpper == 0) {
upper = lhsUpper;
lower = lhsLower;
} else if (lhsLower >= 0 && rhsLower >= 0) {
// Both operands are non-negative. The result will be non-negative.
lower = 0;
// To compute the upper value, take each operand's upper value and
// set all bits that don't correspond to leading zero bits in the
// other to one. For each one, this gives an upper bound for the
// result, so we can take the minimum between the two.
unsigned lhsLeadingZeros = CountLeadingZeroes32(lhsUpper);
unsigned rhsLeadingZeros = CountLeadingZeroes32(rhsUpper);
upper = std::min(rhsUpper | int32_t(UINT32_MAX >> lhsLeadingZeros),
lhsUpper | int32_t(UINT32_MAX >> rhsLeadingZeros));
}
// If we bitwise-negated one (but not both) of the operands above, apply the
// bitwise-negate to the result, completing ~((~x)^y) == x^y.
if (invertAfter) {
lower = ~lower;
upper = ~upper;
std::swap(lower, upper);
}
return Range::NewInt32Range(alloc, lower, upper);
}
Range* Range::not_(TempAllocator& alloc, const Range* op) {
MOZ_ASSERT(op->isInt32());
return Range::NewInt32Range(alloc, ~op->upper(), ~op->lower());
}
Range* Range::mul(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
FractionalPartFlag newCanHaveFractionalPart = FractionalPartFlag(
lhs->canHaveFractionalPart_ || rhs->canHaveFractionalPart_);
NegativeZeroFlag newMayIncludeNegativeZero = NegativeZeroFlag(
(lhs->canHaveSignBitSet() && rhs->canBeFiniteNonNegative()) ||
(rhs->canHaveSignBitSet() && lhs->canBeFiniteNonNegative()));
uint16_t exponent;
if (!lhs->canBeInfiniteOrNaN() && !rhs->canBeInfiniteOrNaN()) {
// Two finite values.
exponent = lhs->numBits() + rhs->numBits() - 1;
if (exponent > Range::MaxFiniteExponent) {
exponent = Range::IncludesInfinity;
}
} else if (!lhs->canBeNaN() && !rhs->canBeNaN() &&
!(lhs->canBeZero() && rhs->canBeInfiniteOrNaN()) &&
!(rhs->canBeZero() && lhs->canBeInfiniteOrNaN())) {
// Two values that multiplied together won't produce a NaN.
exponent = Range::IncludesInfinity;
} else {
// Could be anything.
exponent = Range::IncludesInfinityAndNaN;
}
if (MissingAnyInt32Bounds(lhs, rhs)) {
return new (alloc)
Range(NoInt32LowerBound, NoInt32UpperBound, newCanHaveFractionalPart,
newMayIncludeNegativeZero, exponent);
}
int64_t a = (int64_t)lhs->lower() * (int64_t)rhs->lower();
int64_t b = (int64_t)lhs->lower() * (int64_t)rhs->upper();
int64_t c = (int64_t)lhs->upper() * (int64_t)rhs->lower();
int64_t d = (int64_t)lhs->upper() * (int64_t)rhs->upper();
return new (alloc)
Range(std::min(std::min(a, b), std::min(c, d)),
std::max(std::max(a, b), std::max(c, d)), newCanHaveFractionalPart,
newMayIncludeNegativeZero, exponent);
}
Range* Range::lsh(TempAllocator& alloc, const Range* lhs, int32_t c) {
MOZ_ASSERT(lhs->isInt32());
int32_t shift = c & 0x1f;
// If the shift doesn't loose bits or shift bits into the sign bit, we
// can simply compute the correct range by shifting.
if ((int32_t)((uint32_t)lhs->lower() << shift << 1 >> shift >> 1) ==
lhs->lower() &&
(int32_t)((uint32_t)lhs->upper() << shift << 1 >> shift >> 1) ==
lhs->upper()) {
return Range::NewInt32Range(alloc, uint32_t(lhs->lower()) << shift,
uint32_t(lhs->upper()) << shift);
}
return Range::NewInt32Range(alloc, INT32_MIN, INT32_MAX);
}
Range* Range::rsh(TempAllocator& alloc, const Range* lhs, int32_t c) {
MOZ_ASSERT(lhs->isInt32());
int32_t shift = c & 0x1f;
return Range::NewInt32Range(alloc, lhs->lower() >> shift,
lhs->upper() >> shift);
}
Range* Range::ursh(TempAllocator& alloc, const Range* lhs, int32_t c) {
// ursh's left operand is uint32, not int32, but for range analysis we
// currently approximate it as int32. We assume here that the range has
// already been adjusted accordingly by our callers.
MOZ_ASSERT(lhs->isInt32());
int32_t shift = c & 0x1f;
// If the value is always non-negative or always negative, we can simply
// compute the correct range by shifting.
if (lhs->isFiniteNonNegative() || lhs->isFiniteNegative()) {
return Range::NewUInt32Range(alloc, uint32_t(lhs->lower()) >> shift,
uint32_t(lhs->upper()) >> shift);
}
// Otherwise return the most general range after the shift.
return Range::NewUInt32Range(alloc, 0, UINT32_MAX >> shift);
}
Range* Range::lsh(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
return Range::NewInt32Range(alloc, INT32_MIN, INT32_MAX);
}
Range* Range::rsh(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
// Canonicalize the shift range to 0 to 31.
int32_t shiftLower = rhs->lower();
int32_t shiftUpper = rhs->upper();
if ((int64_t(shiftUpper) - int64_t(shiftLower)) >= 31) {
shiftLower = 0;
shiftUpper = 31;
} else {
shiftLower &= 0x1f;
shiftUpper &= 0x1f;
if (shiftLower > shiftUpper) {
shiftLower = 0;
shiftUpper = 31;
}
}
MOZ_ASSERT(shiftLower >= 0 && shiftUpper <= 31);
// The lhs bounds are signed, thus the minimum is either the lower bound
// shift by the smallest shift if negative or the lower bound shifted by the
// biggest shift otherwise. And the opposite for the maximum.
int32_t lhsLower = lhs->lower();
int32_t min = lhsLower < 0 ? lhsLower >> shiftLower : lhsLower >> shiftUpper;
int32_t lhsUpper = lhs->upper();
int32_t max = lhsUpper >= 0 ? lhsUpper >> shiftLower : lhsUpper >> shiftUpper;
return Range::NewInt32Range(alloc, min, max);
}
Range* Range::ursh(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
// ursh's left operand is uint32, not int32, but for range analysis we
// currently approximate it as int32. We assume here that the range has
// already been adjusted accordingly by our callers.
MOZ_ASSERT(lhs->isInt32());
MOZ_ASSERT(rhs->isInt32());
return Range::NewUInt32Range(
alloc, 0, lhs->isFiniteNonNegative() ? lhs->upper() : UINT32_MAX);
}
Range* Range::abs(TempAllocator& alloc, const Range* op) {
int32_t l = op->lower_;
int32_t u = op->upper_;
FractionalPartFlag canHaveFractionalPart = op->canHaveFractionalPart_;
// Abs never produces a negative zero.
NegativeZeroFlag canBeNegativeZero = ExcludesNegativeZero;
return new (alloc) Range(
std::max(std::max(int32_t(0), l), u == INT32_MIN ? INT32_MAX : -u), true,
std::max(std::max(int32_t(0), u), l == INT32_MIN ? INT32_MAX : -l),
op->hasInt32Bounds() && l != INT32_MIN, canHaveFractionalPart,
canBeNegativeZero, op->max_exponent_);
}
Range* Range::min(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
// If either operand is NaN, the result is NaN.
if (lhs->canBeNaN() || rhs->canBeNaN()) {
return nullptr;
}
FractionalPartFlag newCanHaveFractionalPart = FractionalPartFlag(
lhs->canHaveFractionalPart_ || rhs->canHaveFractionalPart_);
NegativeZeroFlag newMayIncludeNegativeZero =
NegativeZeroFlag(lhs->canBeNegativeZero_ || rhs->canBeNegativeZero_);
return new (alloc) Range(std::min(lhs->lower_, rhs->lower_),
lhs->hasInt32LowerBound_ && rhs->hasInt32LowerBound_,
std::min(lhs->upper_, rhs->upper_),
lhs->hasInt32UpperBound_ || rhs->hasInt32UpperBound_,
newCanHaveFractionalPart, newMayIncludeNegativeZero,
std::max(lhs->max_exponent_, rhs->max_exponent_));
}
Range* Range::max(TempAllocator& alloc, const Range* lhs, const Range* rhs) {
// If either operand is NaN, the result is NaN.
if (lhs->canBeNaN() || rhs->canBeNaN()) {
return nullptr;
}
FractionalPartFlag newCanHaveFractionalPart = FractionalPartFlag(
lhs->canHaveFractionalPart_ || rhs->canHaveFractionalPart_);
NegativeZeroFlag newMayIncludeNegativeZero =
NegativeZeroFlag(lhs->canBeNegativeZero_ || rhs->canBeNegativeZero_);
return new (alloc) Range(std::max(lhs->lower_, rhs->lower_),
lhs->hasInt32LowerBound_ || rhs->hasInt32LowerBound_,
std::max(lhs->upper_, rhs->upper_),
lhs->hasInt32UpperBound_ && rhs->hasInt32UpperBound_,
newCanHaveFractionalPart, newMayIncludeNegativeZero,
std::max(lhs->max_exponent_, rhs->max_exponent_));
}
Range* Range::floor(TempAllocator& alloc, const Range* op) {
Range* copy = new (alloc) Range(*op);
// Decrement lower bound of copy range if op have a factional part and lower
// bound is Int32 defined. Also we avoid to decrement when op have a
// fractional part but lower_ >= JSVAL_INT_MAX.
if (op->canHaveFractionalPart() && op->hasInt32LowerBound()) {
copy->setLowerInit(int64_t(copy->lower_) - 1);
}
// Also refine max_exponent_ because floor may have decremented int value
// If we've got int32 defined bounds, just deduce it using defined bounds.
// But, if we don't have those, value's max_exponent_ may have changed.
// Because we're looking to maintain an over estimation, if we can,
// we increment it.
if (copy->hasInt32Bounds())
copy->max_exponent_ = copy->exponentImpliedByInt32Bounds();
else if (copy->max_exponent_ < MaxFiniteExponent)
copy->max_exponent_++;
copy->canHaveFractionalPart_ = ExcludesFractionalParts;
copy->assertInvariants();
return copy;
}
Range* Range::ceil(TempAllocator& alloc, const Range* op) {
Range* copy = new (alloc) Range(*op);
// We need to refine max_exponent_ because ceil may have incremented the int
// value. If we have got int32 bounds defined, just deduce it using the
// defined bounds. Else we can just increment its value, as we are looking to
// maintain an over estimation.
if (copy->hasInt32Bounds()) {
copy->max_exponent_ = copy->exponentImpliedByInt32Bounds();
} else if (copy->max_exponent_ < MaxFiniteExponent) {
copy->max_exponent_++;
}
// If the range is definitely above 0 or below -1, we don't need to include
// -0; otherwise we do.
copy->canBeNegativeZero_ = ((copy->lower_ > 0) || (copy->upper_ <= -1))
? copy->canBeNegativeZero_
: IncludesNegativeZero;
copy->canHaveFractionalPart_ = ExcludesFractionalParts;
copy->assertInvariants();
return copy;
}
Range* Range::sign(TempAllocator& alloc, const Range* op) {
if (op->canBeNaN()) {
return nullptr;
}
return new (alloc)
Range(std::clamp(op->lower_, -1, 1), std::clamp(op->upper_, -1, 1),
Range::ExcludesFractionalParts,
NegativeZeroFlag(op->canBeNegativeZero()), 0);
}
Range* Range::NaNToZero(TempAllocator& alloc, const Range* op) {
Range* copy = new (alloc) Range(*op);
if (copy->canBeNaN()) {
copy->max_exponent_ = Range::IncludesInfinity;
if (!copy->canBeZero()) {
Range zero;
zero.setDoubleSingleton(0);
copy->unionWith(&zero);
}
}
copy->refineToExcludeNegativeZero();
return copy;
}
bool Range::negativeZeroMul(const Range* lhs, const Range* rhs) {
// The result can only be negative zero if both sides are finite and they
// have differing signs.
return (lhs->canHaveSignBitSet() && rhs->canBeFiniteNonNegative()) ||
(rhs->canHaveSignBitSet() && lhs->canBeFiniteNonNegative());
}
bool Range::update(const Range* other) {
bool changed = lower_ != other->lower_ ||
hasInt32LowerBound_ != other->hasInt32LowerBound_ ||
upper_ != other->upper_ ||
hasInt32UpperBound_ != other->hasInt32UpperBound_ ||
canHaveFractionalPart_ != other->canHaveFractionalPart_ ||
canBeNegativeZero_ != other->canBeNegativeZero_ ||
max_exponent_ != other->max_exponent_;
if (changed) {
lower_ = other->lower_;
hasInt32LowerBound_ = other->hasInt32LowerBound_;
upper_ = other->upper_;
hasInt32UpperBound_ = other->hasInt32UpperBound_;
canHaveFractionalPart_ = other->canHaveFractionalPart_;
canBeNegativeZero_ = other->canBeNegativeZero_;
max_exponent_ = other->max_exponent_;
assertInvariants();
}
return changed;
}
///////////////////////////////////////////////////////////////////////////////
// Range Computation for MIR Nodes
///////////////////////////////////////////////////////////////////////////////
void MPhi::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range* range = nullptr;
for (size_t i = 0, e = numOperands(); i < e; i++) {
if (getOperand(i)->block()->unreachable()) {
JitSpew(JitSpew_Range, "Ignoring unreachable input %u",
getOperand(i)->id());
continue;
}
// Peek at the pre-bailout range so we can take a short-cut; if any of
// the operands has an unknown range, this phi has an unknown range.
if (!getOperand(i)->range()) {
return;
}
Range input(getOperand(i));
if (range) {
range->unionWith(&input);
} else {
range = new (alloc) Range(input);
}
}
setRange(range);
}
void MBeta::computeRange(TempAllocator& alloc) {
bool emptyRange = false;
Range opRange(getOperand(0));
Range* range = Range::intersect(alloc, &opRange, comparison_, &emptyRange);
if (emptyRange) {
JitSpew(JitSpew_Range, "Marking block for inst %u unreachable", id());
block()->setUnreachableUnchecked();
} else {
setRange(range);
}
}
void MConstant::computeRange(TempAllocator& alloc) {
if (isTypeRepresentableAsDouble()) {
double d = numberToDouble();
setRange(Range::NewDoubleSingletonRange(alloc, d));
} else if (type() == MIRType::Boolean) {
bool b = toBoolean();
setRange(Range::NewInt32Range(alloc, b, b));
}
}
void MCharCodeAt::computeRange(TempAllocator& alloc) {
// ECMA 262 says that the integer will be non-negative and at most 65535.
setRange(Range::NewInt32Range(alloc, 0, unicode::UTF16Max));
}
void MCodePointAt::computeRange(TempAllocator& alloc) {
setRange(Range::NewInt32Range(alloc, 0, unicode::NonBMPMax));
}
void MClampToUint8::computeRange(TempAllocator& alloc) {
setRange(Range::NewUInt32Range(alloc, 0, 255));
}
void MBitAnd::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
left.wrapAroundToInt32();
right.wrapAroundToInt32();
setRange(Range::and_(alloc, &left, &right));
}
void MBitOr::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
left.wrapAroundToInt32();
right.wrapAroundToInt32();
setRange(Range::or_(alloc, &left, &right));
}
void MBitXor::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
left.wrapAroundToInt32();
right.wrapAroundToInt32();
setRange(Range::xor_(alloc, &left, &right));
}
void MBitNot::computeRange(TempAllocator& alloc) {
if (type() == MIRType::Int64) {
return;
}
MOZ_ASSERT(type() == MIRType::Int32);
Range op(getOperand(0));
op.wrapAroundToInt32();
setRange(Range::not_(alloc, &op));
}
void MLsh::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
left.wrapAroundToInt32();
MConstant* rhsConst = getOperand(1)->maybeConstantValue();
if (rhsConst && rhsConst->type() == MIRType::Int32) {
int32_t c = rhsConst->toInt32();
setRange(Range::lsh(alloc, &left, c));
return;
}
right.wrapAroundToShiftCount();
setRange(Range::lsh(alloc, &left, &right));
}
void MRsh::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
left.wrapAroundToInt32();
MConstant* rhsConst = getOperand(1)->maybeConstantValue();
if (rhsConst && rhsConst->type() == MIRType::Int32) {
int32_t c = rhsConst->toInt32();
setRange(Range::rsh(alloc, &left, c));
return;
}
right.wrapAroundToShiftCount();
setRange(Range::rsh(alloc, &left, &right));
}
void MUrsh::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
// ursh can be thought of as converting its left operand to uint32, or it
// can be thought of as converting its left operand to int32, and then
// reinterpreting the int32 bits as a uint32 value. Both approaches yield
// the same result. Since we lack support for full uint32 ranges, we use
// the second interpretation, though it does cause us to be conservative.
left.wrapAroundToInt32();
right.wrapAroundToShiftCount();
MConstant* rhsConst = getOperand(1)->maybeConstantValue();
if (rhsConst && rhsConst->type() == MIRType::Int32) {
int32_t c = rhsConst->toInt32();
setRange(Range::ursh(alloc, &left, c));
} else {
setRange(Range::ursh(alloc, &left, &right));
}
MOZ_ASSERT(range()->lower() >= 0);
}
void MAbs::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range other(getOperand(0));
Range* next = Range::abs(alloc, &other);
if (implicitTruncate_) {
next->wrapAroundToInt32();
}
setRange(next);
}
void MFloor::computeRange(TempAllocator& alloc) {
Range other(getOperand(0));
setRange(Range::floor(alloc, &other));
}
void MCeil::computeRange(TempAllocator& alloc) {
Range other(getOperand(0));
setRange(Range::ceil(alloc, &other));
}
void MClz::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
setRange(Range::NewUInt32Range(alloc, 0, 32));
}
void MCtz::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
setRange(Range::NewUInt32Range(alloc, 0, 32));
}
void MPopcnt::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32) {
return;
}
setRange(Range::NewUInt32Range(alloc, 0, 32));
}
void MMinMax::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
setRange(isMax() ? Range::max(alloc, &left, &right)
: Range::min(alloc, &left, &right));
}
void MAdd::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
Range* next = Range::add(alloc, &left, &right);
if (isTruncated()) {
next->wrapAroundToInt32();
}
setRange(next);
}
void MSub::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
Range* next = Range::sub(alloc, &left, &right);
if (isTruncated()) {
next->wrapAroundToInt32();
}
setRange(next);
}
void MMul::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range left(getOperand(0));
Range right(getOperand(1));
if (canBeNegativeZero()) {
canBeNegativeZero_ = Range::negativeZeroMul(&left, &right);
}
Range* next = Range::mul(alloc, &left, &right);
if (!next->canBeNegativeZero()) {
canBeNegativeZero_ = false;
}
// Truncated multiplications could overflow in both directions
if (isTruncated()) {
next->wrapAroundToInt32();
}
setRange(next);
}
void MMod::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range lhs(getOperand(0));
Range rhs(getOperand(1));
// If either operand is a NaN, the result is NaN. This also conservatively
// handles Infinity cases.
if (!lhs.hasInt32Bounds() || !rhs.hasInt32Bounds()) {
return;
}
// If RHS can be zero, the result can be NaN.
if (rhs.lower() <= 0 && rhs.upper() >= 0) {
return;
}
// If both operands are non-negative integers, we can optimize this to an
// unsigned mod.
if (type() == MIRType::Int32 && rhs.lower() > 0) {
bool hasDoubles = lhs.lower() < 0 || lhs.canHaveFractionalPart() ||
rhs.canHaveFractionalPart();
// It is not possible to check that lhs.lower() >= 0, since the range
// of a ursh with rhs a 0 constant is wrapped around the int32 range in
// Range::Range(). However, IsUint32Type() will only return true for
// nodes that lie in the range [0, UINT32_MAX].
bool hasUint32s =
IsUint32Type(getOperand(0)) &&
getOperand(1)->type() == MIRType::Int32 &&
(IsUint32Type(getOperand(1)) || getOperand(1)->isConstant());
if (!hasDoubles || hasUint32s) {
unsigned_ = true;
}
}
// For unsigned mod, we have to convert both operands to unsigned.
// Note that we handled the case of a zero rhs above.
if (unsigned_) {
// The result of an unsigned mod will never be unsigned-greater than
// either operand.
uint32_t lhsBound = std::max<uint32_t>(lhs.lower(), lhs.upper());
uint32_t rhsBound = std::max<uint32_t>(rhs.lower(), rhs.upper());
// If either range crosses through -1 as a signed value, it could be
// the maximum unsigned value when interpreted as unsigned. If the range
// doesn't include -1, then the simple max value we computed above is
// correct.
if (lhs.lower() <= -1 && lhs.upper() >= -1) {
lhsBound = UINT32_MAX;
}
if (rhs.lower() <= -1 && rhs.upper() >= -1) {
rhsBound = UINT32_MAX;
}
// The result will never be equal to the rhs, and we shouldn't have
// any rounding to worry about.
MOZ_ASSERT(!lhs.canHaveFractionalPart() && !rhs.canHaveFractionalPart());
--rhsBound;
// This gives us two upper bounds, so we can take the best one.
setRange(Range::NewUInt32Range(alloc, 0, std::min(lhsBound, rhsBound)));
return;
}
// Math.abs(lhs % rhs) == Math.abs(lhs) % Math.abs(rhs).
// First, the absolute value of the result will always be less than the
// absolute value of rhs. (And if rhs is zero, the result is NaN).
int64_t a = Abs<int64_t>(rhs.lower());
int64_t b = Abs<int64_t>(rhs.upper());
if (a == 0 && b == 0) {
return;
}
int64_t rhsAbsBound = std::max(a, b);
// If the value is known to be integer, less-than abs(rhs) is equivalent
// to less-than-or-equal abs(rhs)-1. This is important for being able to
// say that the result of x%256 is an 8-bit unsigned number.
if (!lhs.canHaveFractionalPart() && !rhs.canHaveFractionalPart()) {
--rhsAbsBound;
}
// Next, the absolute value of the result will never be greater than the
// absolute value of lhs.
int64_t lhsAbsBound =
std::max(Abs<int64_t>(lhs.lower()), Abs<int64_t>(lhs.upper()));
// This gives us two upper bounds, so we can take the best one.
int64_t absBound = std::min(lhsAbsBound, rhsAbsBound);
// Now consider the sign of the result.
// If lhs is non-negative, the result will be non-negative.
// If lhs is non-positive, the result will be non-positive.
int64_t lower = lhs.lower() >= 0 ? 0 : -absBound;
int64_t upper = lhs.upper() <= 0 ? 0 : absBound;
Range::FractionalPartFlag newCanHaveFractionalPart =
Range::FractionalPartFlag(lhs.canHaveFractionalPart() ||
rhs.canHaveFractionalPart());
// If the lhs can have the sign bit set and we can return a zero, it'll be a
// negative zero.
Range::NegativeZeroFlag newMayIncludeNegativeZero =
Range::NegativeZeroFlag(lhs.canHaveSignBitSet());
setRange(new (alloc) Range(lower, upper, newCanHaveFractionalPart,
newMayIncludeNegativeZero,
std::min(lhs.exponent(), rhs.exponent())));
}
void MDiv::computeRange(TempAllocator& alloc) {
if (type() != MIRType::Int32 && type() != MIRType::Double) {
return;
}
Range lhs(getOperand(0));
Range rhs(getOperand(1));
// If either operand is a NaN, the result is NaN. This also conservatively
// handles Infinity cases.
if (!lhs.hasInt32Bounds() || !rhs.hasInt32Bounds()) {
return;
}
// Something simple for now: When dividing by a positive rhs, the result
// won't be further from zero than lhs.
if (lhs.lower() >= 0 && rhs.lower() >= 1) {
setRange(new (alloc) Range(0, lhs.upper(), Range::IncludesFractionalParts,
Range::IncludesNegativeZero, lhs.exponent()));
} else if (unsigned_ && rhs.lower() >= 1) {
// We shouldn't set the unsigned flag if the inputs can have
// fractional parts.
MOZ_ASSERT(!lhs.canHaveFractionalPart() && !rhs.canHaveFractionalPart());
// We shouldn't set the unsigned flag if the inputs can be
// negative zero.
MOZ_ASSERT(!lhs.canBeNegativeZero() && !rhs.canBeNegativeZero());
// Unsigned division by a non-zero rhs will return a uint32 value.
setRange(Range::NewUInt32Range(alloc, 0, UINT32_MAX));
}
}
void MSqrt::computeRange(TempAllocator& alloc) {
Range input(getOperand(0));
// If either operand is a NaN, the result is NaN. This also conservatively
// handles Infinity cases.
if (!input.hasInt32Bounds()) {
return;
}
// Sqrt of a negative non-zero value is NaN.
if (input.lower() < 0) {
return;
}
// Something simple for now: When taking the sqrt of a positive value, the
// result won't be further from zero than the input.
// And, sqrt of an integer may have a fractional part.
setRange(new (alloc) Range(0, input.upper(), Range::IncludesFractionalParts,
input.canBeNegativeZero(), input.exponent()));
}
void MToDouble::computeRange(TempAllocator& alloc) {
setRange(new (alloc) Range(getOperand(0)));
}
void MToFloat32::computeRange(TempAllocator& alloc) {}
void MTruncateToInt32::computeRange(TempAllocator& alloc) {
Range* output = new (alloc) Range(getOperand(0));
output->wrapAroundToInt32();
setRange(output);
}
void MToNumberInt32::computeRange(TempAllocator& alloc) {
// No clamping since this computes the range *before* bailouts.
setRange(new (alloc) Range(getOperand(0)));
}
void MBooleanToInt32::computeRange(TempAllocator& alloc) {
setRange(Range::NewUInt32Range(alloc, 0, 1));
}
void MLimitedTruncate::computeRange(TempAllocator& alloc) {
Range* output = new (alloc) Range(input());
setRange(output);
}
static Range* GetArrayBufferViewRange(TempAllocator& alloc, Scalar::Type type) {
switch (type) {
case Scalar::Uint8Clamped:
case Scalar::Uint8:
return Range::NewUInt32Range(alloc, 0, UINT8_MAX);
case Scalar::Uint16:
return Range::NewUInt32Range(alloc, 0, UINT16_MAX);
case Scalar::Uint32:
return Range::NewUInt32Range(alloc, 0, UINT32_MAX);
case Scalar::Int8:
return Range::NewInt32Range(alloc, INT8_MIN, INT8_MAX);
case Scalar::Int16:
return Range::NewInt32Range(alloc, INT16_MIN, INT16_MAX);
case Scalar::Int32:
return Range::NewInt32Range(alloc, INT32_MIN, INT32_MAX);
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::Int64:
case Scalar::Simd128:
case Scalar::Float16:
case Scalar::Float32:
case Scalar::Float64:
case Scalar::MaxTypedArrayViewType:
break;
}
return nullptr;
}
void MLoadUnboxedScalar::computeRange(TempAllocator& alloc) {
// We have an Int32 type and if this is a UInt32 load it may produce a value
// outside of our range, but we have a bailout to handle those cases.
setRange(GetArrayBufferViewRange(alloc, storageType()));
}
void MLoadDataViewElement::computeRange(TempAllocator& alloc) {
// We have an Int32 type and if this is a UInt32 load it may produce a value
// outside of our range, but we have a bailout to handle those cases.
setRange(GetArrayBufferViewRange(alloc, storageType()));
}
void MArrayLength::computeRange(TempAllocator& alloc) {
// Array lengths can go up to UINT32_MAX. We will bail out if the array
// length > INT32_MAX.
MOZ_ASSERT(type() == MIRType::Int32);
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
void MInitializedLength::computeRange(TempAllocator& alloc) {
setRange(
Range::NewUInt32Range(alloc, 0, NativeObject::MAX_DENSE_ELEMENTS_COUNT));
}
void MArrayBufferViewLength::computeRange(TempAllocator& alloc) {
if constexpr (ArrayBufferObject::ByteLengthLimit <= INT32_MAX) {
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
}
void MArrayBufferViewByteOffset::computeRange(TempAllocator& alloc) {
if constexpr (ArrayBufferObject::ByteLengthLimit <= INT32_MAX) {
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
}
void MResizableTypedArrayByteOffsetMaybeOutOfBounds::computeRange(
TempAllocator& alloc) {
if constexpr (ArrayBufferObject::ByteLengthLimit <= INT32_MAX) {
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
}
void MResizableTypedArrayLength::computeRange(TempAllocator& alloc) {
if constexpr (ArrayBufferObject::ByteLengthLimit <= INT32_MAX) {
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
}
void MResizableDataViewByteLength::computeRange(TempAllocator& alloc) {
if constexpr (ArrayBufferObject::ByteLengthLimit <= INT32_MAX) {
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
}
void MTypedArrayElementSize::computeRange(TempAllocator& alloc) {
constexpr auto MaxTypedArraySize = sizeof(double);
#define ASSERT_MAX_SIZE(_, T, N) \
static_assert(sizeof(T) <= MaxTypedArraySize, \
"unexpected typed array type exceeding 64-bits storage");
JS_FOR_EACH_TYPED_ARRAY(ASSERT_MAX_SIZE)
#undef ASSERT_MAX_SIZE
setRange(Range::NewUInt32Range(alloc, 0, MaxTypedArraySize));
}
void MStringLength::computeRange(TempAllocator& alloc) {
static_assert(JSString::MAX_LENGTH <= UINT32_MAX,
"NewUInt32Range requires a uint32 value");
setRange(Range::NewUInt32Range(alloc, 0, JSString::MAX_LENGTH));
}
void MArgumentsLength::computeRange(TempAllocator& alloc) {
// This is is a conservative upper bound on what |TooManyActualArguments|
// checks. If exceeded, Ion will not be entered in the first place.
static_assert(ARGS_LENGTH_MAX <= UINT32_MAX,
"NewUInt32Range requires a uint32 value");
setRange(Range::NewUInt32Range(alloc, 0, ARGS_LENGTH_MAX));
}
void MBoundsCheck::computeRange(TempAllocator& alloc) {
// Just transfer the incoming index range to the output. The length() is
// also interesting, but it is handled as a bailout check, and we're
// computing a pre-bailout range here.
setRange(new (alloc) Range(index()));
}
void MSpectreMaskIndex::computeRange(TempAllocator& alloc) {
// Just transfer the incoming index range to the output for now.
setRange(new (alloc) Range(index()));
}
void MInt32ToIntPtr::computeRange(TempAllocator& alloc) {
setRange(new (alloc) Range(input()));
}
void MNonNegativeIntPtrToInt32::computeRange(TempAllocator& alloc) {
// We will bail out if the IntPtr value > INT32_MAX.
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
void MArrayPush::computeRange(TempAllocator& alloc) {
// MArrayPush returns the new array length. It bails out if the new length
// doesn't fit in an Int32.
MOZ_ASSERT(type() == MIRType::Int32);
setRange(Range::NewUInt32Range(alloc, 0, INT32_MAX));
}
void MMathFunction::computeRange(TempAllocator& alloc) {
Range opRange(getOperand(0));
switch (function()) {
case UnaryMathFunction::SinNative:
case UnaryMathFunction::SinFdlibm:
case UnaryMathFunction::CosNative:
case UnaryMathFunction::CosFdlibm:
if (!opRange.canBeInfiniteOrNaN()) {
setRange(Range::NewDoubleRange(alloc, -1.0, 1.0));
}
break;
default:
break;
}
}
void MSign::computeRange(TempAllocator& alloc) {
Range opRange(getOperand(0));
setRange(Range::sign(alloc, &opRange));
}
void MRandom::computeRange(TempAllocator& alloc) {
Range* r = Range::NewDoubleRange(alloc, 0.0, 1.0);
// Random never returns negative zero.
r->refineToExcludeNegativeZero();
setRange(r);
}
void MNaNToZero::computeRange(TempAllocator& alloc) {
Range other(input());
setRange(Range::NaNToZero(alloc, &other));
}
///////////////////////////////////////////////////////////////////////////////
// Range Analysis
///////////////////////////////////////////////////////////////////////////////
static BranchDirection NegateBranchDirection(BranchDirection dir) {
return (dir == FALSE_BRANCH) ? TRUE_BRANCH : FALSE_BRANCH;
}
bool RangeAnalysis::analyzeLoop(const MBasicBlock* header) {
MOZ_ASSERT(header->hasUniqueBackedge());
// Try to compute an upper bound on the number of times the loop backedge
// will be taken. Look for tests that dominate the backedge and which have
// an edge leaving the loop body.
MBasicBlock* backedge = header->backedge();
// Ignore trivial infinite loops.
if (backedge == header) {
return true;
}
bool canOsr;
size_t numBlocks = MarkLoopBlocks(graph_, header, &canOsr);
// Ignore broken loops.
if (numBlocks == 0) {
return true;
}
LoopIterationBound* iterationBound = nullptr;
MBasicBlock* block = backedge;
do {
BranchDirection direction;
MTest* branch = block->immediateDominatorBranch(&direction);
if (block == block->immediateDominator()) {
break;
}
block = block->immediateDominator();
if (branch) {
direction = NegateBranchDirection(direction);
MBasicBlock* otherBlock = branch->branchSuccessor(direction);
if (!otherBlock->isMarked()) {
if (!alloc().ensureBallast()) {
return false;
}
iterationBound = analyzeLoopIterationCount(header, branch, direction);
if (iterationBound) {
break;
}
}
}
} while (block != header);
if (!iterationBound) {
UnmarkLoopBlocks(graph_, header);
return true;
}
if (!loopIterationBounds.append(iterationBound)) {
return false;
}
#ifdef DEBUG
if (JitSpewEnabled(JitSpew_Range)) {
Sprinter sp(GetJitContext()->cx);
if (!sp.init()) {
return false;
}
iterationBound->boundSum.dump(sp);
JS::UniqueChars str = sp.release();
if (!str) {
return false;
}
JitSpew(JitSpew_Range, "computed symbolic bound on backedges: %s",
str.get());
}
#endif
// Try to compute symbolic bounds for the phi nodes at the head of this
// loop, expressed in terms of the iteration bound just computed.
for (MPhiIterator iter(header->phisBegin()); iter != header->phisEnd();
iter++) {
analyzeLoopPhi(iterationBound, *iter);
}
if (!mir->compilingWasm() && !mir->outerInfo().hadBoundsCheckBailout()) {
// Try to hoist any bounds checks from the loop using symbolic bounds.
Vector<MBoundsCheck*, 0, JitAllocPolicy> hoistedChecks(alloc());
for (ReversePostorderIterator iter(graph_.rpoBegin(header));
iter != graph_.rpoEnd(); iter++) {
MBasicBlock* block = *iter;
if (!block->isMarked()) {
continue;
}
for (MDefinitionIterator iter(block); iter; iter++) {
MDefinition* def = *iter;
if (def->isBoundsCheck() && def->isMovable()) {
if (!alloc().ensureBallast()) {
return false;
}
if (tryHoistBoundsCheck(header, def->toBoundsCheck())) {
if (!hoistedChecks.append(def->toBoundsCheck())) {
return false;
}
}
}
}
}
// Note: replace all uses of the original bounds check with the
// actual index. This is usually done during bounds check elimination,
// but in this case it's safe to do it here since the load/store is
// definitely not loop-invariant, so we will never move it before
// one of the bounds checks we just added.
for (size_t i = 0; i < hoistedChecks.length(); i++) {
MBoundsCheck* ins = hoistedChecks[i];
ins->replaceAllUsesWith(ins->index());
ins->block()->discard(ins);
}
}
UnmarkLoopBlocks(graph_, header);
return true;
}
// Unbox beta nodes in order to hoist instruction properly, and not be limited
// by the beta nodes which are added after each branch.
static inline MDefinition* DefinitionOrBetaInputDefinition(MDefinition* ins) {
while (ins->isBeta()) {
ins = ins->toBeta()->input();
}
return ins;
}
LoopIterationBound* RangeAnalysis::analyzeLoopIterationCount(
const MBasicBlock* header, const MTest* test, BranchDirection direction) {
SimpleLinearSum lhs(nullptr, 0);
MDefinition* rhs;
bool lessEqual;
if (!ExtractLinearInequality(test, direction, &lhs, &rhs, &lessEqual)) {
return nullptr;
}
// Ensure the rhs is a loop invariant term.
if (rhs && rhs->block()->isMarked()) {
if (lhs.term && lhs.term->block()->isMarked()) {
return nullptr;
}
MDefinition* temp = lhs.term;
lhs.term = rhs;
rhs = temp;
if (!SafeSub(0, lhs.constant, &lhs.constant)) {
return nullptr;
}
lessEqual = !lessEqual;
}
MOZ_ASSERT_IF(rhs, !rhs->block()->isMarked());
// Ensure the lhs is a phi node from the start of the loop body.
if (!lhs.term || !lhs.term->isPhi() || lhs.term->block() != header) {
return nullptr;
}
// Check that the value of the lhs changes by a constant amount with each
// loop iteration. This requires that the lhs be written in every loop
// iteration with a value that is a constant difference from its value at
// the start of the iteration.
if (lhs.term->toPhi()->numOperands() != 2) {
return nullptr;
}
// The first operand of the phi should be the lhs' value at the start of
// the first executed iteration, and not a value written which could
// replace the second operand below during the middle of execution.
MDefinition* lhsInitial = lhs.term->toPhi()->getLoopPredecessorOperand();
if (lhsInitial->block()->isMarked()) {
return nullptr;
}
// The second operand of the phi should be a value written by an add/sub
// in every loop iteration, i.e. in a block which dominates the backedge.
MDefinition* lhsWrite = DefinitionOrBetaInputDefinition(
lhs.term->toPhi()->getLoopBackedgeOperand());
if (!lhsWrite->isAdd() && !lhsWrite->isSub()) {
return nullptr;
}
if (!lhsWrite->block()->isMarked()) {
return nullptr;
}
MBasicBlock* bb = header->backedge();
for (; bb != lhsWrite->block() && bb != header;
bb = bb->immediateDominator()) {
}
if (bb != lhsWrite->block()) {
return nullptr;
}
SimpleLinearSum lhsModified = ExtractLinearSum(lhsWrite);
// Check that the value of the lhs at the backedge is of the form
// 'old(lhs) + N'. We can be sure that old(lhs) is the value at the start
// of the iteration, and not that written to lhs in a previous iteration,
// as such a previous value could not appear directly in the addition:
// it could not be stored in lhs as the lhs add/sub executes in every
// iteration, and if it were stored in another variable its use here would
// be as an operand to a phi node for that variable.
if (lhsModified.term != lhs.term) {
return nullptr;
}
LinearSum iterationBound(alloc());
if (lhsModified.constant == 1 && !lessEqual) {
// The value of lhs is 'initial(lhs) + iterCount' and this will end
// execution of the loop if 'lhs + lhsN >= rhs'. Thus, an upper bound
// on the number of backedges executed is:
//
// initial(lhs) + iterCount + lhsN == rhs
// iterCount == rhsN - initial(lhs) - lhsN
if (rhs) {
if (!iterationBound.add(rhs, 1)) {
return nullptr;
}
}
if (!iterationBound.add(lhsInitial, -1)) {
return nullptr;
}
int32_t lhsConstant;
if (!SafeSub(0, lhs.constant, &lhsConstant)) {
return nullptr;
}
if (!iterationBound.add(lhsConstant)) {
return nullptr;
}
} else if (lhsModified.constant == -1 && lessEqual) {
// The value of lhs is 'initial(lhs) - iterCount'. Similar to the above
// case, an upper bound on the number of backedges executed is:
//
// initial(lhs) - iterCount + lhsN == rhs
// iterCount == initial(lhs) - rhs + lhsN
if (!iterationBound.add(lhsInitial, 1)) {
return nullptr;
}
if (rhs) {
if (!iterationBound.add(rhs, -1)) {
return nullptr;
}
}
if (!iterationBound.add(lhs.constant)) {
return nullptr;
}
} else {
return nullptr;
}
return new (alloc()) LoopIterationBound(test, iterationBound);
}
void RangeAnalysis::analyzeLoopPhi(const LoopIterationBound* loopBound,
MPhi* phi) {
// Given a bound on the number of backedges taken, compute an upper and
// lower bound for a phi node that may change by a constant amount each
// iteration. Unlike for the case when computing the iteration bound
// itself, the phi does not need to change the same amount every iteration,
// but is required to change at most N and be either nondecreasing or
// nonincreasing.
MOZ_ASSERT(phi->numOperands() == 2);
MDefinition* initial = phi->getLoopPredecessorOperand();
if (initial->block()->isMarked()) {
return;
}
SimpleLinearSum modified =
ExtractLinearSum(phi->getLoopBackedgeOperand(), MathSpace::Infinite);
if (modified.term != phi || modified.constant == 0) {
return;
}
if (!phi->range()) {
phi->setRange(new (alloc()) Range(phi));
}
LinearSum initialSum(alloc());
if (!initialSum.add(initial, 1)) {
return;
}
// The phi may change by N each iteration, and is either nondecreasing or
// nonincreasing. initial(phi) is either a lower or upper bound for the
// phi, and initial(phi) + loopBound * N is either an upper or lower bound,
// at all points within the loop, provided that loopBound >= 0.
//
// We are more interested, however, in the bound for phi at points
// dominated by the loop bound's test; if the test dominates e.g. a bounds
// check we want to hoist from the loop, using the value of the phi at the
// head of the loop for this will usually be too imprecise to hoist the
// check. These points will execute only if the backedge executes at least
// one more time (as the test passed and the test dominates the backedge),
// so we know both that loopBound >= 1 and that the phi's value has changed
// at most loopBound - 1 times. Thus, another upper or lower bound for the
// phi is initial(phi) + (loopBound - 1) * N, without requiring us to
// ensure that loopBound >= 0.
LinearSum limitSum(loopBound->boundSum);
if (!limitSum.multiply(modified.constant) || !limitSum.add(initialSum)) {
return;
}
int32_t negativeConstant;
if (!SafeSub(0, modified.constant, &negativeConstant) ||
!limitSum.add(negativeConstant)) {
return;
}
Range* initRange = initial->range();
if (modified.constant > 0) {
if (initRange && initRange->hasInt32LowerBound()) {
phi->range()->refineLower(initRange->lower());
}
phi->range()->setSymbolicLower(
SymbolicBound::New(alloc(), nullptr, initialSum));
phi->range()->setSymbolicUpper(
SymbolicBound::New(alloc(), loopBound, limitSum));
} else {
if (initRange && initRange->hasInt32UpperBound()) {
phi->range()->refineUpper(initRange->upper());
}
phi->range()->setSymbolicUpper(
SymbolicBound::New(alloc(), nullptr, initialSum));
phi->range()->setSymbolicLower(
SymbolicBound::New(alloc(), loopBound, limitSum));
}
JitSpew(JitSpew_Range, "added symbolic range on %u", phi->id());
SpewRange(phi);
}
// Whether bound is valid at the specified bounds check instruction in a loop,
// and may be used to hoist ins.
static inline bool SymbolicBoundIsValid(const MBasicBlock* header,
const MBoundsCheck* ins,
const SymbolicBound* bound) {
if (!bound->loop) {
return true;
}
if (ins->block() == header) {
return false;
}
MBasicBlock* bb = ins->block()->immediateDominator();
while (bb != header && bb != bound->loop->test->block()) {
bb = bb->immediateDominator();
}
return bb == bound->loop->test->block();
}
bool RangeAnalysis::tryHoistBoundsCheck(const MBasicBlock* header,
const MBoundsCheck* ins) {
// The bounds check's length must be loop invariant or a constant.
MDefinition* length = DefinitionOrBetaInputDefinition(ins->length());
if (length->block()->isMarked() && !length->isConstant()) {
return false;
}
// The bounds check's index should not be loop invariant (else we would
// already have hoisted it during LICM).
SimpleLinearSum index = ExtractLinearSum(ins->index());
if (!index.term || !index.term->block()->isMarked()) {
return false;
}
// Check for a symbolic lower and upper bound on the index. If either
// condition depends on an iteration bound for the loop, only hoist if
// the bounds check is dominated by the iteration bound's test.
if (!index.term->range()) {
return false;
}
const SymbolicBound* lower = index.term->range()->symbolicLower();
if (!lower || !SymbolicBoundIsValid(header, ins, lower)) {
return false;
}
const SymbolicBound* upper = index.term->range()->symbolicUpper();
if (!upper || !SymbolicBoundIsValid(header, ins, upper)) {
return false;
}
MBasicBlock* preLoop = header->loopPredecessor();
MOZ_ASSERT(!preLoop->isMarked());
MDefinition* lowerTerm = ConvertLinearSum(alloc(), preLoop, lower->sum,
BailoutKind::HoistBoundsCheck);
if (!lowerTerm) {
return false;
}
MDefinition* upperTerm = ConvertLinearSum(alloc(), preLoop, upper->sum,
BailoutKind::HoistBoundsCheck);
if (!upperTerm) {
return false;
}
// We are checking that index + indexConstant >= 0, and know that
// index >= lowerTerm + lowerConstant. Thus, check that:
//
// lowerTerm + lowerConstant + indexConstant >= 0
// lowerTerm >= -lowerConstant - indexConstant
int32_t lowerConstant = 0;
if (!SafeSub(lowerConstant, index.constant, &lowerConstant)) {
return false;
}
if (!SafeSub(lowerConstant, lower->sum.constant(), &lowerConstant)) {
return false;
}
// We are checking that index < boundsLength, and know that
// index <= upperTerm + upperConstant. Thus, check that:
//
// upperTerm + upperConstant < boundsLength
int32_t upperConstant = index.constant;
if (!SafeAdd(upper->sum.constant(), upperConstant, &upperConstant)) {
return false;
}
// Hoist the loop invariant lower bounds checks.
MBoundsCheckLower* lowerCheck = MBoundsCheckLower::New(alloc(), lowerTerm);
lowerCheck->setMinimum(lowerConstant);
lowerCheck->computeRange(alloc());
lowerCheck->collectRangeInfoPreTrunc();
lowerCheck->setBailoutKind(BailoutKind::HoistBoundsCheck);
preLoop->insertBefore(preLoop->lastIns(), lowerCheck);
// A common pattern for iterating over typed arrays is this:
//
// for (var i = 0; i < ta.length; i++) {
// use ta[i];
// }
//
// Here |upperTerm| (= ta.length) is a NonNegativeIntPtrToInt32 instruction.
// Unwrap this if |length| is also an IntPtr so that we don't add an
// unnecessary bounds check and Int32ToIntPtr below.
if (upperTerm->isNonNegativeIntPtrToInt32() &&
length->type() == MIRType::IntPtr) {
upperTerm = upperTerm->toNonNegativeIntPtrToInt32()->input();
}
// Hoist the loop invariant upper bounds checks.
if (upperTerm != length || upperConstant >= 0) {
// Hoist the bound check's length if it isn't already loop invariant.
if (length->block()->isMarked()) {
MOZ_ASSERT(length->isConstant());
MInstruction* lengthIns = length->toInstruction();
lengthIns->block()->moveBefore(preLoop->lastIns(), lengthIns);
}
// If the length is IntPtr, convert the upperTerm to that as well for the
// bounds check.
if (length->type() == MIRType::IntPtr &&
upperTerm->type() == MIRType::Int32) {
upperTerm = MInt32ToIntPtr::New(alloc(), upperTerm);
upperTerm->computeRange(alloc());
upperTerm->collectRangeInfoPreTrunc();
preLoop->insertBefore(preLoop->lastIns(), upperTerm->toInstruction());
}
MBoundsCheck* upperCheck = MBoundsCheck::New(alloc(), upperTerm, length);
upperCheck->setMinimum(upperConstant);
upperCheck->setMaximum(upperConstant);
upperCheck->computeRange(alloc());
upperCheck->collectRangeInfoPreTrunc();
upperCheck->setBailoutKind(BailoutKind::HoistBoundsCheck);
preLoop->insertBefore(preLoop->lastIns(), upperCheck);
}
return true;
}
bool RangeAnalysis::analyze() {
JitSpew(JitSpew_Range, "Doing range propagation");
for (ReversePostorderIterator iter(graph_.rpoBegin());
iter != graph_.rpoEnd(); iter++) {
MBasicBlock* block = *iter;
// No blocks are supposed to be unreachable, except when we have an OSR
// block, in which case the Value Numbering phase add fixup blocks which
// are unreachable.
MOZ_ASSERT(!block->unreachable() || graph_.osrBlock());
// If the block's immediate dominator is unreachable, the block is
// unreachable. Iterating in RPO, we'll always see the immediate
// dominator before the block.
if (block->immediateDominator()->unreachable()) {
block->setUnreachableUnchecked();
continue;
}
for (MDefinitionIterator iter(block); iter; iter++) {
MDefinition* def = *iter;
if (!alloc().ensureBallast()) {
return false;
}
def->computeRange(alloc());
JitSpew(JitSpew_Range, "computing range on %u", def->id());
SpewRange(def);
}
// Beta node range analysis may have marked this block unreachable. If
// so, it's no longer interesting to continue processing it.
if (block->unreachable()) {
continue;
}
if (block->isLoopHeader()) {
if (!analyzeLoop(block)) {
return false;
}
}
// First pass at collecting range info - while the beta nodes are still
// around and before truncation.
for (MInstructionIterator iter(block->begin()); iter != block->end();
iter++) {
iter->collectRangeInfoPreTrunc();
}
}
return true;
}
bool RangeAnalysis::addRangeAssertions() {
if (!JitOptions.checkRangeAnalysis) {
return true;
}
// Check the computed range for this instruction, if the option is set. Note
// that this code is quite invasive; it adds numerous additional
// instructions for each MInstruction with a computed range, and it uses
// registers, so it also affects register allocation.
for (ReversePostorderIterator iter(graph_.rpoBegin());
iter != graph_.rpoEnd(); iter++) {
MBasicBlock* block = *iter;
// Do not add assertions in unreachable blocks.
if (block->unreachable()) {
continue;
}
for (MDefinitionIterator iter(block); iter; iter++) {
MDefinition* ins = *iter;
// Perform range checking for all numeric and numeric-like types.
if (!IsNumberType(ins->type()) && ins->type() != MIRType::Boolean &&
ins->type() != MIRType::Value && ins->type() != MIRType::IntPtr) {
continue;
}
// MIsNoIter is fused with the MTest that follows it and emitted as
// LIsNoIterAndBranch. Similarly, MIteratorHasIndices is fused to
// become LIteratorHasIndicesAndBranch. Skip them to avoid complicating
// lowering.
if (ins->isIsNoIter() || ins->isIteratorHasIndices()) {
MOZ_ASSERT(ins->hasOneUse());
continue;
}
Range r(ins);
MOZ_ASSERT_IF(ins->type() == MIRType::Int64, r.isUnknown());
// Don't insert assertions if there's nothing interesting to assert.
if (r.isUnknown() ||
(ins->type() == MIRType::Int32 && r.isUnknownInt32())) {
continue;
}
// Don't add a use to an instruction that is recovered on bailout.
if (ins->isRecoveredOnBailout()) {
continue;
}
if (!alloc().ensureBallast()) {
return false;
}
MAssertRange* guard =
MAssertRange::New(alloc(), ins, new (alloc()) Range(r));
// Beta nodes and interrupt checks are required to be located at the
// beginnings of basic blocks, so we must insert range assertions
// after any such instructions.
MInstruction* insertAt = nullptr;
if (block->graph().osrBlock() == block) {
insertAt = ins->toInstruction();
} else {
insertAt = block->safeInsertTop(ins);
}
if (insertAt == *iter) {
block->insertAfter(insertAt, guard);
} else {
block->insertBefore(insertAt, guard);
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Range based Truncation
///////////////////////////////////////////////////////////////////////////////
void Range::clampToInt32() {
if (isInt32()) {
return;
}
int32_t l = hasInt32LowerBound() ? lower() : JSVAL_INT_MIN;
int32_t h = hasInt32UpperBound() ? upper() : JSVAL_INT_MAX;
setInt32(l, h);
}
void Range::wrapAroundToInt32() {
if (!hasInt32Bounds()) {
setInt32(JSVAL_INT_MIN, JSVAL_INT_MAX);
} else if (canHaveFractionalPart()) {
// Clearing the fractional field may provide an opportunity to refine
// lower_ or upper_.
canHaveFractionalPart_ = ExcludesFractionalParts;
canBeNegativeZero_ = ExcludesNegativeZero;
refineInt32BoundsByExponent(max_exponent_, &lower_, &hasInt32LowerBound_,
&upper_, &hasInt32UpperBound_);
assertInvariants();
} else {
// If nothing else, we can clear the negative zero flag.
canBeNegativeZero_ = ExcludesNegativeZero;
}
MOZ_ASSERT(isInt32());
}
void Range::wrapAroundToShiftCount() {
wrapAroundToInt32();
if (lower() < 0 || upper() >= 32) {
setInt32(0, 31);
}
}
void Range::wrapAroundToBoolean() {
wrapAroundToInt32();
if (!isBoolean()) {
setInt32(0, 1);
}
MOZ_ASSERT(isBoolean());
}
bool MDefinition::canTruncate() const {
// No procedure defined for truncating this instruction.
return false;
}
void MDefinition::truncate(TruncateKind kind) {
MOZ_CRASH("No procedure defined for truncating this instruction.");
}
bool MConstant::canTruncate() const { return IsFloatingPointType(type()); }
void MConstant::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
// Truncate the double to int, since all uses truncates it.
int32_t res = ToInt32(numberToDouble());
payload_.asBits = 0;
payload_.i32 = res;
setResultType(MIRType::Int32);
if (range()) {
range()->setInt32(res, res);
}
}
bool MPhi::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MPhi::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
truncateKind_ = kind;
setResultType(MIRType::Int32);
if (kind >= TruncateKind::IndirectTruncate && range()) {
range()->wrapAroundToInt32();
}
}
bool MAdd::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MAdd::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
// Remember analysis, needed for fallible checks.
setTruncateKind(kind);
setSpecialization(MIRType::Int32);
if (truncateKind() >= TruncateKind::IndirectTruncate && range()) {
range()->wrapAroundToInt32();
}
}
bool MSub::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MSub::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
// Remember analysis, needed for fallible checks.
setTruncateKind(kind);
setSpecialization(MIRType::Int32);
if (truncateKind() >= TruncateKind::IndirectTruncate && range()) {
range()->wrapAroundToInt32();
}
}
bool MMul::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MMul::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
// Remember analysis, needed for fallible checks.
setTruncateKind(kind);
setSpecialization(MIRType::Int32);
if (truncateKind() >= TruncateKind::IndirectTruncate) {
setCanBeNegativeZero(false);
if (range()) {
range()->wrapAroundToInt32();
}
}
}
bool MDiv::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MDiv::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
// Remember analysis, needed for fallible checks.
setTruncateKind(kind);
setSpecialization(MIRType::Int32);
// Divisions where the lhs and rhs are unsigned and the result is
// truncated can be lowered more efficiently.
if (unsignedOperands()) {
replaceWithUnsignedOperands();
unsigned_ = true;
}
}
bool MMod::canTruncate() const {
return type() == MIRType::Double || type() == MIRType::Int32;
}
void MMod::truncate(TruncateKind kind) {
// As for division, handle unsigned modulus with a truncated result.
MOZ_ASSERT(canTruncate());
// Remember analysis, needed for fallible checks.
setTruncateKind(kind);
setSpecialization(MIRType::Int32);
if (unsignedOperands()) {
replaceWithUnsignedOperands();
unsigned_ = true;
}
}
bool MToDouble::canTruncate() const {
MOZ_ASSERT(type() == MIRType::Double);
return true;
}
void MToDouble::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
setTruncateKind(kind);
// We use the return type to flag that this MToDouble should be replaced by
// a MTruncateToInt32 when modifying the graph.
setResultType(MIRType::Int32);
if (truncateKind() >= TruncateKind::IndirectTruncate) {
if (range()) {
range()->wrapAroundToInt32();
}
}
}
bool MLimitedTruncate::canTruncate() const { return true; }
void MLimitedTruncate::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
setTruncateKind(kind);
setResultType(MIRType::Int32);
if (kind >= TruncateKind::IndirectTruncate && range()) {
range()->wrapAroundToInt32();
}
}
bool MCompare::canTruncate() const {
if (!isDoubleComparison()) {
return false;
}
// If both operands are naturally in the int32 range, we can convert from
// a double comparison to being an int32 comparison.
if (!Range(lhs()).isInt32() || !Range(rhs()).isInt32()) {
return false;
}
return true;
}
void MCompare::truncate(TruncateKind kind) {
MOZ_ASSERT(canTruncate());
compareType_ = Compare_Int32;
// Truncating the operands won't change their value because we don't force a
// truncation, but it will change their type, which we need because we
// now expect integer inputs.
truncateOperands_ = true;
}
TruncateKind MDefinition::operandTruncateKind(size_t index) const {
// Generic routine: We don't know anything.
return TruncateKind::NoTruncate;
}
TruncateKind MPhi::operandTruncateKind(size_t index) const {
// The truncation applied to a phi is effectively applied to the phi's
// operands.
return truncateKind_;
}
TruncateKind MTruncateToInt32::operandTruncateKind(size_t index) const {
// This operator is an explicit truncate to int32.
return TruncateKind::Truncate;
}
TruncateKind MBinaryBitwiseInstruction::operandTruncateKind(
size_t index) const {
// The bitwise operators truncate to int32.
return TruncateKind::Truncate;
}
TruncateKind MLimitedTruncate::operandTruncateKind(size_t index) const {
return std::min(truncateKind(), truncateLimit_);
}
TruncateKind MAdd::operandTruncateKind(size_t index) const {
// This operator is doing some arithmetic. If its result is truncated,
// it's an indirect truncate for its operands.
return std::min(truncateKind(), TruncateKind::IndirectTruncate);
}
TruncateKind MSub::operandTruncateKind(size_t index) const {
// See the comment in MAdd::operandTruncateKind.
return std::min(truncateKind(), TruncateKind::IndirectTruncate);
}
TruncateKind MMul::operandTruncateKind(size_t index) const {
// See the comment in MAdd::operandTruncateKind.
return std::min(truncateKind(), TruncateKind::IndirectTruncate);
}
TruncateKind MToDouble::operandTruncateKind(size_t index) const {
// MToDouble propagates its truncate kind to its operand.
return truncateKind();
}
TruncateKind MStoreUnboxedScalar::operandTruncateKind(size_t index) const {
// An integer store truncates the stored value.
return (index == 2 && isIntegerWrite()) ? TruncateKind::Truncate
: TruncateKind::NoTruncate;
}
TruncateKind MStoreDataViewElement::operandTruncateKind(size_t index) const {
// An integer store truncates the stored value.
return (index == 2 && isIntegerWrite()) ? TruncateKind::Truncate
: TruncateKind::NoTruncate;
}
TruncateKind MStoreTypedArrayElementHole::operandTruncateKind(
size_t index) const {
// An integer store truncates the stored value.
return (index == 3 && isIntegerWrite()) ? TruncateKind::Truncate
: TruncateKind::NoTruncate;
}
TruncateKind MDiv::operandTruncateKind(size_t index) const {
return std::min(truncateKind(), TruncateKind::TruncateAfterBailouts);
}
TruncateKind MMod::operandTruncateKind(size_t index) const {
return std::min(truncateKind(), TruncateKind::TruncateAfterBailouts);
}
TruncateKind MCompare::operandTruncateKind(size_t index) const {
// If we're doing an int32 comparison on operands which were previously
// floating-point, convert them!
MOZ_ASSERT_IF(truncateOperands_, isInt32Comparison());
return truncateOperands_ ? TruncateKind::TruncateAfterBailouts
: TruncateKind::NoTruncate;
}
static bool TruncateTest(TempAllocator& alloc, const MTest* test) {
// If all possible inputs to the test are either int32 or boolean,
// convert those inputs to int32 so that an int32 test can be performed.
if (test->input()->type() != MIRType::Value) {
return true;
}
if (!test->input()->isPhi() || !test->input()->hasOneDefUse() ||
test->input()->isImplicitlyUsed()) {
return true;
}
MPhi* phi = test->input()->toPhi();
for (size_t i = 0; i < phi->numOperands(); i++) {
MDefinition* def = phi->getOperand(i);
if (!def->isBox()) {
return true;
}
MDefinition* inner = def->getOperand(0);
if (inner->type() != MIRType::Boolean && inner->type() != MIRType::Int32) {
return true;
}
}
for (size_t i = 0; i < phi->numOperands(); i++) {
MDefinition* inner = phi->getOperand(i)->getOperand(0);
if (inner->type() != MIRType::Int32) {
if (!alloc.ensureBallast()) {
return false;
}
MBasicBlock* block = inner->block();
inner = MToNumberInt32::New(alloc, inner);
block->insertBefore(block->lastIns(), inner->toInstruction());
}
MOZ_ASSERT(inner->type() == MIRType::Int32);
phi->replaceOperand(i, inner);
}
phi->setResultType(MIRType::Int32);
return true;
}
// Truncating instruction result is an optimization which implies
// knowing all uses of an instruction. This implies that if one of
// the uses got removed, then Range Analysis is not be allowed to do
// any modification which can change the result, especially if the
// result can be observed.
//
// This corner can easily be understood with UCE examples, but it
// might also happen with type inference assumptions. Note: Type
// inference is implicitly branches where other types might be
// flowing into.
static bool CloneForDeadBranches(TempAllocator& alloc,
MInstruction* candidate) {
// Compare returns a boolean so it doesn't have to be recovered on bailout
// because the output would remain correct.
if (candidate->isCompare()) {
return true;
}
MOZ_ASSERT(candidate->canClone());
if (!alloc.ensureBallast()) {
return false;
}
MDefinitionVector operands(alloc);
size_t end = candidate->numOperands();
if (!operands.reserve(end)) {
return false;
}
for (size_t i = 0; i < end; ++i) {
operands.infallibleAppend(candidate->getOperand(i));
}
MInstruction* clone = candidate->clone(alloc, operands);
if (!clone) {
return false;
}
clone->setRange(nullptr);
// Set ImplicitlyUsed flag on the cloned instruction in order to chain recover
// instruction for the bailout path.
clone->setImplicitlyUsedUnchecked();
candidate->block()->insertBefore(candidate, clone);
if (!candidate->maybeConstantValue()) {
MOZ_ASSERT(clone->canRecoverOnBailout());
clone->setRecoveredOnBailout();
}
// Replace the candidate by its recovered on bailout clone within recovered
// instructions and resume points operands.
for (MUseIterator i(candidate->usesBegin()); i != candidate->usesEnd();) {
MUse* use = *i++;
MNode* ins = use->consumer();
if (ins->isDefinition() && !ins->toDefinition()->isRecoveredOnBailout()) {
continue;
}
use->replaceProducer(clone);
}
return true;
}
struct ComputedTruncateKind {
TruncateKind kind = TruncateKind::NoTruncate;
bool shouldClone = false;
};
// Examine all the users of |candidate| and determine the most aggressive
// truncate kind that satisfies all of them.
static ComputedTruncateKind ComputeRequestedTruncateKind(
const MDefinition* candidate) {
// Don't call this method when truncation isn't supported, because the result
// isn't used anyway.
MOZ_ASSERT(candidate->canTruncate());
bool isCapturedResult =
false; // Check if used by a recovered instruction or a resume point.
bool isObservableResult =
false; // Check if it can be read from another frame.
bool isRecoverableResult = true; // Check if it can safely be reconstructed.
bool isImplicitlyUsed = candidate->isImplicitlyUsed();
bool hasTryBlock = candidate->block()->graph().hasTryBlock();
TruncateKind kind = TruncateKind::Truncate;
for (MUseIterator use(candidate->usesBegin()); use != candidate->usesEnd();
use++) {
if (use->consumer()->isResumePoint()) {
// Truncation is a destructive optimization, as such, we need to pay
// attention to removed branches and prevent optimization
// destructive optimizations if we have no alternative. (see
// ImplicitlyUsed flag)
isCapturedResult = true;
isObservableResult =
isObservableResult ||
use->consumer()->toResumePoint()->isObservableOperand(*use);
isRecoverableResult =
isRecoverableResult &&
use->consumer()->toResumePoint()->isRecoverableOperand(*use);
continue;
}
MDefinition* consumer = use->consumer()->toDefinition();
if (consumer->isRecoveredOnBailout()) {
isCapturedResult = true;
isImplicitlyUsed = isImplicitlyUsed || consumer->isImplicitlyUsed();
continue;
}
TruncateKind consumerKind =
consumer->operandTruncateKind(consumer->indexOf(*use));
kind = std::min(kind, consumerKind);
if (kind == TruncateKind::NoTruncate) {
break;
}
}
// We cannot do full truncation on guarded instructions.
if (candidate->isGuard() || candidate->isGuardRangeBailouts()) {
kind = std::min(kind, TruncateKind::TruncateAfterBailouts);
}
// If the value naturally produces an int32 value (before bailout checks)
// that needs no conversion, we don't have to worry about resume points
// seeing truncated values.
bool needsConversion = !candidate->range() || !candidate->range()->isInt32();
// If the instruction is explicitly truncated (not indirectly) by all its
// uses and if it is not implicitly used, then we can safely encode its
// truncated result as part of the resume point operands. This is safe,
// because even if we resume with a truncated double, the next baseline
// instruction operating on this instruction is going to be a no-op.
//
// Note, that if the result can be observed from another frame, then this
// optimization is not safe. Similarly, if this function contains a try
// block, the result could be observed from a catch block, which we do
// not compile.
bool safeToConvert = kind == TruncateKind::Truncate && !isImplicitlyUsed &&
!isObservableResult && !hasTryBlock;
// If the candidate instruction appears as operand of a resume point or a
// recover instruction, and we have to truncate its result, then we might
// have to either recover the result during the bailout, or avoid the
// truncation.
bool shouldClone = false;
if (isCapturedResult && needsConversion && !safeToConvert) {
// If the result can be recovered from all the resume points (not needed
// for iterating over the inlined frames), and this instruction can be
// recovered on bailout, then we can clone it and use the cloned
// instruction to encode the recover instruction. Otherwise, we should
// keep the original result and bailout if the value is not in the int32
// range.
if (!JitOptions.disableRecoverIns && isRecoverableResult &&
candidate->canRecoverOnBailout()) {
shouldClone = true;
} else {
kind = std::min(kind, TruncateKind::TruncateAfterBailouts);
}
}
return {kind, shouldClone};
}
static ComputedTruncateKind ComputeTruncateKind(const MDefinition* candidate) {
// Don't call this method when truncation isn't supported, because the result
// isn't used anyway.
MOZ_ASSERT(candidate->canTruncate());
// Compare operations might coerce its inputs to int32 if the ranges are
// correct. So we do not need to check if all uses are coerced.
if (candidate->isCompare()) {
return {TruncateKind::TruncateAfterBailouts};
}
// Set truncated flag if range analysis ensure that it has no
// rounding errors and no fractional part. Note that we can't use
// the MDefinition Range constructor, because we need to know if
// the value will have rounding errors before any bailout checks.
const Range* r = candidate->range();
bool canHaveRoundingErrors = !r || r->canHaveRoundingErrors();
// Special case integer division and modulo: a/b can be infinite, and a%b
// can be NaN but cannot actually have rounding errors induced by truncation.
if ((candidate->isDiv() || candidate->isMod()) &&
candidate->type() == MIRType::Int32) {
canHaveRoundingErrors = false;
}
if (canHaveRoundingErrors) {
return {TruncateKind::NoTruncate};
}
// Ensure all observable uses are truncated.
return ComputeRequestedTruncateKind(candidate);
}
static void RemoveTruncatesOnOutput(MDefinition* truncated) {
// Compare returns a boolean so it doesn't have any output truncates.
if (truncated->isCompare()) {
return;
}
MOZ_ASSERT(truncated->type() == MIRType::Int32);
MOZ_ASSERT(Range(truncated).isInt32());
for (MUseDefIterator use(truncated); use; use++) {
MDefinition* def = use.def();
if (!def->isTruncateToInt32() || !def->isToNumberInt32()) {
continue;
}
def->replaceAllUsesWith(truncated);
}
}
void RangeAnalysis::adjustTruncatedInputs(MDefinition* truncated) {
MBasicBlock* block = truncated->block();
for (size_t i = 0, e = truncated->numOperands(); i < e; i++) {
TruncateKind kind = truncated->operandTruncateKind(i);
if (kind == TruncateKind::NoTruncate) {
continue;
}
MDefinition* input = truncated->getOperand(i);
if (input->type() == MIRType::Int32) {
continue;
}
if (input->isToDouble() && input->getOperand(0)->type() == MIRType::Int32) {
truncated->replaceOperand(i, input->getOperand(0));
} else {
MInstruction* op;
if (kind == TruncateKind::TruncateAfterBailouts) {
MOZ_ASSERT(!mir->outerInfo().hadEagerTruncationBailout());
op = MToNumberInt32::New(alloc(), truncated->getOperand(i));
op->setBailoutKind(BailoutKind::EagerTruncation);
} else {
op = MTruncateToInt32::New(alloc(), truncated->getOperand(i));
}
if (truncated->isPhi()) {
MBasicBlock* pred = block->getPredecessor(i);
pred->insertBefore(pred->lastIns(), op);
} else {
block->insertBefore(truncated->toInstruction(), op);
}
truncated->replaceOperand(i, op);
}
}
if (truncated->isToDouble()) {
truncated->replaceAllUsesWith(truncated->toToDouble()->getOperand(0));
block->discard(truncated->toToDouble());
}
}
bool RangeAnalysis::canTruncate(const MDefinition* def,
TruncateKind kind) const {
// Don't call this method when truncation isn't supported, because the result
// isn't used anyway.
MOZ_ASSERT(def->canTruncate());
if (kind == TruncateKind::NoTruncate) {
return false;
}
// Range Analysis is sometimes eager to do optimizations, even if we
// are not able to truncate an instruction. In such case, we
// speculatively compile the instruction to an int32 instruction
// while adding a guard. This is what is implied by
// TruncateAfterBailout.
//
// If a previous compilation was invalidated because a speculative
// truncation bailed out, we no longer attempt to make this kind of
// eager optimization.
if (mir->outerInfo().hadEagerTruncationBailout()) {
if (kind == TruncateKind::TruncateAfterBailouts) {
return false;
}
// MDiv and MMod always require TruncateAfterBailout for their operands.
// See MDiv::operandTruncateKind and MMod::operandTruncateKind.
if (def->isDiv() || def->isMod()) {
return false;
}
}
return true;
}
// Iterate backward on all instruction and attempt to truncate operations for
// each instruction which respect the following list of predicates: Has been
// analyzed by range analysis, the range has no rounding errors, all uses cases
// are truncating the result.
//
// If the truncation of the operation is successful, then the instruction is
// queue for later updating the graph to restore the type correctness by
// converting the operands that need to be truncated.
//
// We iterate backward because it is likely that a truncated operation truncates
// some of its operands.
bool RangeAnalysis::truncate() {
JitSpew(JitSpew_Range, "Do range-base truncation (backward loop)");
// Automatic truncation is disabled for wasm because the truncation logic
// is based on IonMonkey which assumes that we can bailout if the truncation
// logic fails. As wasm code has no bailout mechanism, it is safer to avoid
// any automatic truncations.
MOZ_ASSERT(!mir->compilingWasm());
Vector<MDefinition*, 16, SystemAllocPolicy> worklist;
for (PostorderIterator block(graph_.poBegin()); block != graph_.poEnd();
block++) {
for (MInstructionReverseIterator iter(block->rbegin());
iter != block->rend(); iter++) {
if (iter->isRecoveredOnBailout()) {
continue;
}
if (iter->type() == MIRType::None) {
if (iter->isTest()) {
if (!TruncateTest(alloc(), iter->toTest())) {
return false;
}
}
continue;
}
// Remember all bitop instructions for folding after range analysis.
switch (iter->op()) {
case MDefinition::Opcode::BitAnd:
case MDefinition::Opcode::BitOr:
case MDefinition::Opcode::BitXor:
case MDefinition::Opcode::Lsh:
case MDefinition::Opcode::Rsh:
case MDefinition::Opcode::Ursh:
if (!bitops.append(static_cast<MBinaryBitwiseInstruction*>(*iter))) {
return false;
}
break;
default:;
}
// Skip instructions which can't be truncated.
if (!iter->canTruncate()) {
continue;
}
auto [kind, shouldClone] = ComputeTruncateKind(*iter);
// Truncate this instruction if possible.
if (!canTruncate(*iter, kind)) {
continue;
}
SpewTruncate(*iter, kind, shouldClone);
// If needed, clone the current instruction for keeping it for the
// bailout path. This give us the ability to truncate instructions
// even after the removal of branches.
if (shouldClone && !CloneForDeadBranches(alloc(), *iter)) {
return false;
}
// TruncateAfterBailouts keeps the bailout code as-is and
// continues with truncated operations, with the expectation
// that we are unlikely to bail out. If we do bail out, then we
// will set a flag in FinishBailoutToBaseline to prevent eager
// truncation when we recompile, to avoid bailout loops.
if (kind == TruncateKind::TruncateAfterBailouts) {
iter->setBailoutKind(BailoutKind::EagerTruncation);
}
iter->truncate(kind);
// Delay updates of inputs/outputs to avoid creating node which
// would be removed by the truncation of the next operations.
iter->setInWorklist();
if (!worklist.append(*iter)) {
return false;
}
}
for (MPhiIterator iter(block->phisBegin()), end(block->phisEnd());
iter != end; ++iter) {
// Skip phis which can't be truncated.
if (!iter->canTruncate()) {
continue;
}
auto [kind, shouldClone] = ComputeTruncateKind(*iter);
// Truncate this phi if possible.
if (shouldClone || !canTruncate(*iter, kind)) {
continue;
}
SpewTruncate(*iter, kind, shouldClone);
iter->truncate(kind);
// Delay updates of inputs/outputs to avoid creating node which
// would be removed by the truncation of the next operations.
iter->setInWorklist();
if (!worklist.append(*iter)) {
return false;
}
}
}
// Update inputs/outputs of truncated instructions.
JitSpew(JitSpew_Range, "Do graph type fixup (dequeue)");
while (!worklist.empty()) {
if (!alloc().ensureBallast()) {
return false;
}
MDefinition* def = worklist.popCopy();
def->setNotInWorklist();
RemoveTruncatesOnOutput(def);
adjustTruncatedInputs(def);
}
return true;
}
bool RangeAnalysis::removeUnnecessaryBitops() {
JitSpew(JitSpew_Range, "Begin (removeUnnecessaryBitops)");
// Note: This operation change the semantic of the program in a way which
// uniquely works with Int32, Recover Instructions added by the Sink phase
// expects the MIR Graph to still have a valid flow as-if they were double
// operations instead of Int32 operations. Thus, this phase should be
// executed after the Sink phase, and before DCE.
// Fold any unnecessary bitops in the graph, such as (x | 0) on an integer
// input. This is done after range analysis rather than during GVN as the
// presence of the bitop can change which instructions are truncated.
for (size_t i = 0; i < bitops.length(); i++) {
MBinaryBitwiseInstruction* ins = bitops[i];
if (ins->isRecoveredOnBailout()) {
continue;
}
MDefinition* folded = ins->foldUnnecessaryBitop();
if (folded != ins) {
ins->replaceAllLiveUsesWith(folded);
ins->setRecoveredOnBailout();
}
}
bitops.clear();
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Collect Range information of operands
///////////////////////////////////////////////////////////////////////////////
void MInArray::collectRangeInfoPreTrunc() {
Range indexRange(index());
if (indexRange.isFiniteNonNegative()) {
needsNegativeIntCheck_ = false;
setNotGuard();
}
}
void MLoadElementHole::collectRangeInfoPreTrunc() {
Range indexRange(index());
if (indexRange.isFiniteNonNegative()) {
needsNegativeIntCheck_ = false;
setNotGuard();
}
}
void MInt32ToIntPtr::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (inputRange.isFiniteNonNegative()) {
canBeNegative_ = false;
}
}
void MClz::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (!inputRange.canBeZero()) {
operandIsNeverZero_ = true;
}
}
void MCtz::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (!inputRange.canBeZero()) {
operandIsNeverZero_ = true;
}
}
void MDiv::collectRangeInfoPreTrunc() {
Range lhsRange(lhs());
Range rhsRange(rhs());
// Test if Dividend is non-negative.
if (lhsRange.isFiniteNonNegative()) {
canBeNegativeDividend_ = false;
}
// Try removing divide by zero check.
if (!rhsRange.canBeZero()) {
canBeDivideByZero_ = false;
}
// If lhsRange does not contain INT32_MIN in its range,
// negative overflow check can be skipped.
if (!lhsRange.contains(INT32_MIN)) {
canBeNegativeOverflow_ = false;
}
// If rhsRange does not contain -1 likewise.
if (!rhsRange.contains(-1)) {
canBeNegativeOverflow_ = false;
}
// If lhsRange does not contain a zero,
// negative zero check can be skipped.
if (!lhsRange.canBeZero()) {
canBeNegativeZero_ = false;
}
// If rhsRange >= 0 negative zero check can be skipped.
if (rhsRange.isFiniteNonNegative()) {
canBeNegativeZero_ = false;
}
if (type() == MIRType::Int32 && fallible()) {
setGuardRangeBailoutsUnchecked();
}
}
void MMul::collectRangeInfoPreTrunc() {
Range lhsRange(lhs());
Range rhsRange(rhs());
// If lhsRange contains only positive then we can skip negative zero check.
if (lhsRange.isFiniteNonNegative() && !lhsRange.canBeZero()) {
setCanBeNegativeZero(false);
}
// Likewise rhsRange.
if (rhsRange.isFiniteNonNegative() && !rhsRange.canBeZero()) {
setCanBeNegativeZero(false);
}
// If rhsRange and lhsRange contain Non-negative integers only,
// We skip negative zero check.
if (rhsRange.isFiniteNonNegative() && lhsRange.isFiniteNonNegative()) {
setCanBeNegativeZero(false);
}
// If rhsRange and lhsRange < 0. Then we skip negative zero check.
if (rhsRange.isFiniteNegative() && lhsRange.isFiniteNegative()) {
setCanBeNegativeZero(false);
}
}
void MMod::collectRangeInfoPreTrunc() {
Range lhsRange(lhs());
Range rhsRange(rhs());
if (lhsRange.isFiniteNonNegative()) {
canBeNegativeDividend_ = false;
}
if (!rhsRange.canBeZero()) {
canBeDivideByZero_ = false;
}
if (type() == MIRType::Int32 && fallible()) {
setGuardRangeBailoutsUnchecked();
}
}
void MToNumberInt32::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (!inputRange.canBeNegativeZero()) {
needsNegativeZeroCheck_ = false;
}
}
void MBoundsCheck::collectRangeInfoPreTrunc() {
Range indexRange(index());
Range lengthRange(length());
if (!indexRange.hasInt32LowerBound() || !indexRange.hasInt32UpperBound()) {
return;
}
if (!lengthRange.hasInt32LowerBound() || lengthRange.canBeNaN()) {
return;
}
int64_t indexLower = indexRange.lower();
int64_t indexUpper = indexRange.upper();
int64_t lengthLower = lengthRange.lower();
int64_t min = minimum();
int64_t max = maximum();
if (indexLower + min >= 0 && indexUpper + max < lengthLower) {
fallible_ = false;
}
}
void MBoundsCheckLower::collectRangeInfoPreTrunc() {
Range indexRange(index());
if (indexRange.hasInt32LowerBound() && indexRange.lower() >= minimum_) {
fallible_ = false;
}
}
void MCompare::collectRangeInfoPreTrunc() {
if (!Range(lhs()).canBeNaN() && !Range(rhs()).canBeNaN()) {
operandsAreNeverNaN_ = true;
}
}
void MNot::collectRangeInfoPreTrunc() {
if (!Range(input()).canBeNaN()) {
operandIsNeverNaN_ = true;
}
}
void MPowHalf::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (!inputRange.canBeInfiniteOrNaN() || inputRange.hasInt32LowerBound()) {
operandIsNeverNegativeInfinity_ = true;
}
if (!inputRange.canBeNegativeZero()) {
operandIsNeverNegativeZero_ = true;
}
if (!inputRange.canBeNaN()) {
operandIsNeverNaN_ = true;
}
}
void MUrsh::collectRangeInfoPreTrunc() {
if (type() == MIRType::Int64) {
return;
}
Range lhsRange(lhs()), rhsRange(rhs());
// As in MUrsh::computeRange(), convert the inputs.
lhsRange.wrapAroundToInt32();
rhsRange.wrapAroundToShiftCount();
// If the most significant bit of our result is always going to be zero,
// we can optimize by disabling bailout checks for enforcing an int32 range.
if (lhsRange.lower() >= 0 || rhsRange.lower() >= 1) {
bailoutsDisabled_ = true;
}
}
static bool DoesMaskMatchRange(int32_t mask, const Range& range) {
// Check if range is positive, because the bitand operator in `(-3) & 0xff`
// can't be eliminated.
if (range.lower() >= 0) {
MOZ_ASSERT(range.isInt32());
// Check that the mask value has all bits set given the range upper bound.
// Note that the upper bound does not have to be exactly the mask value. For
// example, consider `x & 0xfff` where `x` is a uint8. That expression can
// still be optimized to `x`.
int bits = 1 + FloorLog2(range.upper());
uint32_t maskNeeded = (bits == 32) ? 0xffffffff : (uint32_t(1) << bits) - 1;
if ((mask & maskNeeded) == maskNeeded) {
return true;
}
}
return false;
}
void MBinaryBitwiseInstruction::collectRangeInfoPreTrunc() {
Range lhsRange(lhs());
Range rhsRange(rhs());
if (lhs()->isConstant() && lhs()->type() == MIRType::Int32 &&
DoesMaskMatchRange(lhs()->toConstant()->toInt32(), rhsRange)) {
maskMatchesRightRange = true;
}
if (rhs()->isConstant() && rhs()->type() == MIRType::Int32 &&
DoesMaskMatchRange(rhs()->toConstant()->toInt32(), lhsRange)) {
maskMatchesLeftRange = true;
}
}
void MNaNToZero::collectRangeInfoPreTrunc() {
Range inputRange(input());
if (!inputRange.canBeNaN()) {
operandIsNeverNaN_ = true;
}
if (!inputRange.canBeNegativeZero()) {
operandIsNeverNegativeZero_ = true;
}
}
bool RangeAnalysis::prepareForUCE(bool* shouldRemoveDeadCode) {
*shouldRemoveDeadCode = false;
for (ReversePostorderIterator iter(graph_.rpoBegin());
iter != graph_.rpoEnd(); iter++) {
MBasicBlock* block = *iter;
if (!block->unreachable()) {
continue;
}
// Filter out unreachable fake entries.
if (block->numPredecessors() == 0) {
// Ignore fixup blocks added by the Value Numbering phase, in order
// to keep the dominator tree as-is when we have OSR Block which are
// no longer reachable from the main entry point of the graph.
MOZ_ASSERT(graph_.osrBlock());
continue;
}
MControlInstruction* cond = block->getPredecessor(0)->lastIns();
if (!cond->isTest()) {
continue;
}
// Replace the condition of the test control instruction by a constant
// chosen based which of the successors has the unreachable flag which is
// added by MBeta::computeRange on its own block.
MTest* test = cond->toTest();
MDefinition* condition = test->input();
// If the false-branch is unreachable, then the test condition must be true.
// If the true-branch is unreachable, then the test condition must be false.
MOZ_ASSERT(block == test->ifTrue() || block == test->ifFalse());
bool value = block == test->ifFalse();
MConstant* constant =
MConstant::New(alloc().fallible(), BooleanValue(value));
if (!constant) {
return false;
}
condition->setGuardRangeBailoutsUnchecked();
test->block()->insertBefore(test, constant);
test->replaceOperand(0, constant);
JitSpew(JitSpew_Range,
"Update condition of %u to reflect unreachable branches.",
test->id());
*shouldRemoveDeadCode = true;
}
return tryRemovingGuards();
}
bool RangeAnalysis::tryRemovingGuards() {
MDefinitionVector guards(alloc());
for (ReversePostorderIterator block = graph_.rpoBegin();
block != graph_.rpoEnd(); block++) {
for (MDefinitionIterator iter(*block); iter; iter++) {
if (!iter->isGuardRangeBailouts()) {
continue;
}
iter->setInWorklist();
if (!guards.append(*iter)) {
return false;
}
}
}
// Flag all fallible instructions which were indirectly used in the
// computation of the condition, such that we do not ignore
// bailout-paths which are used to shrink the input range of the
// operands of the condition.
for (size_t i = 0; i < guards.length(); i++) {
MDefinition* guard = guards[i];
// If this ins is a guard even without guardRangeBailouts,
// there is no reason in trying to hoist the guardRangeBailouts check.
guard->setNotGuardRangeBailouts();
if (!DeadIfUnused(guard)) {
guard->setGuardRangeBailouts();
continue;
}
guard->setGuardRangeBailouts();
if (!guard->isPhi()) {
if (!guard->range()) {
continue;
}
// Filter the range of the instruction based on its MIRType.
Range typeFilteredRange(guard);
// If the output range is updated by adding the inner range,
// then the MIRType act as an effectful filter. As we do not know if
// this filtered Range might change or not the result of the
// previous comparison, we have to keep this instruction as a guard
// because it has to bailout in order to restrict the Range to its
// MIRType.
if (typeFilteredRange.update(guard->range())) {
continue;
}
}
guard->setNotGuardRangeBailouts();
// Propagate the guard to its operands.
for (size_t op = 0, e = guard->numOperands(); op < e; op++) {
MDefinition* operand = guard->getOperand(op);
// Already marked.
if (operand->isInWorklist()) {
continue;
}
MOZ_ASSERT(!operand->isGuardRangeBailouts());
operand->setInWorklist();
operand->setGuardRangeBailouts();
if (!guards.append(operand)) {
return false;
}
}
}
for (size_t i = 0; i < guards.length(); i++) {
MDefinition* guard = guards[i];
guard->setNotInWorklist();
}
return true;
}